{"dp_type": "Project", "free_text": "Marguerite Bay"}
[{"awards": "0003956 Burns, Jennifer; 9981683 Costa, Daniel", "bounds_geometry": "POLYGON((-70 -65,-69.5 -65,-69 -65,-68.5 -65,-68 -65,-67.5 -65,-67 -65,-66.5 -65,-66 -65,-65.5 -65,-65 -65,-65 -65.5,-65 -66,-65 -66.5,-65 -67,-65 -67.5,-65 -68,-65 -68.5,-65 -69,-65 -69.5,-65 -70,-65.5 -70,-66 -70,-66.5 -70,-67 -70,-67.5 -70,-68 -70,-68.5 -70,-69 -70,-69.5 -70,-70 -70,-70 -69.5,-70 -69,-70 -68.5,-70 -68,-70 -67.5,-70 -67,-70 -66.5,-70 -66,-70 -65.5,-70 -65))", "dataset_titles": "Crabeater seal oxygen stores", "datasets": [{"dataset_uid": "601583", "doi": "10.15784/601583", "keywords": "Antarctica; Crabeater Seal; GLOBEC; Hemoglobin; LMG0104; LMG0106; LMG0204; LMG0205; Marguerite Bay; Myoglobin; Oxygen Stores; Seals", "people": "Burns, Jennifer", "repository": "USAP-DC", "science_program": null, "title": "Crabeater seal oxygen stores", "url": "https://www.usap-dc.org/view/dataset/601583"}], "date_created": "Wed, 29 Jun 2022 00:00:00 GMT", "description": "This collaborative study between the University of California, Santa Cruz, Duke University, the University of South Florida, the University of Alaska-Anchorage, and the University of California, San Diego will examine the identification of biological and physical features associated with the abundance and distribution of individual Antarctic predators; the identification and characterization of biological \u0027hot spots\u0027 within the Western Antarctic Peninsula; and the development of temporally and spatially explicit models of krill consumption within the WAP by vertebrate predators. It is one of several data synthesis and modeling components that use the data obtained in the course of the field work of the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) experiment.\u003cbr/\u003eSO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with understanding how predators utilize \u0027hot spots\u0027, i.e. locally intense areas of biological productivity, and how \u0027hot spots\u0027 might temporally and spatially structure krill predation rates, and will be integrated with other synthesis and modeling studies that deal with the hydrography primary production, and krill dynamics.", "east": -65.0, "geometry": "POINT(-67.5 -67.5)", "instruments": null, "is_usap_dc": true, "keywords": "Marguerite Bay; MARINE ECOSYSTEMS", "locations": "Marguerite Bay", "north": -65.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Burns, Jennifer; Costa, Daniel", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)", "uid": "p0010345", "west": -70.0}, {"awards": "2225144 Halanych, Kenneth; 1916661 Halanych, Kenneth; 1916665 Mahon, Andrew", "bounds_geometry": "POLYGON((-72 -61,-69.8 -61,-67.6 -61,-65.4 -61,-63.2 -61,-61 -61,-58.8 -61,-56.6 -61,-54.4 -61,-52.2 -61,-50 -61,-50 -61.8,-50 -62.6,-50 -63.4,-50 -64.2,-50 -65,-50 -65.8,-50 -66.6,-50 -67.4,-50 -68.2,-50 -69,-52.2 -69,-54.4 -69,-56.6 -69,-58.8 -69,-61 -69,-63.2 -69,-65.4 -69,-67.6 -69,-69.8 -69,-72 -69,-72 -68.2,-72 -67.4,-72 -66.6,-72 -65.8,-72 -65,-72 -64.2,-72 -63.4,-72 -62.6,-72 -61.8,-72 -61))", "dataset_titles": null, "datasets": null, "date_created": "Wed, 22 Sep 2021 00:00:00 GMT", "description": "Overview: \r\nThe ice cover of Antarctica is changing rapidly, and some reports already suggest we are at, or possibly beyond, the tipping point for the Western Antarctic Ice Sheet collapse. Loss of this ice sheet will have profound effects on marine fauna, including dramatically changing habitat availability for benthic marine species in the Southern Ocean. Formation and collapse of the Western Antarctic Ice Sheet is a cyclical process suggesting that we can learn how fauna respond to ice loss by examining historical climate conditions. Evidence from sediment cores suggests a near complete collapse occurred ~1.1 MYA and modeling suggests a collapse as recent at 125 KYA. During such periods, transantarctic seaways connected the Ross and Weddell Seas. Interestingly, most theories regarding marine invertebrate distributions around the Antarctic focus on dispersal by the Antarctic Circumpolar Current or population bottlenecks and expansions generated by repeated cycles of glaciation and fail to account for transcontinental seaways. Although the impact of previous seaways on genetic structure of present-day populations has been largely ignored, a growing body of data reveal historical connections between Ross and Weddell invertebrate communities, suggesting historical dispersal between these present-day disconnected and distant basins. Future ice shelf collapses will likely reestablish such connections causing redistribution of marine taxa. By exploring alternative hypotheses about the factors that may have shaped patterns of biodiversity in the last couple of million years, our proposed work will aid prediction of possible changes that may, or may not, occur as the Antarctic ice sheets continue to deteriorate.\r\nIntellectual Merit: \r\nThe overarching goal of this research is to understand environmental factors that have shaped patterns of present-day diversity in Antarctic benthic marine invertebrates. Building on our previous work examining circumpolar distributions of multiple marine benthic invertebrate, we are particularly interested in assessing if transantarctic waterways may help explain observed similarities between the Ross and Weddell Seas better than other possible explanations (e.g., dispersal by the Antarctic Circumpolar Current, or expansion from common glacial refugia). To this end, we will employ population genomic approaches using Single Nucleotide Polymorphism (SNP) markers that sample thousands of loci across the genome. Building on our previous phylogeographic studies, we will target 7 Antarctic benthic invertebrate taxa to test alternative hypothesis accounting for population genetic structure. Additionally, the current paradigm is that divergence between closely related, often cryptic, species is the result of genetic drift due to population bottlenecks caused by glaciation. We will directly test this assumption by mapping SNP data on to draft genomes of three of our target taxa to assess the degree of genetic divergence and look for signs of selection. If linkage groups under selection are found, we will examine cellular mechanisms under selection. Thus, our research directly addresses NSF programmatic goals to understand how Antarctic biota evolve and adapt.