{"dp_type": "Project", "free_text": "ROCKS/MINERALS/CRYSTALS"}
[{"awards": "2420219 Chignell, Stephen", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "Geodiversity is the variety of non-living elements like rocks, landforms, and processes in a given area, and plays an especially critical role in Antarctica. Geodiversity provides the conditions in which life can develop and underpins all ecosystems on Earth. It also provides tangible services to people (like construction materials) as well as intangible benefits (such as scientific knowledge from ice cores and artistic inspiration from glaciers). Despite its importance, Antarctic geodiversity remains under-explored, under-described, and inadequately mapped. This knowledge gap is particularly concerning given the threats posed by increasing human activity and environmental and climate change. This project uses a variety of datasets to map Antarctic geodiversity, assess its benefits to people, and help identify priority locations for conservation. Through an interdisciplinary and mixed-method approach, this research will fill a major gap in the current understanding and representations of the Antarctic. Using the McMurdo Dry Valleys as a case study, the researcher will combine geospatial data on geology, geomorphology, pedology, and hydrology to map geodiversity of the region. This project will identify sites of key geosystem services by analyzing geospatial data on placenames, scientific samples, and a web-based participatory mapping survey. The geodiversity and geosystem services data will then be overlaid and combined to identify hotspots of geo-social diversity. The resulting maps will be compared with the region\u0027s protected area boundaries to assess the fit-for-purpose of current environmental management and identify priority locations for future research and conservation. The fellow will promote Antarctic geodiversity broadly, including at UNESCO International Geodiversity Day. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Dry Valleys; LANDSCAPE; ROCKS/MINERALS/CRYSTALS; LANDFORMS; GIS; GLACIAL LANDFORMS; RIVERS/STREAMS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Chignell, Stephen", "platforms": null, "repositories": null, "science_programs": null, "south": -78.5, "title": "Postdoctoral Fellowship: OPP-PRF: Mapping Antarctic Geodiversity: Assessing People, Place, and Abiotic Nature in the McMurdo Dry Valleys", "uid": "p0010476", "west": 160.0}, {"awards": "2317263 Cross, Andrew", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 14 Aug 2023 00:00:00 GMT", "description": "The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these \u2014 viscous flow \u2014 is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a \"crystal orientation fabric\" (COF). Historically, ice flow has been modeled using an equation, termed \u201cGlen\u2019s law\u201d, that describes ice-flow rate as a function of temperature and stress. Glen\u2019s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, \u201csuperplastic\u201d conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 \u00b5m to 1000 \u00b5m will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30\u00b0C to -10\u00b0C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "United States Of America; Rheology; ROCKS/MINERALS/CRYSTALS; GLACIERS/ICE SHEETS", "locations": "United States Of America", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Cross, Andrew", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "Microstructural Evolution during Superplastic Ice Creep", "uid": "p0010430", "west": null}, {"awards": "1916982 Teyssier, Christian; 1917176 Siddoway, Christine; 1917009 Thomson, Stuart", "bounds_geometry": "POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15))", "dataset_titles": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock; U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "datasets": [{"dataset_uid": "200333", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock", "url": ""}, {"dataset_uid": "200332", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "url": ""}], "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or \"uncovering\". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of \u003e800 degrees C to \u0026#8804; 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL\u0027s elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP\u0027s Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.28, "geometry": "POINT(-132.22 -72.225)", "instruments": null, "is_usap_dc": true, "keywords": "Marie Byrd Land; GLACIERS/ICE SHEETS; Zircon; Subglacial Topography; FIELD SURVEYS; TECTONICS; Ice Sheet; Thermochronology; Apatite; ROCKS/MINERALS/CRYSTALS; Erosion; United States Of America; LABORATORY", "locations": "United States Of America; Marie Byrd Land", "north": -67.15, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC", "persons": "Siddoway, Christine; Thomson, Stuart; Teyssier, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "in progress", "repositories": "in progress", "science_programs": null, "south": -77.3, "title": "Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica", "uid": "p0010386", "west": -160.16}, {"awards": "2436582 Grunow, Anne; 1643713 Grunow, Anne; 1141906 Grunow, Anne; 0739480 Grunow, Anne; 2137467 Grunow, Anne; 0440695 Grunow, Anne; 9910267 Grunow, Anne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Marine Geoscience Data System - cruise links; Polar Rock Repository; SESAR sample registration", "datasets": [{"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}, {"dataset_uid": "200359", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "200241", "doi": "", "keywords": null, "people": null, "repository": "SESAR", "science_program": null, "title": "SESAR sample registration", "url": "https://www.geosamples.org/about/services#igsnregistration"}, {"dataset_uid": "200242", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Marine Geoscience Data System - cruise links", "url": "https://www.marine-geo.org/"}], "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a \"Polar Rock Box\" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet\u2019s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the \"Polar Rock Box\" program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD SURVEYS; Pacific Ocean; ROCKS/MINERALS/CRYSTALS; GLACIATION; AMD; Weddell Sea; Scotia Sea; TECTONICS; Antarctica; Southern Ocean; Amd/Us; USA/NSF; Amundsen Sea", "locations": "Pacific Ocean; Amundsen Sea; Scotia Sea; Weddell Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Grunow, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "PRR", "repositories": "MGDS; PRR; SESAR", "science_programs": null, "south": -90.0, "title": "Continuing Operations Proposal: \r\nThe Polar Rock Repository as a Resource for Earth Systems Science\r\n", "uid": "p0010259", "west": -180.0}, {"awards": "2122248 Waters, Laura", "bounds_geometry": "POLYGON((-127.143608 -77.1380528,-127.1012394 -77.1380528,-127.0588708 -77.1380528,-127.0165022 -77.1380528,-126.9741336 -77.1380528,-126.931765 -77.1380528,-126.8893964 -77.1380528,-126.8470278 -77.1380528,-126.8046592 -77.1380528,-126.7622906 -77.1380528,-126.719922 -77.1380528,-126.719922 -77.14809141,-126.719922 -77.15813002,-126.719922 -77.16816863,-126.719922 -77.17820724,-126.719922 -77.18824585,-126.719922 -77.19828446,-126.719922 -77.20832307,-126.719922 -77.21836168,-126.719922 -77.22840029,-126.719922 -77.2384389,-126.7622906 -77.2384389,-126.8046592 -77.2384389,-126.8470278 -77.2384389,-126.8893964 -77.2384389,-126.931765 -77.2384389,-126.9741336 -77.2384389,-127.0165022 -77.2384389,-127.0588708 -77.2384389,-127.1012394 -77.2384389,-127.143608 -77.2384389,-127.143608 -77.22840029,-127.143608 -77.21836168,-127.143608 -77.20832307,-127.143608 -77.19828446,-127.143608 -77.18824585,-127.143608 -77.17820724,-127.143608 -77.16816863,-127.143608 -77.15813002,-127.143608 -77.14809141,-127.143608 -77.1380528))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 19 Aug 2021 00:00:00 GMT", "description": "This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The geologic record reveals that volcanic activity increases when glaciers retreat and major ice sheets thin. This relationship produces a positive feedback mechanism where the uptick in volcanism increases greenhouse gasses concentrations, leading to climate warming and further deglaciation. Although the pattern between volcanism and deglaciation is observed in the geologic record, the exact mechanism(s) by which glaciers impact a volcanic plumbing system is unknown. This project focuses on Mount Waesche, a volcano in West Antarctica, that frequently erupts during warm, interglacial periods and undergoes a period of less activity during cold, glacial periods. This project will examine compositions of the rocks and minerals from Mount Waesche to determine magma storage depths, allowing the investigators to understand how magma plumbing systems change in response to glacial cycles. These results will be compared with geodynamic simulations to understand the physics behind the effects of deglaciation on the magmatic plumbing systems within Earth\u2019s crust. The investigators will additionally partner with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. Isotopic and sedimentary datasets reveal that volcanic activity typically increases during interglacial periods. However, the physical mechanisms through which changes in the surface loading affect volcanic magmatic plumbing systems remain unconstrained. Recently generated 40Ar/39Ar eruption ages indicate that 86% of the dated samples from Mt. Waesche, a late Quaternary volcano in Marie Byrd land, correlate with interglacial periods, suggesting this volcano uniquely responds to changes in the West Antarctic Ice Sheet. We propose to combine the petrology of Mount Waesche\u2019s volcanic record, constraints on changing ice loads