{"dp_type": "Project", "free_text": "Methyl Chloride"}
[{"awards": "1643722 Brook, Edward J.", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "South Pole Ice Core Methane Data and Gas Age Time Scale; South Pole ice core (SPC14) total air content (TAC)", "datasets": [{"dataset_uid": "601546", "doi": "10.15784/601546", "keywords": "Antarctica; South Pole", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) total air content (TAC)", "url": "https://www.usap-dc.org/view/dataset/601546"}, {"dataset_uid": "601329", "doi": "10.15784/601329", "keywords": "Antarctica; Gas Chromatography; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; South Pole", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole Ice Core Methane Data and Gas Age Time Scale", "url": "https://www.usap-dc.org/view/dataset/601329"}], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "Brook/1643722 This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student\u0027s senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project.", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "AMD; LABORATORY; METHANE; ICE CORE RECORDS; Gas Chromatography; South Pole; USAP-DC", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Brook, Edward J.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "A High Resolution Atmospheric Methane Record from the South Pole Ice Core", "uid": "p0010102", "west": 0.0}, {"awards": "1443470 Aydin, Murat", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "South Pole ice core (SPC14) discrete methane data; SP19 Gas Chronology; SPC14 carbonyl sulfide, methyl chloride, and methyl bromide measurements from South Pole, Antarctica", "datasets": [{"dataset_uid": "601270", "doi": "10.15784/601270", "keywords": "Antarctica", "people": "Aydin, Murat", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPC14 carbonyl sulfide, methyl chloride, and methyl bromide measurements from South Pole, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601270"}, {"dataset_uid": "601380", "doi": "10.15784/601380", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Ice Core Stratigraphy; Methane; South Pole; SPICEcore", "people": "Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SP19 Gas Chronology", "url": "https://www.usap-dc.org/view/dataset/601380"}, {"dataset_uid": "601381", "doi": "10.15784/601381", "keywords": "Antarctica; Ch4; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Records; Methane; South Pole; SPICEcore", "people": "Aydin, Murat; Severinghaus, Jeffrey P.; Kennedy, Joshua A.; Ferris, David G.; Kalk, Michael; Hood, Ekaterina; Fudge, T. J.; Osterberg, Erich; Winski, Dominic A.; Steig, Eric J.; Kahle, Emma; Sowers, Todd A.; Edwards, Jon S.; Kreutz, Karl; Buizert, Christo; Brook, Edward J.; Epifanio, Jenna", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "South Pole ice core (SPC14) discrete methane data", "url": "https://www.usap-dc.org/view/dataset/601381"}], "date_created": "Thu, 26 Mar 2020 00:00:00 GMT", "description": "In the past, Earth\u0027s climate underwent dramatic changes that influenced physical, chemical, geological, and biological processes on a global scale. Such changes left an imprint in Earth\u0027s atmosphere, as shown by the variability in abundances of trace gases like carbon dioxide and methane. In return, changes in the atmospheric trace gas composition affected Earth\u0027s climate. Studying compositional variations of the past atmosphere helps us understand the history of interactions between global biogeochemical cycles and Earth?s climate. The most reliable information on past atmospheric composition comes from analysis of air entrapped in polar ice cores. This project aims to generate ice-core records of relatively short-lived, very-low-abundance trace gases to determine the range of past variability in their atmospheric levels and investigate the changes in global biogeochemical cycles that caused this variability. This project measures three such gases: carbonyl sulfide, methyl chloride, and methyl bromide. Changes in carbonyl sulfide can indicate changes in primary productivity and photosynthetic update of carbon dioxide. Changes in methyl chloride and methyl bromide significantly impact natural variability in stratospheric ozone. In addition, the processes that control atmospheric levels of methyl chloride and methyl bromide are shared with those controlling levels of atmospheric methane. The measurements will be made in the new ice core from the South Pole, which is expected to provide a 40,000-year record. The primary focus of this project is to develop high-quality trace gas records for the entire Holocene period (the past 11,000 years), with additional, more exploratory measurements from the last glacial period including the period from 29,000-36,000 years ago when there were large changes in atmospheric methane. Due to the cold temperatures of the South Pole ice, the proposed carbonyl sulfide measurements are expected to provide a direct measure of the past atmospheric variability of this gas without the large hydrolysis corrections that are necessary for interpretation of measurements from ice cores in warmer