\r\nBroader Impacts: \r\nOur approach will test several hypotheses that dominate the current understanding of marine biodiversity patterns in the Antarctic providing relevance to several fields of Antarctic science. Also, there are implications for understanding and predicting effects of future ice shelf collapse. The PIs are committed to developing the next generation of researchers and actively engage underrepresented groups at all career stages. We expect to train a minimum of 4 graduate students, a postdoc and several undergraduates on this project. This work will include several specific outreach activities including continuation of our past social media efforts with cruise blogs which were accessed by several thousand unique IP addresses and presentations in K-8 classrooms that reach about 300+ children a year. We also propose to develop 15-20 short YouTube videos on Antarctic genomics as outreach products, we will conduct a photo exhibition, and we will develop two 3-day workshops aimed at students to introduce them to bioinformatics approaches. These works will have formal assessment. \r\nThis proposal requires fieldwork in the Antarctic. \r\n", "east": -50.0, "geometry": "POINT(-61 -65)", "instruments": null, "is_usap_dc": true, "keywords": "Marguerite Bay; USA/NSF; AMD; Weddell Sea; USAP-DC; FIELD SURVEYS; Amd/Us; MARINE ECOSYSTEMS; ANIMALS/INVERTEBRATES", "locations": "Weddell Sea; Marguerite Bay", "north": -61.0, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Halanych, Kenneth; Mahon, Andrew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -69.0, "title": "Collaborative Research: Have transantarctic dispersal corridors impacted Antarctic marine biodiversity?", "uid": "p0010266", "west": -72.0}, {"awards": "1341669 DeMaster, David", "bounds_geometry": "POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62))", "dataset_titles": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data; Expedition Data of NBP1203; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf; Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "datasets": [{"dataset_uid": "601082", "doi": "10.15784/601082", "keywords": null, "people": "DeMaster, David", "repository": "USAP-DC", "science_program": "LARISSA", "title": "DeMaster Compiled Larsen Ice Shelf and the West Antarctic Peninsula C14 Data", "url": "https://www.usap-dc.org/view/dataset/601082"}, {"dataset_uid": "601336", "doi": "10.15784/601336", "keywords": "Antarctica; Carbon-14; Larsen Ice Shelf; Lead-210; Marine Sediments; Radioisotope Analysis", "people": "DeMaster, David; Taylor, Richard", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Radioisotope data (C-14 and Pb-210) from bulk sediments, Larsen A Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/601336"}, {"dataset_uid": "601304", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; LARISSA; Larsen Ice Shelf; Macrofauna; Megafauna; NBP1203; Oceans; R/v Nathaniel B. Palmer; Seafloor Sampling; Species Abundance", "people": "Smith, Craig", "repository": "USAP-DC", "science_program": "LARISSA", "title": "Species Abundance Data from the Larsen Ice Shelf Ice acquired during R/V Nathaniel B. Palmer expedition NBP1203", "url": "https://www.usap-dc.org/view/dataset/601304"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "Smith, Craig; DeMaster, David; Isla, Enrique; Taylor, Richard; Thomas, Carrie", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}, {"dataset_uid": "001438", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1203", "url": "https://www.rvdata.us/search/cruise/NBP1203"}], "date_created": "Sat, 03 Feb 2018 00:00:00 GMT", "description": "The PI requests support to analyze sediments from multi-cores and mega-cores previously collected from beneath the former Larsen B and Larsen A ice shelves. These unique cores will allow the PI to develop a time-integrated understanding of the benthic response to ice shelf collapse off the East Antarctic Peninsula over time periods as short as 5 years following ice shelf collapse up to \u003e170 years after collapse. High latitudes are responding to climate change more rapidly than the rest of the planet and the disappearance of ice shelves are a key manifestation of climate warming. The PI will investigate the newly created benthic environments and associated ecosystems that have resulted from the re-initiation of fresh planktonic material to the sediment-water interface. This proposal will use a new geochemical technique, based on naturally occurring 14C that can be used to assess the distribution and inventory of recently produced organic carbon accumulating in the sediments beneath the former Larsen A and B ice shelves. The PI will couple 14C measurements with 210Pb analyses to assess turnover times for sedimentary labile organic matter. By comparing the distributions and inventories of labile organic matter as well as the bioturbation intensities among different locations as a function of time following ice shelf collapse/retreat, the nature and timing of the benthic response to ice shelf collapse can be assessed.", "east": -58.0, "geometry": "POINT(-64 -65)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Pb-210; C-14; NBP1203; Radioisotop; USAP-DC; R/V NBP; Species Abundance; Labile Organic Carbon; LABORATORY", "locations": null, "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": "LARISSA", "south": -68.0, "title": "Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change", "uid": "p0000382", "west": -70.0}, {"awards": "1141877 Aronson, Richard", "bounds_geometry": "POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98))", "dataset_titles": "Climate Change and Predatory Invasion of the Antarctic Benthos; Expedition Data; Material properties of the exoskeleton of Paralomis birsteini", "datasets": [{"dataset_uid": "601109", "doi": "10.15784/601109", "keywords": "Antarctica; Biota; Callinectes; Exoskeleton; Fish; Glaciers/ice