{"dp_type": "Project", "free_text": "ETM+"}
[{"awards": "2322117 Buckley, Bradley", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 27 Feb 2025 00:00:00 GMT", "description": "Part 1: This project focuses on a group of ecologically important species of fishes which inhabit the frigid waters of Antarctica. They represent a key link in the polar food web as they are prey for penguins, seals and toothed whales. These fish have evolved in the constant, extreme cold for millions of years and therefore, are very sensitive to the increasing water temperatures associated with global warming. These studies will investigate the impacts of incremental heat exposure on the biology of these fishes by examining their ability to respond, or inability to respond, to elevated temperatures. The project will employ cutting-edge technology to examine responses at the cellular level that may help these environmentally sensitive fishes adapt to the challenges of global warming. The primary goal is to increase our collective understanding of how polar ecosystems are likely to be impacted in the coming decades. Part 2: The proposed research is designed to use an existing bank of frozen tissues from a species of cold-adapted Antarctic fish to investigate protein-level responses to heat stress. These samples were collected earlier in the PI\u0027s career during fieldwork at McMurdo Station, Antarctica. Four tissues (control as well as heat- stressed) will be analyzed via mass spectrometry to characterize their proteome, defined as the entire complement of proteins in a sample. This includes both identification and quantification of these proteins. The goal is to determine what mechanisms of response to elevated temperature are available to the extremely cold-adapted, stenothermic fishes of Antarctica. Follow-up analyses will use immunoblotting (Western blotting) with antibodies specific to a sub-set of proteins revealed to be heat-responsive in the proteomic analyses. As this is a Mid-Career Advancement Award, training and mentorship in proteomic analyses for the PI will be supported, with time spent at the partner institution, the University of California, Davis. Intellectual Merit While there has been an increase in the use of genomic technologies to probe gene expression profiles in Antarctic species, few studies exist looking at protein level changes during exposure to heat stress in these organisms. Therefore, the proposed studies would represent a large leap forward in our understanding of how these environmentally sensitive species can, or cannot, respond at the cellular level as the Earth continues to warm and water temperatures rise. As proteins do the \"work\" in the cell, it\u0027s vital to understand which proteins are present and in what quantity and how dynamic this \"proteome\" is during stress. The proposed studies would provide this information for thousands of proteins, using already existing samples. The findings would be entirely novel and would allow us a much better picture of how animals that evolved in the cold for millions of years are likely to respond to climate change. Broader Impacts The PI has established relationships with several regional K-12 institutions and will continue to provide outreach in the form of classroom visits and the creation of classroom curricula. The PI has an on-going collaboration with the Oregon Coast Aquarium (Newport, OR) to create novel teaching materials for grades 6-8. The Aquarium has partners in surrounding school districts and will help disseminate videos about marine biology and climate change. Modules concerning polar species will be created under this proposal. An interactive website will be created demonstrating the Antarctic food web. All of the proteomic analyses and libraries generated under this award will be made publicly available for use by any interested researcher. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Sound; Fish; MARINE ECOSYSTEMS; WATER TEMPERATURE; Antarctic; FISH", "locations": "McMurdo Sound; Antarctic", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Buckley, Bradley; Kueltz, Dietmar", "platforms": null, "repositories": null, "science_programs": null, "south": null, "title": "MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms", "uid": "p0010501", "west": null}, {"awards": null, "bounds_geometry": null, "dataset_titles": "Distribution of blue ice areas in Antarctica derived from Landsat ETM+ and Modis images", "datasets": [{"dataset_uid": "601742", "doi": "10.15784/601742", "repository": "USAP-DC", "science_program": null, "title": "Distribution of blue ice areas in Antarctica derived from Landsat ETM+ and Modis images", "url": "http://www.usap-dc.org/view/dataset/601742"}], "date_created": "Fri, 13 Oct 2023 00:00:00 GMT", "description": null, "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Antarctica; Blue Ice; GIS; Glaciology; LANDSAT; MODIS; Remote Sensing; Snow/ice; Snow/Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": null, "paleo_time": null, "persons": "Scambos, Ted; Hui, Fengming", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": null, "uid": null, "west": null}, {"awards": "1643285 Joughin, Ian; 1643174 Padman, Laurence", "bounds_geometry": "POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73))", "dataset_titles": "Beta Version of Plume Model; Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier; icepack; Pine Island Basin Scale Model", "datasets": [{"dataset_uid": "200314", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "icepack", "url": "https://github.com/icepack/icepack"}, {"dataset_uid": "200315", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Pine Island Basin Scale Model", "url": "https://github.com/fastice/icesheetModels"}, {"dataset_uid": "200313", "doi": "", "keywords": null, "people": null, "repository": "GitHub", "science_program": null, "title": "Beta Version of Plume Model", "url": "https://github.com/icepack/plumes"}, {"dataset_uid": "200290", "doi": "http://hdl.handle.net/1773/46687", "keywords": null, "people": null, "repository": "Uni. Washington ResearchWorks Archive", "science_program": null, "title": "Data associated with Ice-Shelf Retreat Drives Recent Pine Island Glacier Speedup and Ocean-Induced Melt Volume Directly Paces Ice Loss from Pine Island Glacier", "url": "https://doi.org/10.6069/2MZZ-6B61"}], "date_created": "Fri, 13 May 2022 00:00:00 GMT", "description": "The West Antarctic Ice Sheet contains enough ice to raise global sea levels by 3-4 meters. Ice-sheet volume falls, and sea level increases, when more ice is lost to the ocean by glacier flow than is replaced by snowfall. Glacier speed is reduced when ice shelves, which are the floating extensions of the ice sheets, are present. Processes that affect ice shelf thickness and extent therefore influence the rates of grounded ice loss and sea-level rise. West Antarctica is currently losing ice, at an accelerating rate, with most loss occurring in the Amundsen Sea region via discharge from Pine Island and Thwaites glaciers. This loss was initiated by increased circulation of relatively warm ocean water beneath these glacier\u0027s ice shelves, causing them to thin by melting. However, this melting also depends on how the changing shape of the ice shelves affects the ocean circulation beneath them and the speeds of the grounded glaciers upstream. Limited understanding of these processes leads to uncertainties in estimates of future ice loss. This interdisciplinary project brings together glaciologists and oceanographers from three US institutions to study the interactions between changing glacier flow, ice shelf shape and extent, and ocean circulation. Data and numerical models will be used to identify the key processes that determine how rapidly this region can shed ice. The project team will train postdocs and graduate students in cutting-edge modeling techniques, and educate the public about Antarctic ice loss through talks, school science fairs, and Seattle Science Center\u0027s annual Polar Science Weekend. The project team will conduct simulations, using a combination of ice-sheet and ocean models, to reduce uncertainties in projected ice loss from Pine Island and Thwaites glaciers by: (i) assessing how ice-shelf melt rates will change as the ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of sub-shelf melt rates to changes in ocean state on the nearby continental shelf. These studies will reduce uncertainty on ice loss and sea-level rise estimates, and lay the groundwork for development of future fully-coupled ice-sheet/ocean models. The project will first develop high-resolution ice-shelf-cavity circulation models driven by modern observed regional ocean state and validated with estimates of melt derived from satellite observations. Next, an ice-flow model will be used to estimate the future grounding retreat. An iterative process with the ocean-circulation and ice-flow models will then simulate melt rates at each stage of retreat. These results will help assess the validity of the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway, which