through time, and geodynamic modelling to: (1) Determine how pre-eruptive storage conditions change during glacial and interglacial periods using whole rock and mineral compositions of volcanic rocks; (2) Conduct geodynamic modeling to elucidate the relationship between lithospheric structure, temporal variations in ice sheet thickness, and subsequent changes in crustal stresses and magmatic transport and, therefore, the mechanism(s) by which deglaciation impacts magmatic plumbing systems; (3) Use the outcomes of objectives (1) and (2) to provide new constraints on the changes in ice sheet thickness through time that could plausibly trigger future volcanic and magmatic activity in West Antarctica. This collaborative approach will provide a novel methodology to determine prior magnitudes and rates of ice load changes within the Marie Byrd Land region of Antarctica. Lastly, estimates of WAIS elevation changes from this study will be compared to ongoing studies at Mount Waesche focused on constraining last interglacial ice sheet draw down using cosmogenic exposure ages obtained from shallow drilling. The scope of work also includes a partnership with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -126.719922, "geometry": "POINT(-126.931765 -77.18824585)", "instruments": null, "is_usap_dc": true, "keywords": "Mt. Waesche; GEOCHEMISTRY; LITHOSPHERIC PLATE MOTION; STRESS; Amd/Us; West Antarctica; Executive Committee Range; NOT APPLICABLE; USAP-DC; AMD; MAJOR ELEMENTS; USA/NSF; ROCKS/MINERALS/CRYSTALS", "locations": "West Antarctica; Mt. Waesche; Executive Committee Range", "north": -77.1380528, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Waters, Laura; Naliboff, John; Zimmerer, Matthew", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repositories": null, "science_programs": null, "south": -77.2384389, "title": "Integrating petrologic records and geodynamics: Quantifying the effects of glaciation on crustal stress and eruptive patterns at Mt. Waesche, Executive Committee Range, Antarctica", "uid": "p0010248", "west": -127.143608}, {"awards": "1643494 Saal, Alberto", "bounds_geometry": "POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345))", "dataset_titles": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "datasets": [{"dataset_uid": "601519", "doi": "10.15784/601519", "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "people": "Saal, Alberto", "repository": "USAP-DC", "science_program": null, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "url": "https://www.usap-dc.org/view/dataset/601519"}], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "The Earth\u0027s mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth\u0027s mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth\u0027s interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth\u0027s atmosphere and oceans. Establishing the cycles of volatiles between the Earth\u0027s interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.", "east": -53.367, "geometry": "POINT(-60.7205 -61.24585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; USA/NSF; USAP-DC; TRACE ELEMENTS; MAJOR ELEMENTS; Amd/Us; LABORATORY; ROCKS/MINERALS/CRYSTALS; Magmatic Volatiles; AMD", "locations": "Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Saal, Alberto", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.1467, "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "uid": "p0010196", "west": -68.074}, {"awards": "1644020 Sims, Kenneth W.; 1644027 Wallace, Paul; 1644013 Gaetani, Glenn", "bounds_geometry": "POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))", "dataset_titles": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines; G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles; G170 Sample Locations Ross Island \u0026 Discovery Province; G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles; G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes; Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "datasets": [{"dataset_uid": "601505", "doi": "10.15784/601505", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Electron Microprobe Analyses; Olivine; Petrography; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Electron Microprobe Analyses of Melt Inclusions and Host Olivines", "url": "https://www.usap-dc.org/view/dataset/601505"}, {"dataset_uid": "601506", "doi": "10.15784/601506", "keywords": "Antarctica; Ion Mass Spectrometry; Ross Island; Volatiles", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analses of Melt Inclusion Volatiles", "url": "https://www.usap-dc.org/view/dataset/601506"}, {"dataset_uid": "601507", "doi": "10.15784/601507", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Hydrogen; Ion Mass Spectrometry; Ross Island", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Secondary Ion Mass Spectrometry Analyses of Melt Inclusion Hydrogen Isotopes", "url": "https://www.usap-dc.org/view/dataset/601507"}, {"dataset_uid": "601250", "doi": "10.15784/601250", "keywords": "Antarctica; Hut