Sheet; Glaciers/Ice Sheet; Paralomis", "people": "Steffel, Brittan", "repository": "USAP-DC", "science_program": null, "title": "Material properties of the exoskeleton of Paralomis birsteini", "url": "https://www.usap-dc.org/view/dataset/601109"}, {"dataset_uid": "600385", "doi": "10.15784/600385", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600385"}, {"dataset_uid": "600171", "doi": "10.15784/600171", "keywords": "Antarctica; Antarctic Peninsula; Anvers Island; Benthos; Biota; Camera Tow; LMG1502; Marguerite Bay; NBP1002; NBP1310; Oceans; Photo/video; Photo/Video; Sample/collection Description; Sample/Collection Description; Southern Ocean", "people": "Aronson, Richard", "repository": "USAP-DC", "science_program": null, "title": "Climate Change and Predatory Invasion of the Antarctic Benthos", "url": "https://www.usap-dc.org/view/dataset/600171"}, {"dataset_uid": "001417", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP1310"}], "date_created": "Wed, 14 Sep 2016 00:00:00 GMT", "description": "Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials.", "east": -53.67, "geometry": "POINT(-82.425 -64.21)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MBES; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS", "is_usap_dc": true, "keywords": "R/V NBP; Not provided", "locations": null, "north": -49.98, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Aronson, Richard", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -78.44, "title": "Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos", "uid": "p0000303", "west": -111.18}, {"awards": "0724929 Simms, Alexander", "bounds_geometry": null, "dataset_titles": "Optically Stimulated Luminescence Ages of Raised Beaches; Optically stimulated luminescence-dated raised beaches from the western Antarctic Peninsula; Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles.", "datasets": [{"dataset_uid": "000232", "doi": "", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Relative sea-level history of Marguerite Bay, Antarctic Peninsula derived from optically stimulated luminescence-dated beach cobbles.", "url": "https://doi.org/10.1594/PANGAEA.818537"}, {"dataset_uid": "000231", "doi": "", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Optically stimulated luminescence-dated raised beaches from the western Antarctic Peninsula", "url": "https://doi.pangaea.de/10.1594/PANGAEA.818518"}, {"dataset_uid": "600026", "doi": "10.15784/600026", "keywords": "Antarctica; Antarctic Peninsula; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Simms, Alexander", "repository": "USAP-DC", "science_program": null, "title": "Optically Stimulated Luminescence Ages of Raised Beaches", "url": "https://www.usap-dc.org/view/dataset/600026"}], "date_created": "Fri, 23 Aug 2013 00:00:00 GMT", "description": "This Small Grant for Exploratory Research explores the possibility of dating beach deposits on the Antarctic Peninsula using Optical Stimulated Luminescence (OSL). This area is undergoing uplift in response to glacial retreat, and dating these deposits will allow for estimations of ice sheet thickness during the last glacial maximum through the creation of new sea level curves. Accurate reconstructions of ice sheet size are critical to predicting sea level rise in response to global warming. In terms of other broader impacts, this project supports a graduate student, who is learning cutting edge analytical techniques while applying them to questions of global climate change.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Sea Level; Not provided; Paleoclimate", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Simms, Alexander", "platforms": "Not provided", "repo": "PANGAEA", "repositories": "PANGAEA; USAP-DC", "science_programs": null, "south": null, "title": "SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula", "uid": "p0000266", "west": null}, {"awards": "0234163 Beardsley, Robert", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0103; Expedition data of NBP0104", "datasets": [{"dataset_uid": "002595", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0103", "url": "https://www.rvdata.us/search/cruise/NBP0103"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002596", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project will complete construction of a high-quality digital bathymetry database for the Southern Ocean component of the Global Ocean Ecosystem Dynamics GLOBEC) program. Existing along-track and swath bathymetry data collected in Marguerite Bay and in the West Antarctic Peninsula shelf study, have been assembled and merged with new SeaBeam and along-track data collected during cruises of the research vessels R/V Palmer and R/V Gould in 2001 and 2002. New bathymetry data has also been obtained from other US, British, and Russian sources to extend the program database. Once the final R/V Palmer and R/V Gould cruises are completed and other data added, the program database will be closed, edited, documented and made publicly available for use by international GLOBEC investigators and by the broader geophysics community. These results will be developed in conjunction with, and will become part of a planned circum-antarctic high resolution bathymetry database.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Beardsley, Robert", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Digital Bathymetry Database for the U.S. Southern Ocean GLOBEC Program", "uid": "p0000814", "west": null}, {"awards": "9910102 Padman, Laurence", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104; Expedition data of NBP0202; Expedition data of NBP0204", "datasets": [{"dataset_uid": "002606", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002597", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002586", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0202", "url": "https://www.rvdata.us/search/cruise/NBP0202"}, {"dataset_uid": "002643", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0204", "url": "https://www.rvdata.us/search/cruise/NBP0204"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.