was based on simplified models of melt rate. These models will also provide a better understanding of the sensitivity of melt to regional forcing such as changes in Circumpolar Deep Water temperature and wind-driven changes in thermocline height. Finally, several semi-coupled ice-ocean simulations will help determine the influence of the ocean-circulation driven melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response.", "east": -86.0, "geometry": "POINT(-95 -77)", "instruments": null, "is_usap_dc": true, "keywords": "GLACIER MOTION/ICE SHEET MOTION; USA/NSF; ICE SHEETS; AMD; USAP-DC; MODELS; Amd/Us; Pine Island Glacier", "locations": "Pine Island Glacier", "north": -73.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Ocean and Atmospheric Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "GitHub", "repositories": "GitHub; Uni. Washington ResearchWorks Archive", "science_programs": null, "south": -81.0, "title": "Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica ", "uid": "p0010318", "west": -104.0}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": "POLYGON((-64.366767 -62.68104,-63.9917036 -62.68104,-63.6166402 -62.68104,-63.2415768 -62.68104,-62.8665134 -62.68104,-62.49145 -62.68104,-62.1163866 -62.68104,-61.7413232 -62.68104,-61.3662598 -62.68104,-60.9911964 -62.68104,-60.616133 -62.68104,-60.616133 -62.9537037,-60.616133 -63.2263674,-60.616133 -63.4990311,-60.616133 -63.7716948,-60.616133 -64.0443585,-60.616133 -64.3170222,-60.616133 -64.5896859,-60.616133 -64.8623496,-60.616133 -65.1350133,-60.616133 -65.407677,-60.9911964 -65.407677,-61.3662598 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.8665134 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.9917036 -65.407677,-64.366767 -65.407677,-64.366767 -65.1350133,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.3170222,-64.366767 -64.0443585,-64.366767 -63.7716948,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.9537037,-64.366767 -62.68104))", "dataset_titles": "Belgica antarctica collection sites - Summer 2023/2024 field season; Cold and dehydration tolerance of Belgica antarctica from three distinct geographic locations; Cross-tolerance in Belgica antarctica near Palmer Peninsula; Data from Edgington, H., Pavinato, V.A.C., Spacht, D., Gantz, J.D., Convey, P., Lee, R.E., Denlinger, D.L., Michel, A., 2023. Genetic history, structure and gene flow among populations of Belgica antarctica, the only free-living insect in the western Antarctic Peninsula. Polar Science 36, 100945.; Data from microplastics exposure in Belgica antarctica; Fine\u2011scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect; Information on 2023 collection sites for Belgica antarctica; LMG2002 Expedtition Data; Long-term recovery from freezing in Belgica antarctica; Multiple stress tolerance in the Antarctic midge; Simulated winter warming negatively impacts survival of Antarcticas only endemic insect; Stress tolerance in Belgica antarctica and Eretmoptera murphyi; Temporal and spatial variation in stress tolerance in Belgica antarctica populations from distinct islands", "datasets": [{"dataset_uid": "601687", "doi": "10.15784/601687", "keywords": "Antarctica; Antarctic Peninsula; Belgica Antarctica; Biota; Sample Location", "people": "Michel, Andrew; Devlin, Jack; Teets, Nicholas; Peter, Convey; Sousa Lima, Cleverson; Pavinato, Vitor; Gantz, Joseph; Kawarasaki, Yuta", "repository": "USAP-DC", "science_program": null, "title": "Information on 2023 collection sites for Belgica antarctica", "url": "https://www.usap-dc.org/view/dataset/601687"}, {"dataset_uid": "200425", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Simulated winter warming negatively impacts survival of Antarcticas only endemic insect", "url": "https://www.usap-dc.org/view/dataset/601694"}, {"dataset_uid": "601875", "doi": null, "keywords": "Antarctica; Cryosphere", "people": "Teets, Nicholas; Hayward, Scott; Michel, Andrew; Sousa Lima, Cleverson", "repository": "USAP-DC", "science_program": null, "title": "Belgica antarctica collection sites - Summer 2023/2024 field season", "url": "https://www.usap-dc.org/view/dataset/601875"}, {"dataset_uid": "601873", "doi": null, "keywords": "Antarctica; Belgica Antarctica; Cryosphere; Population Genetics", "people": "Sousa Lima, Cleverson; Michel, Andrew; Teets, Nicholas; Hayward, Scott", "repository": "USAP-DC", "science_program": null, "title": "Temporal and spatial variation in stress tolerance in Belgica antarctica populations from distinct