Point Peninsula; Mt. Bird; Mt. Morning; Mt. Terror; Ross Island; Turks Head; Turtle Rock", "people": "Gaetani, Glenn; Pamukcu, Ayla", "repository": "USAP-DC", "science_program": null, "title": "Location and Description of Tephra Samples from the Erebus and Discovery Sub-provinces", "url": "https://www.usap-dc.org/view/dataset/601250"}, {"dataset_uid": "601508", "doi": "10.15784/601508", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "url": "https://www.usap-dc.org/view/dataset/601508"}, {"dataset_uid": "601504", "doi": "10.15784/601504", "keywords": "Antarctica; Ross Island; Sample/collection Description; Sample/Collection Description; Sample Location", "people": "Gaetani, Glenn", "repository": "USAP-DC", "science_program": null, "title": "G170 Sample Locations Ross Island \u0026 Discovery Province", "url": "https://www.usap-dc.org/view/dataset/601504"}], "date_created": "Sat, 08 Feb 2020 00:00:00 GMT", "description": "Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth\u0027s largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth\u0027s surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers\u0027 involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe.", "east": 169.6, "geometry": "POINT(166.85 -77.775)", "instruments": null, "is_usap_dc": true, "keywords": "Tephra; Turtle Rock; USA/NSF; Amd/Us; LABORATORY; AMD; Ross Island; Turks Head; Hut Point Peninsula; LAVA SPEED/FLOW; USAP-DC; Mt. Morning; Mt. Terror; ROCKS/MINERALS/CRYSTALS; Mt. Bird; FIELD INVESTIGATION", "locations": "Ross Island; Mt. Morning; Mt. Bird; Mt. Terror; Hut Point Peninsula; Turtle Rock; Turks Head", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "uid": "p0010081", "west": 164.1}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Postdoctoral Fellowship: OPP-PRF: Mapping Antarctic Geodiversity: Assessing People, Place, and Abiotic Nature in the McMurdo Dry Valleys
|
2420219 |
2024-08-13 | Chignell, Stephen | No dataset link provided | Geodiversity is the variety of non-living elements like rocks, landforms, and processes in a given area, and plays an especially critical role in Antarctica. Geodiversity provides the conditions in which life can develop and underpins all ecosystems on Earth. It also provides tangible services to people (like construction materials) as well as intangible benefits (such as scientific knowledge from ice cores and artistic inspiration from glaciers). Despite its importance, Antarctic geodiversity remains under-explored, under-described, and inadequately mapped. This knowledge gap is particularly concerning given the threats posed by increasing human activity and environmental and climate change. This project uses a variety of datasets to map Antarctic geodiversity, assess its benefits to people, and help identify priority locations for conservation. Through an interdisciplinary and mixed-method approach, this research will fill a major gap in the current understanding and representations of the Antarctic. Using the McMurdo Dry Valleys as a case study, the researcher will combine geospatial data on geology, geomorphology, pedology, and hydrology to map geodiversity of the region. This project will identify sites of key geosystem services by analyzing geospatial data on placenames, scientific samples, and a web-based participatory mapping survey. The geodiversity and geosystem services data will then be overlaid and combined to identify hotspots of geo-social diversity. The resulting maps will be compared with the region's protected area boundaries to assess the fit-for-purpose of current environmental management and identify priority locations for future research and conservation. The fellow will promote Antarctic geodiversity broadly, including at UNESCO International Geodiversity Day. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||||||
Microstructural Evolution during Superplastic Ice Creep
|
2317263 |
2023-08-14 | Cross, Andrew | No dataset link provided | The seaward motion of ice sheets and glaciers is primarily controlled by basal sliding at the base of the ice sheet and internal viscous flow within the ice mass. The latter of these — viscous flow — is dependent on various factors, including temperature, stress, grain size, and the alignment of ice crystals during flow to produce a "crystal orientation fabric" (COF). Historically, ice flow has been modeled using an equation, termed “Glen’s law”, that describes ice-flow rate as a function of temperature and stress. Glen’s law was constrained under relatively high-stress conditions and is often attributed to the motion of crystal defects within ice grains. More recently, however, grain boundary sliding (GBS) has been invoked as the rate-controlling process under low-stress, “superplastic” conditions. The grain boundary sliding hypothesis is contentious because GBS is not thought to produce a COF, whereas geophysical measurements