settings. Furthermore, we will test the expectation that contemporaneous measurements from the last glacial period in the deep West Antarctic Ice Sheet Divide ice core will not require hydrolysis loss corrections. With respect to methyl chloride, we aim to verify and improve the existing Holocene atmospheric history from the Taylor Dome ice core in Antarctica. The higher resolution of our measurements compared with those from Taylor Dome will allow us to derive a more statistically significant relationship between methyl chloride and methane. With respect to methyl bromide, we plan to extend the existing 2,000-year database to 11,000 years. Together, the methyl bromide and methyl chloride records will provide strong measurement-based constraints on the natural variability of stratospheric halogens during the Holocene period. In addition, the methyl bromide record will provide insight into the correlation between methyl chloride and methane during the Holocene period due to common sources and sinks.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; CARBONYL SULFIDE; HALOCARBONS AND HALOGENS; TRACE GASES/TRACE SPECIES; Antarctic; USAP-DC", "locations": "Antarctic", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core", "uid": "p0010089", "west": -180.0}, {"awards": "1043780 Aydin, Murat", "bounds_geometry": null, "dataset_titles": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "datasets": [{"dataset_uid": "609659", "doi": "10.7265/N5CV4FPK", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Ultra-trace Measurements in the WAIS Divide 06A Ice Core", "url": "https://www.usap-dc.org/view/dataset/609659"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "Aydin/1043780 This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ethane; LABORATORY; N-Butane; Carbonyl Sulfide; Propane; Methyl Bromide; Methyl Chloride; Carbon Disulfide", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Aydin, Murat; Saltzman, Eric", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core", "uid": "p0000055", "west": null}, {"awards": "0636953 Saltzman, Eric", "bounds_geometry": "POINT(-148.82 -81.66)", "dataset_titles": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core; Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core; Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core; Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica; Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "datasets": [{"dataset_uid": "609598", "doi": "10.7265/N5X0650D", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Bromide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609598"}, {"dataset_uid": "609356", "doi": "10.7265/N56W9807", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Saltzman, Eric; Williams, Margaret; Aydin, Murat", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methyl Chloride Measurements from the Siple Dome A Deep Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609356"}, {"dataset_uid": "609600", "doi": "10.7265/N5PG1PPB", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Methyl Chloride Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609600"}, {"dataset_uid": "601361", "doi": "10.15784/601361", "keywords": "Antarctica; Carbonyl Sulfide; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/601361"}, {"dataset_uid": "609599", "doi": "10.7265/N5S75D8P", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Carbonyl Sulfide Measurements in the Taylor Dome M3C1 Ice Core", "url": "https://www.usap-dc.org/view/dataset/609599"}], "date_created": "Wed, 22 Oct 2008 00:00:00 GMT", "description": "Saltzman/0636953\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man\u0027s activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS).", "east": -148.82, "geometry": "POINT(-148.82 -81.66)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Antarctica; Methyl Bromide; Antarctic; Ice Core Gas Records; Ice Core Data; Carbonyl Sulfide; Methyl Chloride; Antarctic Ice Sheet; Siple Dome; Trace Gases; Ice Core Chemistry; Biogeochemical; Atmospheric Chemistry; West Antarctic Ice Sheet; LABORATORY; Ice Core; West Antarctica", "locations": "Antarctic; Antarctica; Antarctic Ice Sheet; Siple Dome; West Antarctica; West Antarctic Ice Sheet", "north": -81.66, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE; PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core; Siple Dome Ice Core", "south": -81.66, "title": "Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores", "uid": "p0000042", "west": -148.82}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": "POINT(-148.81 -81.65)", "dataset_titles": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br); Antarctic Ice Cores: Methyl Chloride and Methyl Bromide; Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core; Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "datasets": [{"dataset_uid": "609279", "doi": "10.7265/N53B5X3G", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Aydin, Murat; Saltzman, Eric", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "url": "https://www.usap-dc.org/view/dataset/609279"}, {"dataset_uid": "609131", "doi": "10.7265/N5P848VP", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Methane; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Methane