\u003cbr/\u003e\u003cbr/\u003eThere are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. \u003cbr/\u003e***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Padman, Laurence", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Mesoscale Circulation, Tides and Mixing on the Western Antarctic Peninsula Shelf: A Component of WINDSSOCK (ESR proposal #99-48)", "uid": "p0000806", "west": null}, {"awards": "0636773 DeMaster, David; 0636806 Smith, Craig", "bounds_geometry": "POLYGON((-71.2358 -52.7603,-69.75336 -52.7603,-68.27092 -52.7603,-66.78848 -52.7603,-65.30604 -52.7603,-63.8236 -52.7603,-62.34116 -52.7603,-60.85872 -52.7603,-59.37628 -52.7603,-57.89384 -52.7603,-56.4114 -52.7603,-56.4114 -54.29969,-56.4114 -55.83908,-56.4114 -57.37847,-56.4114 -58.91786,-56.4114 -60.45725,-56.4114 -61.99664,-56.4114 -63.53603,-56.4114 -65.07542,-56.4114 -66.61481,-56.4114 -68.1542,-57.89384 -68.1542,-59.37628 -68.1542,-60.85872 -68.1542,-62.34116 -68.1542,-63.8236 -68.1542,-65.30604 -68.1542,-66.78848 -68.1542,-68.27092 -68.1542,-69.75336 -68.1542,-71.2358 -68.1542,-71.2358 -66.61481,-71.2358 -65.07542,-71.2358 -63.53603,-71.2358 -61.99664,-71.2358 -60.45725,-71.2358 -58.91786,-71.2358 -57.37847,-71.2358 -55.83908,-71.2358 -54.29969,-71.2358 -52.7603))", "dataset_titles": "Expedition Data; Expedition data of LMG0802; Expedition data of LMG0902; Expedition Data of LMG0902; Expedition data of NBP0808; Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf; Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "datasets": [{"dataset_uid": "002726", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "001486", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "002669", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "001513", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "002611", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0808", "url": "https://www.rvdata.us/search/cruise/NBP0808"}, {"dataset_uid": "002725", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0802", "url": "https://www.rvdata.us/search/cruise/LMG0802"}, {"dataset_uid": "601303", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Biota; Box Corer; Chlorophyll Concentration; LMG0802; Marcofauna; Megafauna; Oceans; R/v Laurence M. Gould; Seafloor Sampling; Species Abundance", "people": "Smith, Craig; DeMaster, David", "repository": "USAP-DC", "science_program": null, "title": "Species List, Species Abundance, and Sediment Geochemistry processed data acquired during Laurence M. Gould expedition LMG0802", "url": "https://www.usap-dc.org/view/dataset/601303"}, {"dataset_uid": "002727", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0902", "url": "https://www.rvdata.us/search/cruise/LMG0902"}, {"dataset_uid": "601319", "doi": "10.15784/601319", "keywords": "Antarctica; Antarctic Peninsula; Biota; Bioturbation Coefficients; Diagenesis; Labile Organic Carbon; LOC Mean Residence Times; Marguerite Bay; Oceans; Organic Carbon Degradation Rates; Sediment Core", "people": "Smith, Craig; DeMaster, David; Isla, Enrique; Taylor, Richard; Thomas, Carrie", "repository": "USAP-DC", "science_program": null, "title": "Labile Organic Carbon distributions on the West Antarctic Peninsula Shelf", "url": "https://www.usap-dc.org/view/dataset/601319"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as \"low-pass\" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses.", "east": -56.4114, "geometry": "POINT(-63.8236 -60.45725)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS", "is_usap_dc": false, "keywords": "LMG0802; R/V LMG; AMD; Amd/Us; LMG0902; USA/NSF; NBP0808; USAP-DC; R/V NBP", "locations": null, "north": -52.7603, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -68.1542, "title": "Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling", "uid": "p0000552", "west": -71.2358}, {"awards": "9910093 Powell, Thomas", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0104", "datasets": [{"dataset_uid": "002584", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}, {"dataset_uid": "002657", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0104", "url": "https://www.rvdata.us/search/cruise/NBP0104"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.\u003cbr/\u003e\u003cbr/\u003eThe objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice.\u003cbr/\u003e\u003cbr/\u003eThe water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes.\u003cbr/\u003e***", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Powell, Thomas", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: WinDSSOcK: Winter Distribution and Success of Southern Ocean Krill", "uid": "p0000804", "west": null}, {"awards": "0537960 Beardsley, Robert", "bounds_geometry": "POLYGON((-110 -50,-104 -50,-98 -50,-92 -50,-86 -50,-80 -50,-74 -50,-68 -50,-62 -50,-56 -50,-50 -50,-50 -52.5,-50 -55,-50 -57.5,-50 -60,-50 -62.5,-50 -65,-50 -67.5,-50 -70,-50 -72.5,-50 -75,-56 -75,-62 -75,-68 -75,-74 -75,-80 -75,-86 -75,-92 -75,-98 -75,-104 -75,-110 -75,-110 -72.5,-110 -70,-110 -67.5,-110 -65,-110 -62.5,-110 -60,-110 -57.5,-110 -55,-110 -52.5,-110 -50))", "dataset_titles": "NODC Accession #0039274", "datasets": [{"dataset_uid": "001519", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "NODC Accession #0039274", "url": "http://www.nodc.noaa.gov/cgi-bin/search/prod/accessionsView.pl/details/0039274"}], "date_created": "Mon, 03 Mar 2008 00:00:00 GMT", "description": "Satellite-tracked drifters provide simple yet powerful tools to track the motion of near-surface water on time scales ranging from the tidal/inertial band to monthly and longer. The research described herein will deploy satellite-tracked surface drifters during the annual austral summer Palmer Long Term Ecological Research (LTER) cruises in January 2006 and 2007 in order to investigate the nearsurface Lagrangian currents over the western Antarctic Peninsula (wAP) shelf. This region is experiencing the highest surface air temperature increase (roughly +0.06 degrees C per year) in Antarctica, and LTER and other investigators have found that ecosystem responses to the rapid warming and sea ice decline are already apparent at all trophic levels from phytoplankton to penguins. Building a