{"dp_type": "Project", "free_text": "Ice Sheet Fluctuations"}
[{"awards": "1917009 Thomson, Stuart; 1917176 Siddoway, Christine; 1916982 Teyssier, Christian", "bounds_geometry": "POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15))", "dataset_titles": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock; U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "datasets": [{"dataset_uid": "200333", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "Apatite fission track thermochronology data for detrital minerals, offshore clasts, and bedrock", "url": ""}, {"dataset_uid": "200332", "doi": "", "keywords": null, "people": null, "repository": "in progress", "science_program": null, "title": "U-Pb detrital zircon geochronological data, obtained by LA-ICP-MS", "url": ""}], "date_created": "Wed, 19 Oct 2022 00:00:00 GMT", "description": "Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) that display a significant temperature change as a function of rock depth. The strong geothermal gradient in the bedrock is favorable for determining when the bedrock became exhumed, or \"uncovered\" by action of the overriding icesheet or other processes. Our approach takes advantage of a reference horizon, or paleogeotherm, established when high-T mineral thermochronometers across Marie Byrd Land (MBL) cooled from temperatures of \u003e800\u00b0 C to 300\u00b0 C, due to rapid regional extension at ~100 Ma . The event imparted a signature through which the subsequent Cenozoic landscape history can be explored: MBL\u0027s elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. \r\n\r\nAnalyzing the chemistry of minerals (zircon and apatite) within fragments of eroded rock will reveal the rate and timing of the bedrock erosion and development of topography in West Antarctica. This collaborative project addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incisionm which will clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. The collaborative project provides training for one graduate and 8 undergraduate students in STEM. These students, together with PIs, will refine West Antarctic ice sheet history and obtain results that pertain to the international societal response to contemporary ice sheet change and its global consequences. \r\n\r\nThe methods used for the research include: \r\n\u2022Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling, applied to the timing and characterizatio episodes of glacial erosional incision. \r\n\u2022Single-grain double- and triple-dating of zircon and apatite, to determine the detailed crustal thermal evolution of the region, enabling the research team to identify the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. \r\n\r\nStudents and PIs employed state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data we acquired will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction we are testing through use of inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP\u0027s Gulf Coast Core Repository, and the OSU Marine and Geology Repository. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -104.28, "geometry": "POINT(-132.22 -72.225)", "instruments": null, "is_usap_dc": true, "keywords": "Marie Byrd Land; GLACIERS/ICE SHEETS; Zircon; Subglacial Topography; FIELD SURVEYS; TECTONICS; Ice Sheet; Thermochronology; Apatite; ROCKS/MINERALS/CRYSTALS; Erosion; United States Of America; LABORATORY", "locations": "United States Of America; Marie Byrd Land", "north": -67.15, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC", "persons": "Siddoway, Christine; Thomson, Stuart; Teyssier, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "in progress", "repositories": "in progress", "science_programs": null, "south": -77.3, "title": "Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica", "uid": "p0010386", "west": -160.16}, {"awards": "0944150 Hall, Brenda", "bounds_geometry": "POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5))", "dataset_titles": "Marshall Valley Radiocarbon Data; Marshall Valley U-Series Data; Royal Society Range Headland Moraine Belt Radiocarbon Data; Salmon Valley Radiocarbon Data", "datasets": [{"dataset_uid": "601529", "doi": "10.15784/601529", "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601529"}, {"dataset_uid": "601555", "doi": "10.15784/601555", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Royal Society Range Headland Moraine Belt Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601555"}, {"dataset_uid": "601556", "doi": "10.15784/601556", "keywords": "Antarctica; Last Glacial Maximum; McMurdo Sound; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Salmon Valley Radiocarbon Data", "url": "https://www.usap-dc.org/view/dataset/601556"}, {"dataset_uid": "601528", "doi": "10.15784/601528", "keywords": "234U/230Th