islands", "url": "https://www.usap-dc.org/view/dataset/601873"}, {"dataset_uid": "601872", "doi": "10.15784/601872", "keywords": "Antarctica; Belgica Antarctica; Cryosphere", "people": "Michel, Andrew; Sousa Lima, Cleverson; Hayward, Scott; Colinet, Herve; Teets, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Cross-tolerance in Belgica antarctica near Palmer Peninsula", "url": "https://www.usap-dc.org/view/dataset/601872"}, {"dataset_uid": "601871", "doi": null, "keywords": "Antarctica; Belgica Antarctica; Cryosphere", "people": "Michel, Andrew; Hayward, Scott; Teets, Nicholas; Sousa Lima, Cleverson; Pavinato, Vitor; Gantz, Josiah D.; Kawarasaki, Yuta; Devlin, Jack; Aquilino, Monica", "repository": "USAP-DC", "science_program": null, "title": "Stress tolerance in Belgica antarctica and Eretmoptera murphyi", "url": "https://www.usap-dc.org/view/dataset/601871"}, {"dataset_uid": "601698", "doi": "10.15784/601698", "keywords": "Antarctica; Belgica Antarctica; Palmer Station", "people": "Lecheta, Melise; Teets, Nicholas; Sousa Lima, Cleverson; Devlin, Jack", "repository": "USAP-DC", "science_program": null, "title": "Long-term recovery from freezing in Belgica antarctica", "url": "https://www.usap-dc.org/view/dataset/601698"}, {"dataset_uid": "601867", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Teets, Nicholas", "repository": "USAP-DC", "science_program": null, "title": "Multiple stress tolerance in the Antarctic midge", "url": "https://www.usap-dc.org/view/dataset/601867"}, {"dataset_uid": "601866", "doi": null, "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Teets, Nicholas; Devlin, Jack", "repository": "USAP-DC", "science_program": null, "title": "Data from microplastics exposure in Belgica antarctica", "url": "https://www.usap-dc.org/view/dataset/601866"}, {"dataset_uid": "601865", "doi": "10.15784/601865", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere; Seasonality", "people": "Teets, Nicholas; Gantz, Josiah D.; Devlin, Jack; McCabe, Eleanor; Lee, Richard; Denlinger, David; Spacht, Drew", "repository": "USAP-DC", "science_program": null, "title": "Fine\u2011scale variation in microhabitat conditions influences physiology and metabolism in an Antarctic insect", "url": "https://www.usap-dc.org/view/dataset/601865"}, {"dataset_uid": "200437", "doi": "", "keywords": null, "people": null, "repository": "USAP-DC", "science_program": null, "title": "Stress tolerance in Belgica antarctica and Eretmoptera murphyi", "url": "https://www.usap-dc.org/view/dataset/601874"}, {"dataset_uid": "200438", "doi": "", "keywords": null, "people": null, "repository": "NCBI", "science_program": null, "title": "Data from Edgington, H., Pavinato, V.A.C., Spacht, D., Gantz, J.D., Convey, P., Lee, R.E., Denlinger, D.L., Michel, A., 2023. Genetic history, structure and gene flow among populations of Belgica antarctica, the only free-living insect in the western Antarctic Peninsula. Polar Science 36, 100945.", "url": "https://www.ncbi.nlm.nih.gov/bioproject/PRJNA565153/"}, {"dataset_uid": "601864", "doi": "10.15784/601864", "keywords": "Antarctica; Antarctic Peninsula; Cryosphere", "people": "Teets, Nicholas; Kawarasaki, Yuta", "repository": "USAP-DC", "science_program": null, "title": "Cold and dehydration tolerance of Belgica antarctica from three distinct geographic locations", "url": "https://www.usap-dc.org/view/dataset/601864"}, {"dataset_uid": "200222", "doi": "10.7284/908802", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "LMG2002 Expedtition Data", "url": "https://www.rvdata.us/search/cruise/LMG2002"}], "date_created": "Fri, 25 Jun 2021 00:00:00 GMT", "description": "The cold, dry terrestrial environments of Antarctica are inhospitable for insects, and only three midge species make Antarctica home. Of these, Belgica antarctica is the only species found exclusively in Antarctica, and it has been a resident of Antarctica since the continent split from South America ~30 million years ago. Thus, this species is an excellent system to model the biological history of Antarctica throughout its repeated glaciation events and shifts in climate. This insect is also a classic example of extreme adaptation, and much previous work has focused on identifying the genetic and physiological mechanisms that allow this species to survive where no other insect is capable. However, it has been difficult to pinpoint the unique evolutionary adaptations that are required to survive in Antarctica due to a lack of information from closely related Antarctic and sub-Antarctic species. This project will compare adaptations, genome sequences, and