{"dp_type": "Project", "free_text": "Provenance Analysis"}
[{"awards": "1443342 Licht, Kathy; 1443556 Thomson, Stuart", "bounds_geometry": null, "dataset_titles": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "datasets": [{"dataset_uid": "601462", "doi": "10.15784/601462", "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "people": "Reiners, Peter; He, John; Thomson, Stuart; Hemming, Sidney R.; Licht, Kathy", "repository": "USAP-DC", "science_program": null, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601462"}], "date_created": "Wed, 09 Jun 2021 00:00:00 GMT", "description": "Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth\u0027s last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media.\r\n\r\n\r\nThe main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100\u00b0E-160\u00b0E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; LANDSCAPE; AGE DETERMINATIONS; FIELD INVESTIGATION; GLACIAL PROCESSES; Transantarctic Mountains; USA/NSF; Thermochronology; Amd/Us; USAP-DC; TRACE ELEMENTS; Provenance Analysis; AMD; LANDFORMS; GLACIAL LANDFORMS", "locations": "Transantarctic Mountains", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Thomson, Stuart; Reiners, Peter; Licht, Kathy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "uid": "p0010188", "west": null}, {"awards": "1443213 Kaplan, Michael; 1443433 Licht, Kathy", "bounds_geometry": "POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8))", "dataset_titles": "10Be and 26Al cosmogenic nuclide surface exposure data; 3He input data", "datasets": [{"dataset_uid": "601375", "doi": "10.15784/601375", "keywords": "Antarctica; Cosmogenic Dating; Transantarctic Mountains", "people": "Winckler, Gisela; Schaefer, Joerg; Kaplan, Michael", "repository": "USAP-DC", "science_program": null, "title": "10Be and 26Al cosmogenic nuclide surface exposure data", "url": "https://www.usap-dc.org/view/dataset/601375"}, {"dataset_uid": "601376", "doi": "10.15784/601376", "keywords": "Antarctica; Transantarctic Mountains", "people": "Kaplan, Michael; Winckler, Gisela; Schaefer, Joerg", "repository": "USAP-DC", "science_program": null, "title": "3He input data", "url": "https://www.usap-dc.org/view/dataset/601376"}], "date_created": "Tue, 29 Sep 2020 00:00:00 GMT", "description": "Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica\u0027s role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.\u003cbr/\u003e\u003cbr/\u003eDirect observations of ice sheet history from the margins of Antarctica\u0027s polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet.", "east": 164.0, "geometry": "POINT(161.5 -84.15)", "instruments": null, "is_usap_dc": true, "keywords": "SEDIMENTS; GLACIAL PROCESSES; Mt. Achernar; ABLATION ZONES/ACCUMULATION ZONES; GLACIER ELEVATION/ICE SHEET ELEVATION; Antarctica; Antarctic Ice Sheet; Transantarctic Mountains; GLACIATION; USAP-DC; ICE MOTION; AMD; LABORATORY; Amd/Us", "locations": "Transantarctic Mountains; Antarctic Ice Sheet; Mt. Achernar; Antarctica", "north": -83.8, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles", "uid": "p0010131", "west": 159.0}, {"awards": "0337858 Goodge, John", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 05 Jun 2007 00:00:00 GMT", "description": "This work will determine the age and provenance of glacially derived marine sediments from the coastal regions of Wilkes Land, Antarctica. These deposits may offer insight into the history of the East Antarctic Shield (EAS), which is amongst the oldest sections of continental crust on Earth, but cannot be studied directly because of nearly complete ice sheet coverage. The study will use Australian National University\u0027s SHRIMP ion microprobe to date zircon and monazite found in the sediments. Samples of interest include polymictic pebble and cobble clasts obtained from dredge hauls of tills, as well as sand-matrix fractions from cores of glacial diamicts on the continental margin. Individual clasts of igneous and metamorphic rocks from tills will be selected for zircon and/or monazite age dating, whereas detrital zircons from stratified and non-stratified diamictons will be analyzed for composite zircon provenance analysis. In addition, detrital zircon ages will be determined for Beacon Supergroup sandstones to evaluate recycling of zircon in Phanerozoic basins. Integration of ages obtained from both sources will provide a good representation of the EAS terrains underlying the Wilkes Land ice sheet. This project will allow us to learn more about the remote continental interior and improve our ability to interpret past ice-flow patterns without further environmental impact on Antarctica. The results will improve our understanding of Precambrian tectonics and crustal evolution, and help target future over-ice geophysical surveys and basement drilling projects currently under consideration. In terms of broader impacts, the project will provide educational and training opportunities for undergraduate students in Earth science.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Goodge, John", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Glacial proxies of East Antarctic shield basement in Wilkes Land, Antarctica", "uid": "p0000725", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis
|
1443342 1443556 |
2021-06-09 | Thomson, Stuart; Reiners, Peter; Licht, Kathy |
|
Antarctica is almost entirely covered by ice, in places over two miles thick. This ice hides a landscape that is less well known than the surface of Mars and represents one of Earth's last unexplored frontiers. Ice-penetrating radar images provide a remote glimpse of this landscape including ice-buried mountains larger than the European Alps and huge fjords twice as deep as the Grand Canyon. The goal of this project is to collect sediment samples derived from these landscapes to determine when and under what conditions these features formed. Specifically, the project seeks to understand the landscape in the context of the history and dynamics of the overlying ice sheet and past mountain-building episodes. This project accomplishes this goal by analyzing sand collected during previous sea-floor drilling expeditions off the coast of Antarctica. This sand was supplied from the continent interior by ancient rivers when it was ice-free over 34 million year ago, and later by glaciers. The project will also study bedrock samples from rare ice-free parts of the Transantarctic Mountains. The primary activity is to apply multiple advanced dating techniques to single mineral grains contained within this sand and rock. Different methods and minerals yield different dates that provide insight into how Antarctica?s landscape has eroded over the many tens of millions of years during which sand was deposited offshore. The dating techniques that are being developed and enhanced for this study have broad application in many branches of geoscience research and industry. The project makes cost-effective use of pre-existing sample collections housed at NSF facilities including the US Polar Rock Repository, the Gulf Coast Core Repository, and the Antarctic Marine Geology Research Facility. The project will contribute to the STEM training of two graduate and two undergraduate students, and includes collaboration among four US universities as well as international collaboration between the US and France. The project also supports outreach in the form of a two-week open workshop giving ten students the opportunity to visit the University of Arizona to conduct STEM-based analytical work and training on Antarctic-based projects. Results from both the project and workshop will be disseminated through presentations at professional meetings, peer-reviewed publications, and through public outreach and media. The main objective of this project is to reconstruct a chronology of East Antarctic subglacial landscape evolution to understand the tectonic and climatic forcing behind landscape modification, and how it has influenced past ice sheet inception and dynamics. Our approach focuses on acquiring a record of the cooling and erosion history contained in East Antarctic-derived detrital mineral grains and clasts in offshore sediments deposited both before and after the onset of Antarctic glaciation. Samples will be taken from existing drill core and marine sediment core material from offshore Wilkes Land (100°E-160°E) and the Ross Sea. Multiple geo- and thermo-chronometers will be employed to reconstruct source region cooling history including U-Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar. This offshore record will be augmented and tested by applying the same methods to onshore bedrock samples in the Transantarctic Mountains obtained from the US Polar Rock Repository and through fieldwork. The onshore work will additionally address the debated incision history of the large glacial troughs that cut the range, now occupied by glaciers draining the East Antarctic Ice Sheet. This includes collection of samples from several age-elevation transects, apatite 4He/3He thermochronometry, and Pecube thermo-kinematic modeling. Acquiring an extensive geo- and thermo-chronologic database will also provide valuable new information on the poorly known ice-hidden geology and tectonics of subglacial East Antarctica that has implications for improving supercontinent reconstructions and understanding continental break-up. | None | None | false | false | |||||
Collaborative Research: Multidisciplinary Analysis of Antarctic Blue Ice Moraine Formation and their Potential as Climate Archives over Multiple Glacial Cycles
|
1443213 1443433 |
2020-09-29 | Kaplan, Michael; Schaefer, Joerg; Winckler, Gisela; Licht, Kathy |
|