Dating; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Last Glacial Maximum; Marshall Drift; Marshall Valley; MIS 6; Royal Society Range", "people": "Hall, Brenda", "repository": "USAP-DC", "science_program": null, "title": "Marshall Valley U-Series Data", "url": "https://www.usap-dc.org/view/dataset/601528"}], "date_created": "Thu, 03 Mar 2022 00:00:00 GMT", "description": "This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth\u0027s climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. ", "east": 164.6, "geometry": "POINT(164.1 -77.85)", "instruments": null, "is_usap_dc": true, "keywords": "LABORATORY; Amd/Us; AMD; USA/NSF; GLACIAL LANDFORMS; USAP-DC; Royal Society Range; GLACIER ELEVATION/ICE SHEET ELEVATION", "locations": "Royal Society Range", "north": -77.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Hall, Brenda; Denton, George", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.2, "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "uid": "p0010302", "west": 163.6}, {"awards": "2103032 Schmittner, Andreas", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "The Antarctic ice sheet is an important component of Earth\u2019s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability.\r\n\r\nThis project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ICE CORE RECORDS; Amd/Us; USA/NSF; OCEAN TEMPERATURE; GLACIERS/ICE SHEETS; BIOGEOCHEMICAL CYCLES; MODELS; AMD; United States Of America; OCEAN CURRENTS; ICEBERGS; PALEOCLIMATE RECONSTRUCTIONS", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Schmittner, Andreas; Haight, Andrew ; Clark, Peter", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repositories": null, "science_programs": null, "south": -90.0, "title": "Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation", "uid": "p0010256", "west": -180.0}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": "POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786))", "dataset_titles": "Ohio Range Subglacial rock core cosmogenic nuclide data", "datasets": [{"dataset_uid": "601351", "doi": "10.15784/601351", "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "people": "Mukhopadhyay, Sujoy", "repository": "USAP-DC", "science_program": null, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "url": "https://www.usap-dc.org/view/dataset/601351"}], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare.\r\nTo test model predictions,sub-glacial rock cores were obtained from the Ohio Range along the Transantarctic Mountains near the present-day WAIS divide using a Winkie drill. Rock cores were recovered from 10 to ~30 m under the present-day ice levels. At the Ohio Range, the glacial to interglacial variations in ice sheet levels is ~120 meters. So 30 meters represent a significant fraction of the variation over the course of an ice age.\r\nHigh concentrations of the cosmic ray produced isotopes were detected in the rock cores, indicating extensive periods of ice-free exposure to cosmic irradiation during the last 2 million years. Modeling of the data suggest that bedrock surfaces at the Ohio Range that are currently covered by 30 meters of ice experienced more exposure than ice cover, especially in the Pleistocene. An ice sheet model prediction for the Ohio Range subglacial sample sites however, significantly underestimates exposure in the last 2 million years, and over-predicts ice cover in the Pleistocene. To adjust for the higher amounts of exposure we observe in our samples, the ice sheet model simulations require more frequent and/or longer-lasting WAIS ice drawdowns. This has important implications for future sea-level change as the model maybe under-predicting the magnitude of sea-level contributions from WAIS during the ice-age cycles. Improving the accuracy of the ice sheet models through model-data comparison should remain a prime objective in the face of a warming planet as understanding WAIS behavior is going to be key for predicting and planning for the effects of sea-level change. The project helped support and train a graduate student in climate research related to Antarctica, cosmogenic nuclide analyses and led to a Master\u2019s Thesis. The project also provide partial support to a postdoctoral scholar obtaining cosmogenic neon measurements and for training and mentoring the graduate student\u0027s cosmogenic neon measurements and interpretation. The project results were communicated to the scientific community at conferences and through seminars. The broader community was engaged through the University of California Davis\u0027s Picnic Day celebration, an annual open house that attracts over 70,000 people to the campus, and through classroom visit at a local elementary school.", "east": -116.38, "geometry": "POINT(-116.415 -84.788)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Sheet Fluctuations; ALUMINUM-26 ANALYSIS; BERYLLIUM-10 ANALYSIS; Cosmogenic Radionuclides; USAP-DC; FIELD INVESTIGATION; AMD; Ohio Range; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; LABORATORY", "locations": "Ohio Range", "north": -84.786, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukhopadhyay, Sujoy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "uid": "p0010113", "west": -116.45}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Ice sheet erosional interaction with hot geotherm in West Antarctica