and polar ice cores demonstrate strong COFs in polar ice masses. However, very few COF measurements have been conducted on ice samples subjected to superplastic flow conditions in the laboratory. This project would measure the evolution of ice COF across the transition from superplastic to Glen-type creep. Results will be used to interrogate the role of superplastic GBS creep within polar ice masses, and thereby provide constraints on polar ice discharge models. Polycrystalline ice samples with grain sizes ranging from 5 µm to 1000 µm will be fabricated and deformed in a laboratory, using a 1-atm cryogenic axial-torsion apparatus. Experiments will be conducted at temperatures of -30°C to -10°C, and at a constant uniaxial strain rate. Under these conditions, 5% to 99.99% of strain should be accommodated by superplastic, GBS-limited creep, depending on the sample grain size. The deformed samples will then be imaged using cryogenic electron backscatter diffraction (cryo-EBSD) and high-angular-resolution electron backscatter diffraction (HR-EBSD) to quantify COF, grain size, grain shape, and crystal defect (dislocation) densities, among other microstructural properties. These measurements will be used to decipher the rate-controlling mechanisms operating within different thermomechanical regimes, and resolve a long-standing debate over whether superplastic creep can produce a COF in ice. In addition to the polycrystal experiments, ice bicrystals will be fabricated and deformed to investigate the micromechanical behavior of individual grain boundaries under superplastic conditions. Ultimately, these results will be used to provide a microstructural toolbox for identifying superplastic creep using geophysical (e.g., seismic, radar) and glaciological (e.g., ice core) observations. This project will support one graduate student, one or more undergraduate summer students, and an early-career researcher. In addition, this project will support a workshop aimed at bringing together experimentalists, glaciologists, and ice modelers to facilitate cross-disciplinary knowledge sharing and collaborative problem solving. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||
Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica
|
1916982 1917176 1917009 |
2022-10-19 | Siddoway, Christine; Thomson, Stuart; Teyssier, Christian |
|
Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) whose temperature change as a function of rock depth happens to be significant. This strong geothermal gradient in the bedrock is favorable for determining when the bedrock experienced rapid exhumation or "uncovering". Analyzing the chemistry of minerals (zircon and apatite) within the eroded rocks will provide information about the rate and timing of the glacier removal of bedrock from the Antarctic continent. The research addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incision. These results will refine ice sheet history and aid the international societal response to contemporary ice sheet change and its global consequences. The project will contribute to the training of two graduate and two undergraduate students in STEM. The objective is to clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling will be applied to date and characterize episodes of glacial erosional incision. Single-grain double- and triple-dating of zircon and apatite will reveal the detailed crustal thermal evolution of the region enabling the research team to determine the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. High-T mineral thermochronometers across Marie Byrd Land (MBL) record rapid extension-related cooling at ~100 Ma from temperatures of >800 degrees C to ≤ 300 degrees C. This signature forms a reference horizon, or paleogeotherm, through which the Cenozoic landscape history using low-T thermochronometers can be explored. MBL's elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Students will be trained to use state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data they acquire will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction that will be tested with inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP's Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15)) | POINT(-132.22 -72.225) | false | false | |||||||||
Continuing Operations Proposal:
The Polar Rock Repository as a Resource for Earth Systems Science
|
2436582 1643713 1141906 0739480 2137467 0440695 9910267 |
2021-09-09 | Grunow, Anne |
|
Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a "Polar Rock Box" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet’s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the "Polar Rock Box" program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Integrating petrologic records and geodynamics: Quantifying the effects of glaciation on crustal stress and eruptive patterns at Mt. Waesche, Executive Committee Range, Antarctica
|
2122248 |