and Carbonyl Sulfide Analysis of Siple Dome Ice Core Subsamples", "url": "https://www.usap-dc.org/view/dataset/609131"}, {"dataset_uid": "601357", "doi": "10.15784/601357", "keywords": "Antarctica; Atmospheric Gases; Gas Measurement; Ice Core; Ice Core Gas Records; Trace Gases", "people": "Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Ice Core Air Carbonyl Sulfide Measurements - SPRESSO Ice Core", "url": "https://www.usap-dc.org/view/dataset/601357"}, {"dataset_uid": "609313", "doi": "10.7265/N5DN430Q", "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; ITASE; Paleoclimate; Siple Dome Ice Core; South Pole; SPRESSO; SPRESSO Ice Core", "people": "Williams, Margaret; Tatum, Cheryl; Saltzman, Eric; Aydin, Murat", "repository": "USAP-DC", "science_program": null, "title": "Antarctic Ice Cores: Methyl Chloride and Methyl Bromide", "url": "https://www.usap-dc.org/view/dataset/609313"}], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students.", "east": -148.81, "geometry": "POINT(-148.81 -81.65)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Gas Records; Carbonyl Sulfide; Siple Coast; Chloride; Trapped Gases; Snow; Ice Core Chemistry; Chromatography; Siple; GROUND STATIONS; Atmospheric Gases; Ozone Depletion; AWS Siple; Ice Sheet; Ice Core Data; Antarctica; Glaciology; West Antarctica; Atmospheric Chemistry; Ice Core; Stratigraphy; LABORATORY; Methane; Mass Spectrometer; GROUND-BASED OBSERVATIONS; WAISCORES; Msa; Mass Spectrometry; Not provided; Siple Dome; Gas Measurement", "locations": "Antarctica; Siple Coast; Siple Dome; West Antarctica; Siple", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Methyl chloride and methyl bromide in Antarctic ice cores", "uid": "p0000032", "west": -148.81}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A High Resolution Atmospheric Methane Record from the South Pole Ice Core
|
1643722 |
2020-06-02 | Brook, Edward J. |
|
Brook/1643722 This award supports a project to measure the concentration of the gas methane in air trapped in an ice core collected from the South Pole. The data will provide an age scale (age as a function of depth) by matching the South Pole methane changes with similar data from other ice cores for which the age vs. depth relationship is well known. The ages provided will allow all other gas measurements made on the South Pole core (by the PI and other NSF supported investigators) to be interpreted accurately as a function of time. This is critical because a major goal of the South Pole coring project is to understand the history of rare gases in the atmosphere like carbon monoxide, carbon dioxide, ethane, propane, methyl chloride, and methyl bromide. Relatively little is known about what controls these gases in the atmosphere despite their importance to atmospheric chemistry and climate. Undergraduate assistants will work on the project and be introduced to independent research through their work. The PI will continue visits to local middle schools to introduce students to polar science, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) as part of the project. Methane concentrations from a major portion (2 depth intervals, excluding the brittle ice-zone which is being measured at Penn State University) of the new South Pole ice core will be used to create a gas chronology by matching the new South Pole ice core record with that from the well-dated WAIS Divide ice core record. In combination with measurements made at Penn State, this will provide gas dating for the entire 50,000-year record. Correlation will be made using a simple but powerful mid-point method that has been previously demonstrated, and other methods of matching records will be explored. The intellectual merit of this work is that the gas chronology will be a fundamental component of this ice core project, and will be used by the PI and other investigators for dating records of atmospheric composition, and determining the gas age-ice age difference independently of glaciological models, which will constrain processes that affected firn densification in the past. The methane data will also provide direct stratigraphic markers of important perturbations to global biogeochemical cycles (e.g., rapid methane variations synchronous with abrupt warming and cooling in the Northern Hemisphere) that will tie other ice core gas records directly to those perturbations. A record of the total air content will also be produced as a by-product of the methane measurements and will contribute to understanding of this parameter. The broader impacts include that the work will provide a fundamental data set for the South Pole ice core project and the age scale (or variants of it) will be used by all other investigators working on gas records from the core. The project will employ an undergraduate assistant(s) in both years who will conduct an undergraduate research project which will be part of the student's senior thesis or other research paper. The project will also offer at least one research position for the Oregon State University Summer REU site program. Visits to local middle schools, and other outreach activities (e.g. laboratory tours, talks to local civic or professional organizations) will also be part of the project. | POINT(0 -90) | POINT(0 -90) | false | false | |||||||