population characteristics of four midge species that span an environmental gradient from sub-Antarctic to Antarctic habitats. In addition to B. antarctica, these species include two species that are strictly sub-Antarctic and a third that is native to the sub-Antarctic but has invaded parts of Antarctica. The researchers, comprised of scientists from the US, UK, Chile, and France, will sample insects from across their geographic range and measure their ability to tolerate environmental stressors (i.e., cold and desiccation), quantify molecular responses to stress, and compare the makeup of the genome and patterns of genetic diversity. This research will contribute to a greater understanding of adaptation to extremes, to an understanding of biodiversity on the planet and to understanding and predicting changes accompanying environmental change. The project will train two graduate students and two postdoctoral researchers, and a K-12 educator will be a member of the field team and will assist with fieldwork and facilitate outreach with schools in the US. The project includes partnership activities with several STEM education organizations to deliver educational content to K-12 and secondary students. This is a project that is jointly funded by the National Science Foundation\u0027s Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Each Agency funds the proportion of the budget and the investigators associated with its own country. UK participation in this project includes deploying scientists as part of the field team, supporting field and sampling logistics at remote Antarctic sites, and genome sequencing, annotation, and analyses. This project focuses on the key physiological adaptations and molecular processes that allow a select few insect species to survive in Antarctica. The focal species are all wingless with limited dispersal capacity, suggesting there is also significant potential to locally adapt to variable environmental conditions across the range of these species. The central hypothesis is that similar molecular mechanisms drive both population-level adaptation to local environmental conditions and macroevolutionary changes across species living in different environments. The specific aims of the project are to 1) Characterize conserved and species-specific adaptations to extreme environments through comparative physiology and transcriptomics, 2) Compare the genome sequences of these species to identify genetic signatures of extreme adaption, and 3) Investigate patterns of diversification and local adaptation across each species? range using population genomics. The project establishes an international collaboration of researchers from the US, UK, Chile, and France with shared interests and complementary expertise in the biology, genomics, and conservation of Antarctic arthropods. The Broader Impacts of the project include training students and partnering with the Living Arts and Science Center to design and implement educational content for K-12 students. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -60.616133, "geometry": "POINT(-62.49145 -64.0443585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; Livingston Island; Antarctica; USAP-DC; AMD; R/V LMG; USA/NSF; ARTHROPODS; Amd/Us; Anvers Island", "locations": "Antarctica; Antarctic Peninsula; Anvers Island; Livingston Island", "north": -62.68104, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Teets, Nicholas; Michel, Andrew", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "USAP-DC", "repositories": "NCBI; R2R; USAP-DC", "science_programs": null, "south": -65.407677, "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "uid": "p0010203", "west": -64.366767}, {"awards": "1908399 Bizimis, Michael; 1908548 Feakins, Sarah", "bounds_geometry": "POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617))", "dataset_titles": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]; Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years; Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years; Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago; Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "datasets": [{"dataset_uid": "200334", "doi": "10.5281/zenodo.7254786", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Ejtibbett/EOTproxymodel: Proxy Model Comparison for the Eocene-Oligocene Transition [Computational Notebook]", "url": "https://zenodo.org/record/7254786#.Y2BLAeTMI2w"}, {"dataset_uid": "200259", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Sabrina Coast East Antarctica, Pollen