|
1917009 1917176 1916982 |
2022-10-19 | Siddoway, Christine; Thomson, Stuart; Teyssier, Christian |
|
Sediment records off the coast of Marie Byrd Land (MBL), Antarctica suggest frequent and dramatic changes in the size of the West Antarctic Ice Sheet (WAIS) over short (tens of thousands of years) and long (millions of years) time frames in the past. WAIS currently overrides much of MBL and covers the rugged and scoured bedrock landscape. The ice sheet carved narrow linear troughs that reach depths of two to three thousand meters below sea level as outlet glaciers flowed from the interior of the continent to the oceans. As a result, large volumes of fragmented continental bedrock were carried out to the seabed. The glaciers cut downward into a region of crystalline rocks (i.e. granite) that display a significant temperature change as a function of rock depth. The strong geothermal gradient in the bedrock is favorable for determining when the bedrock became exhumed, or "uncovered" by action of the overriding icesheet or other processes. Our approach takes advantage of a reference horizon, or paleogeotherm, established when high-T mineral thermochronometers across Marie Byrd Land (MBL) cooled from temperatures of >800° C to 300° C, due to rapid regional extension at ~100 Ma . The event imparted a signature through which the subsequent Cenozoic landscape history can be explored: MBL's elevated geothermal gradient, sustained during the Cenozoic, created favorable conditions for sensitive apatite and zircon low-T thermochronometers to record bedrock cooling related to glacial incision. Analyzing the chemistry of minerals (zircon and apatite) within fragments of eroded rock will reveal the rate and timing of the bedrock erosion and development of topography in West Antarctica. This collaborative project addresses the following questions: When did the land become high enough for a large ice sheet to form? What was the regional pre-glacial topography? Under what climate conditions, and at what point in the growth of an ice sheet, did glaciers begin to cut sharply into bedrock to form the narrow troughs that flow seaward? The research will lead to greater understanding of past Antarctic ice sheet fluctuations and identify precise timing of glacial incisionm which will clarify the onset of WAIS glacier incision and assess the evolution of Cenozoic paleo-topography. The collaborative project provides training for one graduate and 8 undergraduate students in STEM. These students, together with PIs, will refine West Antarctic ice sheet history and obtain results that pertain to the international societal response to contemporary ice sheet change and its global consequences. The methods used for the research include: •Low-temperature (T) thermochronology and Pecube 3-D thermo-kinematic modeling, applied to the timing and characterizatio episodes of glacial erosional incision. •Single-grain double- and triple-dating of zircon and apatite, to determine the detailed crustal thermal evolution of the region, enabling the research team to identify the comparative topographic influences on glaciation versus bedrock uplift induced by Eocene to present tectonism/magmatism. Students and PIs employed state-of-the-art analytical facilities in Arizona and Minnesota, expanding the geo- and thermochronologic history of MBL from bedrock samples and offshore sedimentary deposits. The temperature and time data we acquired will provide constraints on paleotopography, isostasy, and the thermal evolution of MBL that will be modeled in 3D using Pecube model simulations. Within hot crust, less incision is required to expose bedrock containing the distinct thermochronometric profile; a prediction we are testing through use of inverse Pecube 3-D models of the thermal field through which bedrock and detrital samples cooled. Using results from Pecube, the ICI-Hot team will examine time-varying topography formed in response to changes in erosion rates, topographic relief, geothermal gradient and/or flexural isostatic rigidity. These effects are manifestations of dynamic processes in the WAIS, including ice sheet loading, ice volume fluctuations, relative motion upon crustal faults, and magmatism-related elevation increase across the MBL dome. The project makes use of pre-existing sample collections housed at the US Polar Rock Repository, IODP's Gulf Coast Core Repository, and the OSU Marine and Geology Repository. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-160.16 -67.15,-154.572 -67.15,-148.984 -67.15,-143.39600000000002 -67.15,-137.808 -67.15,-132.22 -67.15,-126.632 -67.15,-121.04400000000001 -67.15,-115.456 -67.15,-109.868 -67.15,-104.28 -67.15,-104.28 -68.165,-104.28 -69.18,-104.28 -70.19500000000001,-104.28 -71.21000000000001,-104.28 -72.225,-104.28 -73.24,-104.28 -74.255,-104.28 -75.27,-104.28 -76.285,-104.28 -77.3,-109.868 -77.3,-115.456 -77.3,-121.044 -77.3,-126.632 -77.3,-132.22 -77.3,-137.808 -77.3,-143.396 -77.3,-148.98399999999998 -77.3,-154.572 -77.3,-160.16 -77.3,-160.16 -76.285,-160.16 -75.27,-160.16 -74.255,-160.16 -73.24,-160.16 -72.225,-160.16 -71.21000000000001,-160.16 -70.19500000000001,-160.16 -69.18,-160.16 -68.165,-160.16 -67.15)) | POINT(-132.22 -72.225) | false | false | |||||||||
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles
|
0944150 |
2022-03-03 | Hall, Brenda; Denton, George |
|
This award supports a project to investigate the sensitivity of the Antarctic ice sheet (AIS) to global climate change over the last two Glacial/Interglacial cycles. The intellectual merit of the project is that despite its importance to Earth's climate system, we currently lack a full understanding of AIS sensitivity to global climate change. This project will reconstruct and precisely date the history of marine-based ice in the Ross Sea sector over the last two glacial/interglacial cycles, which will enable a better understanding of the potential driving mechanisms (i.e., sea-level rise, ice dynamics, ocean temperature variations) for ice fluctuations. This will also help to place present ice?]sheet behavior in a long-term context. During the last glacial maximum (LGM), the AIS is known to have filled the Ross Embayment and although much has been done both in the marine and terrestrial settings to constrain its extent, the chronology of the ice sheet, particularly the timing and duration of the maximum and the pattern of initial recession, remains uncertain. In addition, virtually nothing is known of the penultimate glaciation, other than it is presumed to have been generally similar to the LGM. These shortcomings greatly limit our ability to understand AIS evolution and the driving mechanisms behind ice sheet fluctuations. This project will develop a detailed record of ice extent and chronology in the western Ross Embayment for not only the LGM, but also for the penultimate glaciation (Stage 6), from well-dated glacial geologic data in the Royal Society Range. Chronology will come primarily from high-precision Accelerator Mass Spectrometry (AMS) Carbon-14 (14C) and multi-collector Inductively Coupled Plasma (ICP)-Mass Spectrometry (MS) 234Uranium/230Thorium dating of lake algae and carbonates known to be widespread in the proposed field area. | POLYGON((163.6 -77.5,163.7 -77.5,163.8 -77.5,163.9 -77.5,164 -77.5,164.1 -77.5,164.2 -77.5,164.3 -77.5,164.4 -77.5,164.5 -77.5,164.6 -77.5,164.6 -77.57,164.6 -77.64,164.6 -77.71,164.6 -77.78,164.6 -77.85,164.6 -77.92,164.6 -77.99,164.6 -78.06,164.6 -78.13,164.6 -78.2,164.5 -78.2,164.4 -78.2,164.3 -78.2,164.2 -78.2,164.1 -78.2,164 -78.2,163.9 -78.2,163.8 -78.2,163.7 -78.2,163.6 -78.2,163.6 -78.13,163.6 -78.06,163.6 -77.99,163.6 -77.92,163.6 -77.85,163.6 -77.78,163.6 -77.71,163.6 -77.64,163.6 -77.57,163.6 -77.5)) | POINT(164.1 -77.85) | false | false | |||||||||
Investigating Antarctic Ice Sheet-Ocean-Carbon Cycle Interactions During the Last Deglaciation
|
2103032 |
2021-09-09 | Schmittner, Andreas; Haight, Andrew ; Clark, Peter | No dataset link provided | The Antarctic ice sheet is an important component of Earth’s climate system, as it interacts with the atmosphere, the surrounding Southern Ocean, and the underlaying solid Earth. It is also the largest potential contributor to future sea level rise and a major uncertainty in climate projections. Climate change may trigger instabilities, which may lead to fast and irreversible collapse of parts of the ice sheet. However, very little is known about how interactions between the Antarctic ice sheet and the rest of the climate system affect its behavior, climate, and sea level, partly because most climate models currently do not have fully-interactive ice sheet components. This project investigates Antarctic ice-ocean interactions of the last 20,000 years. A novel numerical