Carbonyl Sulfide, Methyl Chloride, and Methyl Bromide Measurements in the New Intermediate-depth South Pole Ice Core
|
1443470 |
2020-03-26 | Aydin, Murat |
|
In the past, Earth's climate underwent dramatic changes that influenced physical, chemical, geological, and biological processes on a global scale. Such changes left an imprint in Earth's atmosphere, as shown by the variability in abundances of trace gases like carbon dioxide and methane. In return, changes in the atmospheric trace gas composition affected Earth's climate. Studying compositional variations of the past atmosphere helps us understand the history of interactions between global biogeochemical cycles and Earth?s climate. The most reliable information on past atmospheric composition comes from analysis of air entrapped in polar ice cores. This project aims to generate ice-core records of relatively short-lived, very-low-abundance trace gases to determine the range of past variability in their atmospheric levels and investigate the changes in global biogeochemical cycles that caused this variability. This project measures three such gases: carbonyl sulfide, methyl chloride, and methyl bromide. Changes in carbonyl sulfide can indicate changes in primary productivity and photosynthetic update of carbon dioxide. Changes in methyl chloride and methyl bromide significantly impact natural variability in stratospheric ozone. In addition, the processes that control atmospheric levels of methyl chloride and methyl bromide are shared with those controlling levels of atmospheric methane. The measurements will be made in the new ice core from the South Pole, which is expected to provide a 40,000-year record. The primary focus of this project is to develop high-quality trace gas records for the entire Holocene period (the past 11,000 years), with additional, more exploratory measurements from the last glacial period including the period from 29,000-36,000 years ago when there were large changes in atmospheric methane. Due to the cold temperatures of the South Pole ice, the proposed carbonyl sulfide measurements are expected to provide a direct measure of the past atmospheric variability of this gas without the large hydrolysis corrections that are necessary for interpretation of measurements from ice cores in warmer settings. Furthermore, we will test the expectation that contemporaneous measurements from the last glacial period in the deep West Antarctic Ice Sheet Divide ice core will not require hydrolysis loss corrections. With respect to methyl chloride, we aim to verify and improve the existing Holocene atmospheric history from the Taylor Dome ice core in Antarctica. The higher resolution of our measurements compared with those from Taylor Dome will allow us to derive a more statistically significant relationship between methyl chloride and methane. With respect to methyl bromide, we plan to extend the existing 2,000-year database to 11,000 years. Together, the methyl bromide and methyl chloride records will provide strong measurement-based constraints on the natural variability of stratospheric halogens during the Holocene period. In addition, the methyl bromide record will provide insight into the correlation between methyl chloride and methane during the Holocene period due to common sources and sinks. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||
Carbonyl Sulfide Measurements in the Deep West Antarctic Ice Sheet Divide Ice Core
|
1043780 |
2015-10-27 | Aydin, Murat; Saltzman, Eric |
|
Aydin/1043780 This award supports the analysis of the trace gas carbonyl sulfide (COS) in a deep ice core from West Antarctic Ice Sheet Divide (WAIS-D), Antarctica. COS is the most abundant sulfur gas in the troposphere and a precursor of stratospheric sulfate. It has a large terrestrial COS sink that is tightly coupled to the photosynthetic uptake of atmospheric carbon dioxide (CO2). The primary goal of this project is to develop high a resolution Holocene record of COS from the WAIS-D 06A ice core. The main objectives are 1) to assess the natural variability of COS and the extent to which its atmospheric variability was influenced by climate variability, and 2) to examine the relationship between changes in atmospheric COS and CO2. This project also includes low-resolution sampling and analysis of COS from 10,000-30,000 yrs BP, covering the transition from the Last Glacial Maximum into the early Holocene. The goal of this work is to assess the stability of COS in ice core air over long time scales and to establish the COS levels during the last glacial maximum and the magnitude of the change between glacial and interglacial conditions. The results of this work will be disseminated via peer-review publications and will contribute to environmental assessments such as the WMO Stratospheric Ozone Assessment and IPCC Climate Assessment. This project will support a PhD student and undergraduate researcher in the Department of Earth System Science at the University of California, Irvine, and will create summer research opportunities for undergraduates from non-research active Universities. | None | None | false | false | |||||||