and Biomarker Data from 59-38 million years ago", "url": "https://www.ncdc.noaa.gov/paleo/study/34772"}, {"dataset_uid": "200317", "doi": "10.25921/n9kg-yw91", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Paleoceanography and biomarker data from the Antarctic Peninsula over the past 37-3 million years", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/35613"}, {"dataset_uid": "200335", "doi": "10.5281/zenodo.7254536", "keywords": null, "people": null, "repository": "Zenodo", "science_program": null, "title": "Southern High Latitude Temperature Proxies from the Late Eocene and Early Oligocene [Dataset]", "url": "https://zenodo.org/record/7254536#.Y2BLgOTMI2w"}, {"dataset_uid": "200206", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Prydz Bay East Antarctica, biomarkers and pollen, 36-33 million years", "url": "https://www.ncdc.noaa.gov/paleo-search/study/32052"}], "date_created": "Sat, 05 Dec 2020 00:00:00 GMT", "description": "The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as \u0027biomarkers\u0027 in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program\u0027s (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD \u0026 MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 75.08183, "geometry": "POINT(74.934415 -67.48617)", "instruments": null, "is_usap_dc": true, "keywords": "MICROFOSSILS; Prydz Bay; PALEOCLIMATE RECONSTRUCTIONS; Sabrina Coast; DROUGHT/PRECIPITATION RECONSTRUCTION; ISOTOPES; AIR TEMPERATURE RECONSTRUCTION", "locations": "Prydz Bay; Sabrina Coast", "north": -67.27617, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Feakins, Sarah; Scher, Howard", "platforms": null, "repo": "Zenodo", "repositories": "NCEI; Zenodo", "science_programs": null, "south": -67.69617, "title": "Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation", "uid": "p0010143", "west": 74.787}, {"awards": "1246342 Fountain, Andrew; 1246203 Gooseff, Michael; 1245749 Levy, Joseph", "bounds_geometry": "POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119))", "dataset_titles": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica; Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "datasets": [{"dataset_uid": "601075", "doi": "10.15784/601075", "keywords": "Antarctica; Dry Valleys; Glaciology; Paleoclimate; Permafrost; Soil Temperature; Taylor Valley", "people": "Gooseff, Michael N.", "repository": "USAP-DC", "science_program": null, "title": "Active Layer Temperatures from Crescent Stream banks, Taylor Valley Antarctica", "url": "https://www.usap-dc.org/view/dataset/601075"}, {"dataset_uid": "000209", "doi": "", "keywords": null, "people": null, "repository": "OpenTopo", "science_program": null, "title": "2014-2015 lidar survey of the McMurdo Dry Valleys, Antarctica", "url": "http://opentopo.sdsc.edu/datasetMetadata?otCollectionID=OT.112016.3294.1"}], "date_created": "Wed, 20 Dec 2017 00:00:00 GMT", "description": "Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate.", "east": 166.95825, "geometry": "POINT(163.5318575 -77.747214)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e LIDAR/LASER ALTIMETERS \u003e AIRBORNE LASER SCANNER", "is_usap_dc": true, "keywords": "USAP-DC; Antarctica; Not provided; LANDFORMS; NOT APPLICABLE", "locations": "Antarctica", "north": -77.2119, "nsf_funding_programs": "Antarctic Integrated System Science; Antarctic Integrated System Science; Antarctic Integrated System Science", "paleo_time": null, "persons": "Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "OpenTopo; USAP-DC", "science_programs": null, "south": -78.282528, "title": "Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change", "uid": "p0000076", "west": 160.105465}, {"awards": "0944248 MacAyeal, Douglas", "bounds_geometry": "POLYGON((-63.72 -63.73,-62.893 -63.73,-62.066 -63.73,-61.239 -63.73,-60.412 -63.73,-59.585 -63.73,-58.758 -63.73,-57.931 -63.73,-57.104 -63.73,-56.277 -63.73,-55.45 -63.73,-55.45 -64.0876,-55.45 -64.4452,-55.45 -64.8028,-55.45 -65.1604,-55.45 -65.518,-55.45 -65.8756,-55.45 -66.2332,-55.45 -66.5908,-55.45 -66.9484,-55.45 -67.306,-56.277 -67.306,-57.104 -67.306,-57.931 -67.306,-58.758 -67.306,-59.585 -67.306,-60.412 -67.306,-61.239 -67.306,-62.066 -67.306,-62.893 -67.306,-63.72 -67.306,-63.72 -66.9484,-63.72 -66.5908,-63.72 -66.2332,-63.72 -65.8756,-63.72 -65.518,-63.72 -65.1604,-63.72 -64.8028,-63.72 -64.4452,-63.72 -64.0876,-63.72 -63.73))", "dataset_titles": "Go to the NSIDC and search for the data.; Standing Water Depth on Larsen B Ice Shelf", "datasets": [{"dataset_uid": "609584", "doi": "10.7265/N500002K", "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Shelf; Larsen