better understanding of the regional circulation and its variability seems an essential component to understand existing physical and biological processes and longer-term changes in this important and sensitive Antarctic ecosystem. These new Lagrangian measurements will complement those made during the 2001-2003 U.S. Southern Ocean (SO) GLOBEC program and provide the first detailed look at the near-surface flow in this important section of the wAP shelf. In particular, the combined 3-year LTER Lagrangian measurements should identify (a) the source region(s) of the buoyant coastal current discovered flowing southwest along the outer coast of Adelaide Island and into Marguerite Bay during SO GLOBEC and (b) if organized cross-shelf flows occur that help create a two gyre circulation over the shelf as suggested by Hofmann et al (1996) based on regional hydrography. The principal investigators will process and analyze the LTER 2005-2007 drifter data and collaborate with Palmer LTER investigators on the interpretation and integration of the Lagrangian data with their studies. The edited data, analysis results, and animations of the drifter data with surface weather data will be posted on the LTER website for use and viewing by scientists, students, and the public. Results will be presented at national meetings and published in referred journals.", "east": -50.0, "geometry": "POINT(-80 -62.5)", "instruments": null, "is_usap_dc": true, "keywords": null, "locations": null, "north": -50.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Beardsley, Robert; Limeburner, Richard", "platforms": null, "repo": "NCEI", "repositories": "NCEI", "science_programs": "LTER", "south": -75.0, "title": "Palmer LTER Lagrangian Current Measurements", "uid": "p0000232", "west": -110.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Foraging Ecology of Crabeater Seals (Lobodon Carcinophagus)
|
0003956 9981683 |
2022-06-29 | Burns, Jennifer; Costa, Daniel |
|
This collaborative study between the University of California, Santa Cruz, Duke University, the University of South Florida, the University of Alaska-Anchorage, and the University of California, San Diego will examine the identification of biological and physical features associated with the abundance and distribution of individual Antarctic predators; the identification and characterization of biological 'hot spots' within the Western Antarctic Peninsula; and the development of temporally and spatially explicit models of krill consumption within the WAP by vertebrate predators. It is one of several data synthesis and modeling components that use the data obtained in the course of the field work of the Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) experiment.<br/>SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with understanding how predators utilize 'hot spots', i.e. locally intense areas of biological productivity, and how 'hot spots' might temporally and spatially structure krill predation rates, and will be integrated with other synthesis and modeling studies that deal with the hydrography primary production, and krill dynamics. | POLYGON((-70 -65,-69.5 -65,-69 -65,-68.5 -65,-68 -65,-67.5 -65,-67 -65,-66.5 -65,-66 -65,-65.5 -65,-65 -65,-65 -65.5,-65 -66,-65 -66.5,-65 -67,-65 -67.5,-65 -68,-65 -68.5,-65 -69,-65 -69.5,-65 -70,-65.5 -70,-66 -70,-66.5 -70,-67 -70,-67.5 -70,-68 -70,-68.5 -70,-69 -70,-69.5 -70,-70 -70,-70 -69.5,-70 -69,-70 -68.5,-70 -68,-70 -67.5,-70 -67,-70 -66.5,-70 -66,-70 -65.5,-70 -65)) | POINT(-67.5 -67.5) | false | false | |||||||||||
Collaborative Research: Have transantarctic dispersal corridors impacted Antarctic marine biodiversity?
|
2225144 1916661 1916665 |
2021-09-22 | Halanych, Kenneth; Mahon, Andrew | No dataset link provided | Overview: The ice cover of Antarctica is changing rapidly, and some reports already suggest we are at, or possibly beyond, the tipping point for the Western Antarctic Ice Sheet collapse. Loss of this ice sheet will have profound effects on marine fauna, including dramatically changing habitat availability for benthic marine species in the Southern Ocean. Formation and collapse of the Western Antarctic Ice Sheet is a cyclical process suggesting that we can learn how fauna respond to ice loss by examining historical climate conditions. Evidence from sediment cores suggests a near complete collapse occurred ~1.1 MYA and modeling suggests a collapse as recent at 125 KYA. During such periods, transantarctic seaways connected the Ross and Weddell Seas. Interestingly, most theories regarding marine invertebrate distributions around the Antarctic focus on dispersal by the Antarctic Circumpolar Current or population bottlenecks and expansions generated by repeated cycles of glaciation and fail to account for transcontinental seaways. Although the impact of previous seaways on genetic structure of present-day populations has been largely ignored, a growing body of data reveal historical connections between Ross and Weddell invertebrate communities, suggesting historical dispersal between these present-day disconnected and distant basins. Future ice shelf collapses will likely reestablish such connections causing redistribution of marine taxa. By exploring alternative hypotheses about the factors that may have shaped patterns of biodiversity in the last couple of million years, our proposed work will aid prediction of possible changes that may, or may not, occur as the Antarctic ice sheets continue to deteriorate. Intellectual Merit: The overarching goal of this research is to understand environmental factors that have shaped patterns of present-day diversity in Antarctic benthic marine invertebrates. Building on our previous work examining circumpolar distributions of multiple marine benthic invertebrate, we are particularly interested in assessing if transantarctic waterways may help explain observed similarities between the Ross and Weddell Seas better than other possible explanations (e.g., dispersal by the Antarctic Circumpolar Current, or expansion from common glacial refugia). To this end, we will employ population genomic approaches using Single Nucleotide