Sediments deposited by the Antarctic ice sheet are an archive of its history with time and help geologists to determine how the remote interior of the ice sheet has changed over the past several hundred thousand years. This project will focus on the formation and dynamics of moraines (accumulations of dirt and rocks that are incorporated in the glacier surface or have been pushed along by the glacier as it moves) near the blue ice area of Mt. Achernar in the central Transantarctic Mountains in Antarctica.. The study will improve basic understanding of the formation of these moraines. Fieldwork at the site will focus on imaging the internal structure of the moraine to determine the processes by which it, and others like it, form over time. Additional analyses will include measurements of ice flow and collection of rock samples to determine the timing of debris deposition and the changes in the sources of sediments from deep within the Antarctic continent. The project will provide both graduate and undergraduate students training in paleoclimate studies, geology, and numerical modeling approaches. The broader impacts of the proposed work include hands on training in the Earth Sciences for graduate and undergraduate students, collaboration with colleagues in New Zealand and Sweden to provide an international research experience for students from the US, and three educational modules to be delivered by student researchers regarding Antarctica's role in global environments. The research is societally relevant and multidisciplinary and the topics are ideal for sharing with the public. All research findings will be made publicly available to others via timely publication in high-impact, peer-reviewed journals and all data will be submitted to the National Snow and Ice Data Center, and excess samples will be provided to the U.S. Polar Rock Repository.<br/><br/>Direct observations of ice sheet history from the margins of Antarctica's polar plateau are essential for testing numerical ice sheet models, and the laterally extensive, blue-ice moraines of the Mt. Achernar Moraine complex in the central Transantarctic Mountains contain a unique and nearly untapped direct, quasi-continuous record of ice sheet change over multiple glacial cycles. The project objectives include improved understanding of processes and rates of blue ice moraine formation, as well as identifying the topographic, glaciological, and climatic controls on their evolution. Data to be collected with fieldwork in Antarctica include: imaging of internal ice structure with ground-penetrating radar, measurement of ice flow velocity and direction with a global positioning system (GPS) array, analysis of debris concentration and composition in glacier ice, state-of-the-art cosmogenic multi-nuclide analyses to determine exposure ages of moraine debris, mapping of trimlines and provenance analysis. Numerical model simulations, constrained by field data, will be used to evaluate the factors influencing changes in glacier flow that potentially impact the accumulation of the moraine debris. All together, the new data and modeling efforts will improve conceptual models of blue ice moraine formation, and thereby make them a more valuable proxy for developing a better understanding of the history of the ice sheet. | POLYGON((159 -83.8,159.5 -83.8,160 -83.8,160.5 -83.8,161 -83.8,161.5 -83.8,162 -83.8,162.5 -83.8,163 -83.8,163.5 -83.8,164 -83.8,164 -83.87,164 -83.94,164 -84.01,164 -84.08,164 -84.15,164 -84.22,164 -84.29,164 -84.36,164 -84.43,164 -84.5,163.5 -84.5,163 -84.5,162.5 -84.5,162 -84.5,161.5 -84.5,161 -84.5,160.5 -84.5,160 -84.5,159.5 -84.5,159 -84.5,159 -84.43,159 -84.36,159 -84.29,159 -84.22,159 -84.15,159 -84.08,159 -84.01,159 -83.94,159 -83.87,159 -83.8)) | POINT(161.5 -84.15) | false | false | |||||
Glacial proxies of East Antarctic shield basement in Wilkes Land, Antarctica
|
0337858 |
2007-06-05 | Goodge, John | No dataset link provided | This work will determine the age and provenance of glacially derived marine sediments from the coastal regions of Wilkes Land, Antarctica. These deposits may offer insight into the history of the East Antarctic Shield (EAS), which is amongst the oldest sections of continental crust on Earth, but cannot be studied directly because of nearly complete ice sheet coverage. The study will use Australian National University's SHRIMP ion microprobe to date zircon and monazite found in the sediments. Samples of interest include polymictic pebble and cobble clasts obtained from dredge hauls of tills, as well as sand-matrix fractions from cores of glacial diamicts on the continental margin. Individual clasts of igneous and metamorphic rocks from tills will be selected for zircon and/or monazite age dating, whereas detrital zircons from stratified and non-stratified diamictons will be analyzed for composite zircon provenance analysis. In addition, detrital zircon ages will be determined for Beacon Supergroup sandstones to evaluate recycling of zircon in Phanerozoic basins. Integration of ages obtained from both sources will provide a good representation of the EAS terrains underlying the Wilkes Land ice sheet. This project will allow us to learn more about the remote continental interior and improve our ability to interpret past ice-flow patterns without further environmental impact on Antarctica. The results will improve our understanding of Precambrian tectonics and crustal evolution, and help target future over-ice geophysical surveys and basement drilling projects currently under consideration. In terms of broader impacts, the project will provide educational and training opportunities for undergraduate students in Earth science. | None | None | false | false |