2021-08-19 | Waters, Laura; Naliboff, John; Zimmerer, Matthew | No dataset link provided | This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The geologic record reveals that volcanic activity increases when glaciers retreat and major ice sheets thin. This relationship produces a positive feedback mechanism where the uptick in volcanism increases greenhouse gasses concentrations, leading to climate warming and further deglaciation. Although the pattern between volcanism and deglaciation is observed in the geologic record, the exact mechanism(s) by which glaciers impact a volcanic plumbing system is unknown. This project focuses on Mount Waesche, a volcano in West Antarctica, that frequently erupts during warm, interglacial periods and undergoes a period of less activity during cold, glacial periods. This project will examine compositions of the rocks and minerals from Mount Waesche to determine magma storage depths, allowing the investigators to understand how magma plumbing systems change in response to glacial cycles. These results will be compared with geodynamic simulations to understand the physics behind the effects of deglaciation on the magmatic plumbing systems within Earth’s crust. The investigators will additionally partner with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. Isotopic and sedimentary datasets reveal that volcanic activity typically increases during interglacial periods. However, the physical mechanisms through which changes in the surface loading affect volcanic magmatic plumbing systems remain unconstrained. Recently generated 40Ar/39Ar eruption ages indicate that 86% of the dated samples from Mt. Waesche, a late Quaternary volcano in Marie Byrd land, correlate with interglacial periods, suggesting this volcano uniquely responds to changes in the West Antarctic Ice Sheet. We propose to combine the petrology of Mount Waesche’s volcanic record, constraints on changing ice loads through time, and geodynamic modelling to: (1) Determine how pre-eruptive storage conditions change during glacial and interglacial periods using whole rock and mineral compositions of volcanic rocks; (2) Conduct geodynamic modeling to elucidate the relationship between lithospheric structure, temporal variations in ice sheet thickness, and subsequent changes in crustal stresses and magmatic transport and, therefore, the mechanism(s) by which deglaciation impacts magmatic plumbing systems; (3) Use the outcomes of objectives (1) and (2) to provide new constraints on the changes in ice sheet thickness through time that could plausibly trigger future volcanic and magmatic activity in West Antarctica. This collaborative approach will provide a novel methodology to determine prior magnitudes and rates of ice load changes within the Marie Byrd Land region of Antarctica. Lastly, estimates of WAIS elevation changes from this study will be compared to ongoing studies at Mount Waesche focused on constraining last interglacial ice sheet draw down using cosmogenic exposure ages obtained from shallow drilling. The scope of work also includes a partnership with Mentoring Kids Works to develop several Polar and Earth Science Educational Modules aimed at improving reading skills in third grade students in New Mexico. The proposed Polar and Earth Science program consists of modules that include readings of books introducing students to Earth and Polar science themes, paired with Earth and Polar Science activities, followed by simple experiments, where students make predictions and collect data. Information required to implement our Polar and Earth Science curriculum will be made available online. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-127.143608 -77.1380528,-127.1012394 -77.1380528,-127.0588708 -77.1380528,-127.0165022 -77.1380528,-126.9741336 -77.1380528,-126.931765 -77.1380528,-126.8893964 -77.1380528,-126.8470278 -77.1380528,-126.8046592 -77.1380528,-126.7622906 -77.1380528,-126.719922 -77.1380528,-126.719922 -77.14809141,-126.719922 -77.15813002,-126.719922 -77.16816863,-126.719922 -77.17820724,-126.719922 -77.18824585,-126.719922 -77.19828446,-126.719922 -77.20832307,-126.719922 -77.21836168,-126.719922 -77.22840029,-126.719922 -77.2384389,-126.7622906 -77.2384389,-126.8046592 -77.2384389,-126.8470278 -77.2384389,-126.8893964 -77.2384389,-126.931765 -77.2384389,-126.9741336 -77.2384389,-127.0165022 -77.2384389,-127.0588708 -77.2384389,-127.1012394 -77.2384389,-127.143608 -77.2384389,-127.143608 -77.22840029,-127.143608 -77.21836168,-127.143608 -77.20832307,-127.143608 -77.19828446,-127.143608 -77.18824585,-127.143608 -77.17820724,-127.143608 -77.16816863,-127.143608 -77.15813002,-127.143608 -77.14809141,-127.143608 -77.1380528)) | POINT(-126.931765 -77.18824585) | false | false | |||||||||
Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula
|
1643494 |
2021-06-22 | Saal, Alberto |
|