Methyl Chloride, Methyl Bromide, and Carbonyl Sulfide in Deep Antarctic Ice Cores
|
0636953 |
2008-10-22 | Saltzman, Eric; Aydin, Murat; Williams, Margaret | Saltzman/0636953<br/><br/>This award supports a project to measure methyl chloride, methyl bromide, and carbonyl sulfide in air extracted from Antarctic ice cores. Previous measurements in firn air and shallow ice cores suggest that the ice archive contains paleo-atmospheric signals for these gases. The goal of this study is to extend these records throughout the Holocene and into the last Glacial period to examine the behavior of these trace gases over longer time scales and a wider range of climatic conditions. These studies are exploratory, and both the stability of these trace gases and the extent to which they may be impacted by in situ processes will be assessed. This project will involve sampling and analyzing archived ice core samples from the Siple Dome, Taylor Dome, Byrd, and Vostok ice cores. The ice core samples will be analyzed by dry extraction, with gas chromatography/mass spectrometry with isotope dilution. The ice core measurements will generate new information about the range of natural variability of these trace gases in the atmosphere. The intellectual merit of this project is that this work will provide an improved basis for assessing the impact of anthropogenic activities on biogeochemical cycles, and new insight into the climatic sensitivity of the biogeochemical processes controlling atmospheric composition. The broader impact of this project is that there is a strong societal interest in understanding how man's activities impact the atmosphere, and how atmospheric chemistry may be altered by future climate change. The results of this study will contribute to the development of scenarios used for future projections of stratospheric ozone and climate change. In terms of human development, this project will support the doctoral dissertation of a graduate student in Earth System Science, and undergraduate research on polar ice core chemistry. This project will also contribute to the development of an Earth Sciences teacher training curriculum for high school teachers in the Orange County school system in collaboration with an established, NSF-sponsored Math and Science Partnership program (FOCUS). | POINT(-148.82 -81.66) | POINT(-148.82 -81.66) | false | false | ||||||||
Methyl chloride and methyl bromide in Antarctic ice cores
|
0338359 |
2005-11-16 | Saltzman, Eric; Aydin, Murat; Williams, Margaret; Tatum, Cheryl | This award supports the analysis, in Antarctic ice cores, of the ozone depleting substances methyl bromide (CH3Br) and methyl chloride (CH3Cl), and the sulfur-containing gas, carbonyl sulfide (OCS). The broad scientific goal is to assess the level and variability of these gases in the preindustrial atmosphere. This information will allow testing of current models for sources and sinks of these gases from the atmosphere, and to indirectly assess the impact of anthropogenic activities on their biogeochemical cycles. Longer-term records will shed light on the climatic sensitivity of the atmospheric burden of these gases, and ultimately on the biogeochemical processes controlling them. These gases are present in ice at parts per trillion levels, and the current database consists entirely of a small number of measurements made in from a shallow ice core from Siple Dome, Antarctica. This project will involve studies of ice core samples from three Antarctic sites: Siple Station, Siple Dome, and South Pole. The sampling strategy is designed to accomplish several objectives: 1) to verify the atmospheric mixing ratios previously observed in shallow Siple Dome ice for OCS, CH3Br, and CH3Cl at sites with very different accumulation rates and surface temperatures; 2) to obtain a well-dated, high resolution record from a high accumulation rate site (Siple Station), that can provide overlap in mean gas age with Antarctic firn air samples; 3) explore Holocene variability in trace gas mixing ratios; and 4) to make the first measurements of these trace gases in Antarctic glacial ice. In terms of broader impact on society, this research will help to provide a stronger scientific basis for policy decisions regulating the production and use of ozone-depleting and climate-active gases. Specifically, the methyl bromide results will contribute to the current debate on the impact of recent regulation (via the Montreal Protocol and its Amendments) on atmospheric levels. Determination of pre-industrial atmospheric variability of ozone-depleting substances will help place more realistic constraints on scenarios used for future projections of stratospheric ozone and its climatic impacts. This research will involve the participation of both graduate and undergraduate students. | POINT(-148.81 -81.65) | POINT(-148.81 -81.65) | false | false |