Polymorphism (SNP) markers that sample thousands of loci across the genome. Building on our previous phylogeographic studies, we will target 7 Antarctic benthic invertebrate taxa to test alternative hypothesis accounting for population genetic structure. Additionally, the current paradigm is that divergence between closely related, often cryptic, species is the result of genetic drift due to population bottlenecks caused by glaciation. We will directly test this assumption by mapping SNP data on to draft genomes of three of our target taxa to assess the degree of genetic divergence and look for signs of selection. If linkage groups under selection are found, we will examine cellular mechanisms under selection. Thus, our research directly addresses NSF programmatic goals to understand how Antarctic biota evolve and adapt. Broader Impacts: Our approach will test several hypotheses that dominate the current understanding of marine biodiversity patterns in the Antarctic providing relevance to several fields of Antarctic science. Also, there are implications for understanding and predicting effects of future ice shelf collapse. The PIs are committed to developing the next generation of researchers and actively engage underrepresented groups at all career stages. We expect to train a minimum of 4 graduate students, a postdoc and several undergraduates on this project. This work will include several specific outreach activities including continuation of our past social media efforts with cruise blogs which were accessed by several thousand unique IP addresses and presentations in K-8 classrooms that reach about 300+ children a year. We also propose to develop 15-20 short YouTube videos on Antarctic genomics as outreach products, we will conduct a photo exhibition, and we will develop two 3-day workshops aimed at students to introduce them to bioinformatics approaches. These works will have formal assessment. This proposal requires fieldwork in the Antarctic. | POLYGON((-72 -61,-69.8 -61,-67.6 -61,-65.4 -61,-63.2 -61,-61 -61,-58.8 -61,-56.6 -61,-54.4 -61,-52.2 -61,-50 -61,-50 -61.8,-50 -62.6,-50 -63.4,-50 -64.2,-50 -65,-50 -65.8,-50 -66.6,-50 -67.4,-50 -68.2,-50 -69,-52.2 -69,-54.4 -69,-56.6 -69,-58.8 -69,-61 -69,-63.2 -69,-65.4 -69,-67.6 -69,-69.8 -69,-72 -69,-72 -68.2,-72 -67.4,-72 -66.6,-72 -65.8,-72 -65,-72 -64.2,-72 -63.4,-72 -62.6,-72 -61.8,-72 -61)) | POINT(-61 -65) | false | false | |||||||||||
Using Radiochemical Data from Collapsed Ice Shelf Sediments to Understand the Nature and Timing of the Benthic Response to High-Latitude Climate Change
|
1341669 |
2018-02-03 | DeMaster, David; Smith, Craig | The PI requests support to analyze sediments from multi-cores and mega-cores previously collected from beneath the former Larsen B and Larsen A ice shelves. These unique cores will allow the PI to develop a time-integrated understanding of the benthic response to ice shelf collapse off the East Antarctic Peninsula over time periods as short as 5 years following ice shelf collapse up to >170 years after collapse. High latitudes are responding to climate change more rapidly than the rest of the planet and the disappearance of ice shelves are a key manifestation of climate warming. The PI will investigate the newly created benthic environments and associated ecosystems that have resulted from the re-initiation of fresh planktonic material to the sediment-water interface. This proposal will use a new geochemical technique, based on naturally occurring 14C that can be used to assess the distribution and inventory of recently produced organic carbon accumulating in the sediments beneath the former Larsen A and B ice shelves. The PI will couple 14C measurements with 210Pb analyses to assess turnover times for sedimentary labile organic matter. By comparing the distributions and inventories of labile organic matter as well as the bioturbation intensities among different locations as a function of time following ice shelf collapse/retreat, the nature and timing of the benthic response to ice shelf collapse can be assessed. | POLYGON((-70 -62,-68.8 -62,-67.6 -62,-66.4 -62,-65.2 -62,-64 -62,-62.8 -62,-61.6 -62,-60.4 -62,-59.2 -62,-58 -62,-58 -62.6,-58 -63.2,-58 -63.8,-58 -64.4,-58 -65,-58 -65.6,-58 -66.2,-58 -66.8,-58 -67.4,-58 -68,-59.2 -68,-60.4 -68,-61.6 -68,-62.8 -68,-64 -68,-65.2 -68,-66.4 -68,-67.6 -68,-68.8 -68,-70 -68,-70 -67.4,-70 -66.8,-70 -66.2,-70 -65.6,-70 -65,-70 -64.4,-70 -63.8,-70 -63.2,-70 -62.6,-70 -62)) | POINT(-64 -65) | false | false | ||||||||||||
Collaborative Research: Climate Change and Predatory Invasion of the Antarctic Benthos
|
1141877 |
2016-09-14 | Aronson, Richard | Elevated temperatures and ocean acidification are both threatening the Southern Ocean. The effects of these environmental changes are poorly understood, but preliminary data suggest that they are driving a biological invasion. Specifically, large populations of skeleton-crushing king crabs, Paralomis birsteini, have been detected off Marguerite Bay on the West Antarctic Peninsula. These crabs appear to be invading the continental shelf region where benthic communities have evolved in the absence of such top-predators. Thus, this invasion could result in a wholesale restructuring of the Antarctic benthic ecosystem. The proposed work seeks to document this invasion and better understand the effects of the introduction of P. birsteini on the ecology of this region. A towed underwater vehicle will be used to photographically image communities, and communities with and without P. birsteini will be compared quantitatively. Additionally, crabs will trapped and various aspects of their morphology and physiology will be assessed. This research is unique in that it will document a biological invasion in real-time and it will therefore enhance our general understandings of the drivers of invasion and resilience in biological communities. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. This project will support the research and training of undergraduate and graduate students and will foster an international collaboration with British scientists. Researchers on this project will participate in outreach thorough the development of K-12 curricular materials. | POLYGON((-111.18 -49.98,-105.429 -49.98,-99.678 -49.98,-93.927 -49.98,-88.176 -49.98,-82.425 -49.98,-76.674 -49.98,-70.923 -49.98,-65.172 -49.98,-59.421 -49.98,-53.67 -49.98,-53.67 -52.826,-53.67 -55.672,-53.67 -58.518,-53.67 -61.364,-53.67 -64.21,-53.67 -67.056,-53.67 -69.902,-53.67 -72.748,-53.67 -75.594,-53.67 -78.44,-59.421 -78.44,-65.172 -78.44,-70.923 -78.44,-76.674 -78.44,-82.425 -78.44,-88.176 -78.44,-93.927 -78.44,-99.678 -78.44,-105.429 -78.44,-111.18 -78.44,-111.18 -75.594,-111.18 -72.748,-111.18 -69.902,-111.18 -67.056,-111.18 -64.21,-111.18 -61.364,-111.18 -58.518,-111.18 -55.672,-111.18 -52.826,-111.18 -49.98)) | POINT(-82.425 -64.21) | false | false | ||||||||||||