B Ice Shelf; Sample/collection Description; Sample/Collection Description; Supraglacial Meltwater", "people": "MacAyeal, Douglas", "repository": "USAP-DC", "science_program": null, "title": "Standing Water Depth on Larsen B Ice Shelf", "url": "https://www.usap-dc.org/view/dataset/609584"}, {"dataset_uid": "001996", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Go to the NSIDC and search for the data.", "url": "http://nsidc.org"}], "date_created": "Sat, 21 Dec 2013 00:00:00 GMT", "description": "MacAyeal/0944248\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago.", "east": -55.45, "geometry": "POINT(-59.585 -65.518)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e ETM+; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e PHOTOMETERS \u003e SPECTROPHOTOMETERS", "is_usap_dc": true, "keywords": "Supraglacial Lake; LANDSAT-7; Melt Ponds; Standing Water Depth; Ice Shelf Stability", "locations": null, "north": -63.73, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "MacAyeal, Douglas", "platforms": "SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT-7", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": -67.306, "title": "Model Studies of Surface Water Behavior on Ice Shelves", "uid": "p0000052", "west": -63.72}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MCA: Cellular Responses to Thermal Stress in Antarctic Fishes: Dynamic Re-structuring of the Proteome in Extreme Stenotherms
|
2322117 |
2025-02-27 | Buckley, Bradley; Kueltz, Dietmar | No dataset link provided | Part 1: This project focuses on a group of ecologically important species of fishes which inhabit the frigid waters of Antarctica. They represent a key link in the polar food web as they are prey for penguins, seals and toothed whales. These fish have evolved in the constant, extreme cold for millions of years and therefore, are very sensitive to the increasing water temperatures associated with global warming. These studies will investigate the impacts of incremental heat exposure on the biology of these fishes by examining their ability to respond, or inability to respond, to elevated temperatures. The project will employ cutting-edge technology to examine responses at the cellular level that may help these environmentally sensitive fishes adapt to the challenges of global warming. The primary goal is to increase our collective understanding of how polar ecosystems are likely to be impacted in the coming decades. Part 2: The proposed research is designed to use an existing bank of frozen tissues from a species of cold-adapted Antarctic fish to investigate protein-level responses to heat stress. These samples were collected earlier in the PI's career during fieldwork at McMurdo Station, Antarctica. Four tissues (control as well as heat- stressed) will be analyzed via mass spectrometry to characterize their proteome, defined as the entire complement of proteins in a sample. This includes both identification and quantification of these proteins. The goal is to determine what mechanisms of response to elevated temperature are available to the extremely cold-adapted, stenothermic fishes of Antarctica. Follow-up analyses will use immunoblotting (Western blotting) with antibodies specific to a sub-set of proteins revealed to be heat-responsive in the proteomic analyses. As this is a Mid-Career Advancement Award, training and mentorship in proteomic analyses for the PI will be supported, with time spent at the partner institution, the University of California, Davis. Intellectual Merit While there has been an increase in the use of genomic technologies to probe gene expression profiles in Antarctic species, few studies exist looking at protein level changes during exposure to heat stress in these organisms. Therefore, the proposed studies would represent a large leap forward in our understanding of how these environmentally sensitive species can, or cannot, respond at the cellular level as the Earth continues to warm and water temperatures rise. As proteins do the "work" in the cell, it's vital to understand which proteins are present and in what quantity and how dynamic this "proteome" is during stress. The proposed studies would provide this information for thousands of proteins, using already existing samples. The findings would be entirely novel and would allow us a much better picture of how animals that evolved in the cold for millions of years are likely to respond to climate change. Broader Impacts The PI has established