The Earth's mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth's mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth's interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth's atmosphere and oceans. Establishing the cycles of volatiles between the Earth's interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge. | POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345)) | POINT(-60.7205 -61.24585) | false | false | |||||||||
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion
|
1644020 1644027 1644013 |
2020-02-08 | Gaetani, Glenn; Le Roux, Veronique; Sims, Kenneth; Wallace, Paul | Nontechnical project description Globally, 500 million people live near and are threatened by active volcanoes. An important step in mitigating volcanic hazards is understanding the variables that influence the explosivity of eruptions. The rate at which a magma ascends from the reservoir within the Earth to the surface is one such variable. However, magma ascent rates are particularly difficult to determine because of the lack of reliable methods for investigating the process. This research applies a new approach to study magma storage depths and ascent rates at the Erebus volcanic province of Antarctica, one of Earth's largest alkaline volcanic centers. Small pockets of magma that become trapped within growing olivine crystals are called melt inclusions. The concentrations of water and carbon dioxide in these melt inclusions preserve information on the depth of magma reservoirs. Changes to the concentration and isotopic composition of water in the inclusions provide information on how long it took for the host magma to rise to the surface. In combination, these data from samples of olivine-rich volcanic deposits in the Erebus volcanic province will be used to determine the depths at which magmas are stored and their ascent rates. The project results will provide a framework for understanding volcanic hazards associated with alkaline volcanism worldwide. In addition, this project facilitates collaboration among three institutions, and provides an important educational opportunity for a postdoctoral researcher. Technical project description The depths at which magmas are stored, their pre-eruptive volatile contents, and the rates at which they ascend to the Earth's surface are important controls on the dynamics of volcanic eruptions. Basaltic magmas are likely to be vapor undersaturated as they begin their ascent from the mantle through the crust, but volatile solubility drops with decreasing pressure. Once vapor saturation is achieved and the magma begins to degas, its pre-eruptive volatile content is determined largely by the depth at which it resides within the crust. Magma stored in deeper reservoirs tend to experience less pre-eruptive degassing and to be richer in volatiles than magma shallower reservoirs. Eruptive style is influenced by the rate at which a magma ascends from the reservoir to the surface through its effect on the efficiency of vapor bubble nucleation, growth, and coalescence. The proposed work will advance our understanding of pre-eruptive storage conditions and syn-eruptive ascent rates through a combined field and analytical research program. Volatile measurements from olivine-hosted melt inclusions will be used to systematically investigate magma storage depths and ascent rates associated with alkaline volcanism in the Erebus volcanic province. A central goal of the project is to provide a spatial and temporal framework for interpreting results from studies of present-day volcanic processes at Mt Erebus volcano. The Erebus volcanic province of Antarctica is especially well suited to this type of investigation because: (1) there are many exposed mafic scoria cones, fissure vents, and hyaloclastites (exposed in sea cliffs) that produced rapidly quenched, olivine-rich tephra; (2) existing volatile data for Ross Island MIs show that magma storage was relatively deep compared to many mafic volcanic systems; (3) some of the eruptive centers ejected mantle xenoliths, allowing for comparison of ascent rates for xenolith-bearing and xenolith-free eruptions, and comparison of ascent rates for those bearing xenoliths with times estimated from settling velocities; and (4) the cold, dry conditions in Antarctica result in excellent tephra preservation compared to tropical and even many temperate localities. The project provides new tools for assessing volcanic hazards, facilitates collaboration involving researchers from three different institutions (WHOI, U Wyoming, and U Oregon), supports the researchers' involvement in teaching, advising, and outreach, and provides an educational opportunity for a promising young postdoctoral researcher. Understanding the interrelationships among magma volatile contents, reservoir depths, and ascent rates is vital for assessing volcanic hazards associated with alkaline volcanism across the globe. | POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1)) | POINT(166.85 -77.775) | false | false |