SGER: Testing the use of OSL dating of beach deposits along the Antarctic Peninsula
|
0724929 |
2013-08-23 | Simms, Alexander | This Small Grant for Exploratory Research explores the possibility of dating beach deposits on the Antarctic Peninsula using Optical Stimulated Luminescence (OSL). This area is undergoing uplift in response to glacial retreat, and dating these deposits will allow for estimations of ice sheet thickness during the last glacial maximum through the creation of new sea level curves. Accurate reconstructions of ice sheet size are critical to predicting sea level rise in response to global warming. In terms of other broader impacts, this project supports a graduate student, who is learning cutting edge analytical techniques while applying them to questions of global climate change. | None | None | false | false | ||||||||||||
Digital Bathymetry Database for the U.S. Southern Ocean GLOBEC Program
|
0234163 |
2010-05-04 | Beardsley, Robert |
|
This project will complete construction of a high-quality digital bathymetry database for the Southern Ocean component of the Global Ocean Ecosystem Dynamics GLOBEC) program. Existing along-track and swath bathymetry data collected in Marguerite Bay and in the West Antarctic Peninsula shelf study, have been assembled and merged with new SeaBeam and along-track data collected during cruises of the research vessels R/V Palmer and R/V Gould in 2001 and 2002. New bathymetry data has also been obtained from other US, British, and Russian sources to extend the program database. Once the final R/V Palmer and R/V Gould cruises are completed and other data added, the program database will be closed, edited, documented and made publicly available for use by international GLOBEC investigators and by the broader geophysics community. These results will be developed in conjunction with, and will become part of a planned circum-antarctic high resolution bathymetry database. | None | None | false | false | |||||||||||
Mesoscale Circulation, Tides and Mixing on the Western Antarctic Peninsula Shelf: A Component of WINDSSOCK (ESR proposal #99-48)
|
9910102 |
2010-05-04 | Padman, Laurence |
|
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.<br/><br/>There are several aspects to this project: One is the collection, analysis, and archiving of Acoustic Doppler Current Profiler (ADCP), and Conductivity-Temperature-Depth (CTD) data in order to characterize mesoscale circulation features and the regional hydrography. Another is to develop an accurate and fully validated model of tidal currents in Marguerite Bay. A third is to provide a data set of small-scale processes such as shear instabilities, tidal stirring, mesoscale eddies, and double diffusion, that are required for the effective parameterization of the vertical diffusivities of heat, salt, and nutrients. The results of this project will provide a unified data set that satisfies the data requirement of the coordinated chemical and biological studies which will link water column and sea ice processes with the biology of krill and its predators. The results further will help to link these winter observations to similar observations made in summer and elsewhere around Antarctic in the international context of the Globec program. The overall objective is to develop a comprehensive ecosystem model that will test our understanding of the system, determine its sensitivities, and to provide an organizing mechanism for integrating the Southern Ocean Globec observations. <br/>*** | None | None | false | false | |||||||||||
Collaborative Research: Benthic Faunal Feeding Dynamics on the Antarctic Shelf and the Effects of Global Climate Change on Bentho-Pelagic Coupling
|
0636773 0636806 |
2010-05-04 | DeMaster, David; Smith, Craig | The Antarctic Peninsula region exhibits one of the largest warming trends in the world. Climate change in this region will reduce the duration of winter sea-ice cover, altering both the pelagic ecosystem and bentho-pelagic coupling. We postulate that shelf benthic ecosystems are highly suitable for tracking climate change because they act as "low-pass" filters, removing high-frequency seasonal noise and responding to longer-term trends in pelagic ecosystem structure and export production. We propose to conduct a 3-year study of bentho-pelagic coupling along a latitudinal climate gradient on the Antarctic Peninsula to explore the potential impacts of climate change (e.g., reduction in sea-ice duration) on Antarctic shelf ecosystems. We will conduct three cruises during summer and winter regimes along a 5- station transect from Smith Island to Marguerite Bay, evaluating a broad range of benthic ecological and biogeochemical processes. Specifically, we will examine the feeding strategies of benthic deposit feeders along this climatic gradient to elucidate the potential response of this major trophic group to climatic warming. In addition, we will (1) quantify carbon and nitrogen cycling and burial at the seafloor and (2) document changes in megafaunal, macrofaunal, and microbial community structure along this latitudinal gradient. We expect to develop predictive insights into the response of Antarctic shelf ecosystems to some of the effects of climate warming (e.g., a reduction in winter sea-ice duration). The proposed research will considerably broaden the ecological and