climate model will be constructed that includes an interactive Antarctic ice sheet, improving computational infrastructure for research. The model code will be made freely available to the public on a code-sharing site. Paleoclimate data will be synthesized and compared with simulations of the model. The model-data comparison will address three scientific hypotheses regarding past changes in deep ocean circulation, ice sheet, carbon, and sea level. The project will contribute to a better understanding of ice-ocean interactions and past climate variability. This project will test suggestions that ice-ocean interactions have been important for setting deep ocean circulation and carbon storage during the Last Glacial Maximum and subsequent deglaciation. The new model will consist of three existing and well-tested components: (1) an isotope-enabled climate-carbon cycle model of intermediate complexity, (2) a model of the combined Antarctic ice sheet, solid Earth and sea level, and (3) an iceberg model. The coupling will include ocean temperature effects on basal melting of ice shelves, freshwater fluxes from the ice sheet to the ocean, and calving, transport and melting of icebergs. Once constructed and optimized, the model will be applied to simulate the Last Glacial Maximum and subsequent deglaciation. Differences between model versions with full, partial or no coupling will be used to investigate the effects of ice-ocean interactions on the Meridional Overturning Circulation, deep ocean carbon storage and ice sheet fluctuations. Paleoclimate data synthesis will include temperature, carbon and nitrogen isotopes, radiocarbon ages, protactinium-thorium ratios, neodymium isotopes, carbonate ion, dissolved oxygen, relative sea level and terrestrial cosmogenic ages into one multi-proxy database with a consistent updated chronology. The project will support an early-career scientist, one graduate student, undergraduate students, and new and ongoing national and international collaborations. Outreach activities in collaboration with a local science museum will benefit rural communities in Oregon by improving their climate literacy. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier
|
1341658 |
2020-06-28 | Mukhopadhyay, Sujoy |
|
Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. To test model predictions,sub-glacial rock cores were obtained from the Ohio Range along the Transantarctic Mountains near the present-day WAIS divide using a Winkie drill. Rock cores were recovered from 10 to ~30 m under the present-day ice levels. At the Ohio Range, the glacial to interglacial variations in ice sheet levels is ~120 meters. So 30 meters represent a significant fraction of the variation over the course of an ice age. High concentrations of the cosmic ray produced isotopes were detected in the rock cores, indicating extensive periods of ice-free exposure to cosmic irradiation during the last 2 million years. Modeling of the data suggest that bedrock surfaces at the Ohio Range that are currently covered by 30 meters of ice experienced more exposure than ice cover, especially in the Pleistocene. An ice sheet model prediction for the Ohio Range subglacial sample sites however, significantly underestimates exposure in the last 2 million years, and over-predicts ice cover in the Pleistocene. To adjust for the higher amounts of exposure we observe in our samples, the ice sheet model simulations require more frequent and/or longer-lasting WAIS ice drawdowns. This has important implications for future sea-level change as the model maybe under-predicting the magnitude of sea-level contributions from WAIS during the ice-age cycles. Improving the accuracy of the ice sheet models through model-data comparison should remain a prime objective in the face of a warming planet as understanding WAIS behavior is going to be key for predicting and planning for the effects of sea-level change. The project helped support and train a graduate student in climate research related to Antarctica, cosmogenic nuclide analyses and led to a Master’s Thesis. The project also provide partial support to a postdoctoral scholar obtaining cosmogenic neon measurements and for training and mentoring the graduate student's cosmogenic neon measurements and interpretation. The project results were communicated to the scientific community at conferences and through seminars. The broader community was engaged through the University of California Davis's Picnic Day celebration, an annual open house that attracts over 70,000 people to the campus, and through classroom visit at a local elementary school. | POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786)) | POINT(-116.415 -84.788) | false | false |