carbon-flux measurements made as parts of the Palmer Station LTER and GLOBEC programs by providing a complementary benthic component. This project also will promote science education from the 9th grade to graduate-student levels. We will partner with the NSF-sponsored Southeastern Center for Ocean Science Education Excellence to reach students of all races in all areas of NC, SC and GA. The project will also benefit students at the post secondary level by supporting three graduate and two undergraduate students. During each of the three field excursions, NCSU and UH students will travel to Chile and Antarctica to participate in scientific research. Lastly, all three PIs will incorporate material from this project into their undergraduate and graduate courses. | POLYGON((-71.2358 -52.7603,-69.75336 -52.7603,-68.27092 -52.7603,-66.78848 -52.7603,-65.30604 -52.7603,-63.8236 -52.7603,-62.34116 -52.7603,-60.85872 -52.7603,-59.37628 -52.7603,-57.89384 -52.7603,-56.4114 -52.7603,-56.4114 -54.29969,-56.4114 -55.83908,-56.4114 -57.37847,-56.4114 -58.91786,-56.4114 -60.45725,-56.4114 -61.99664,-56.4114 -63.53603,-56.4114 -65.07542,-56.4114 -66.61481,-56.4114 -68.1542,-57.89384 -68.1542,-59.37628 -68.1542,-60.85872 -68.1542,-62.34116 -68.1542,-63.8236 -68.1542,-65.30604 -68.1542,-66.78848 -68.1542,-68.27092 -68.1542,-69.75336 -68.1542,-71.2358 -68.1542,-71.2358 -66.61481,-71.2358 -65.07542,-71.2358 -63.53603,-71.2358 -61.99664,-71.2358 -60.45725,-71.2358 -58.91786,-71.2358 -57.37847,-71.2358 -55.83908,-71.2358 -54.29969,-71.2358 -52.7603)) | POINT(-63.8236 -60.45725) | false | false | ||||||||||||
Collaborative Research: WinDSSOcK: Winter Distribution and Success of Southern Ocean Krill
|
9910093 |
2010-05-04 | Powell, Thomas |
|
This project is a contribution to a coordinated attempt to understand the interactions of biological and physical dynamics by developing relationships among the evolution of the antarctic winter ice and snow cover, biological habitat variability, and the seasonal progression of marine ecological processes. The work will be carried out in the context of the Southern Ocean Experiment of the Global Ocean Ecosystem Dynamics Study (Globec), a large, multi-investigator study of the winter survival strategy of krill under the antarctic sea ice in the vicinity of Marguerite Bay on the western side of the Antarctic Peninsula.<br/><br/>The objective of this project is to make a quantitative assessment of the small scale temperature and salinity structure of the oceanic surface layer in order to study the effect of stratification and turbulence on the biochemical and biological processes under the winter sea ice.<br/><br/>The water masses on the continental shelf off Marguerite Bay consist of inflowing Upper Circumpolar Deep Water, which is relatively warm, salty, oxygen-poor, and nutrient-rich. In winter atmospheric processes cool and freshen this water, and recharge it with oxygen to produce Antarctic Surface Water which is diffused seaward, and supports both a sea ice cover and a productive krill-based food web. The modification processes work through mixing associated with shear instabilities of the internal wave field, double diffusion of salt and heat, and mixing driven by surface stress and convection. These processes will be quantified with two microstructure profilers, capable of resolving the small but crucial vertical variations that drive these processes.<br/>*** | None | None | false | false | |||||||||||
Palmer LTER Lagrangian Current Measurements
|
0537960 |
2008-03-03 | Beardsley, Robert; Limeburner, Richard |
|
Satellite-tracked drifters provide simple yet powerful tools to track the motion of near-surface water on time scales ranging from the tidal/inertial band to monthly and longer. The research described herein will deploy satellite-tracked surface drifters during the annual austral summer Palmer Long Term Ecological Research (LTER) cruises in January 2006 and 2007 in order to investigate the nearsurface Lagrangian currents over the western Antarctic Peninsula (wAP) shelf. This region is experiencing the highest surface air temperature increase (roughly +0.06 degrees C per year) in Antarctica, and LTER and other investigators have found that ecosystem responses to the rapid warming and sea ice decline are already apparent at all trophic levels from phytoplankton to penguins. Building a better understanding of the regional circulation and its variability seems an essential component to understand existing physical and biological processes and longer-term changes in this important and sensitive Antarctic ecosystem. These new Lagrangian measurements will complement those made during the 2001-2003 U.S. Southern Ocean (SO) GLOBEC program and provide the first detailed look at the near-surface flow in this important section of the wAP shelf. In particular, the combined 3-year LTER Lagrangian measurements should identify (a) the source region(s) of the buoyant coastal current discovered flowing southwest along the outer coast of Adelaide Island and into Marguerite Bay during SO GLOBEC and (b) if organized cross-shelf flows occur that help create a two gyre circulation over the shelf as suggested by Hofmann et al (1996) based on regional hydrography. The principal investigators will process and analyze the LTER 2005-2007 drifter data and collaborate with Palmer LTER investigators on the interpretation and integration of the Lagrangian data with their studies. The edited data, analysis results, and animations of the drifter data with surface weather data will be posted on the LTER website for use and viewing by scientists, students, and the public. Results will be presented at national meetings and published in referred journals. | POLYGON((-110 -50,-104 -50,-98 -50,-92 -50,-86 -50,-80 -50,-74 -50,-68 -50,-62 -50,-56 -50,-50 -50,-50 -52.5,-50 -55,-50 -57.5,-50 -60,-50 -62.5,-50 -65,-50 -67.5,-50 -70,-50 -72.5,-50 -75,-56 -75,-62 -75,-68 -75,-74 -75,-80 -75,-86 -75,-92 -75,-98 -75,-104 -75,-110 -75,-110 -72.5,-110 -70,-110 -67.5,-110 -65,-110 -62.5,-110 -60,-110 -57.5,-110 -55,-110 -52.5,-110 -50)) | POINT(-80 -62.5) | false | false |