relationships with several regional K-12 institutions and will continue to provide outreach in the form of classroom visits and the creation of classroom curricula. The PI has an on-going collaboration with the Oregon Coast Aquarium (Newport, OR) to create novel teaching materials for grades 6-8. The Aquarium has partners in surrounding school districts and will help disseminate videos about marine biology and climate change. Modules concerning polar species will be created under this proposal. An interactive website will be created demonstrating the Antarctic food web. All of the proteomic analyses and libraries generated under this award will be made publicly available for use by any interested researcher. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||||||||
None
|
None | 2023-10-13 | Scambos, Ted; Hui, Fengming |
|
None | None | None | false | false | |||||||||
Collaborative Research: Modeling ice-ocean interaction for the rapidly evolving ice shelf cavities of Pine Island and Thwaites glaciers, Antarctica
|
1643285 1643174 |
2022-05-13 | Joughin, Ian; Dutrieux, Pierre; Padman, Laurence; Springer, Scott |
|
The West Antarctic Ice Sheet contains enough ice to raise global sea levels by 3-4 meters. Ice-sheet volume falls, and sea level increases, when more ice is lost to the ocean by glacier flow than is replaced by snowfall. Glacier speed is reduced when ice shelves, which are the floating extensions of the ice sheets, are present. Processes that affect ice shelf thickness and extent therefore influence the rates of grounded ice loss and sea-level rise. West Antarctica is currently losing ice, at an accelerating rate, with most loss occurring in the Amundsen Sea region via discharge from Pine Island and Thwaites glaciers. This loss was initiated by increased circulation of relatively warm ocean water beneath these glacier's ice shelves, causing them to thin by melting. However, this melting also depends on how the changing shape of the ice shelves affects the ocean circulation beneath them and the speeds of the grounded glaciers upstream. Limited understanding of these processes leads to uncertainties in estimates of future ice loss. This interdisciplinary project brings together glaciologists and oceanographers from three US institutions to study the interactions between changing glacier flow, ice shelf shape and extent, and ocean circulation. Data and numerical models will be used to identify the key processes that determine how rapidly this region can shed ice. The project team will train postdocs and graduate students in cutting-edge modeling techniques, and educate the public about Antarctic ice loss through talks, school science fairs, and Seattle Science Center's annual Polar Science Weekend. The project team will conduct simulations, using a combination of ice-sheet and ocean models, to reduce uncertainties in projected ice loss from Pine Island and Thwaites glaciers by: (i) assessing how ice-shelf melt rates will change as the ice-shelf cavities evolve through melting and grounding-line retreat, and (ii) improving understanding of the sensitivity of sub-shelf melt rates to changes in ocean state on the nearby continental shelf. These studies will reduce uncertainty on ice loss and sea-level rise estimates, and lay the groundwork for development of future fully-coupled ice-sheet/ocean models. The project will first develop high-resolution ice-shelf-cavity circulation models driven by modern observed regional ocean state and validated with estimates of melt derived from satellite observations. Next, an ice-flow model will be used to estimate the future grounding retreat. An iterative process with the ocean-circulation and ice-flow models will then simulate melt rates at each stage of retreat. These results will help assess the validity of the hypothesis that unstable collapse of the Amundsen Sea sector of West Antarctica is underway, which was based on simplified models of melt rate. These models will also provide a better understanding of the sensitivity of melt to regional forcing such as changes in Circumpolar Deep Water temperature and wind-driven changes in thermocline height. Finally, several semi-coupled ice-ocean simulations will help determine the influence of the ocean-circulation driven melt over the next several decades. These simulations will provide a much-improved understanding of the linkages between far-field ocean forcing, cavity circulation and melting, and ice-sheet response. | POLYGON((-104 -73,-102.2 -73,-100.4 -73,-98.6 -73,-96.8 -73,-95 -73,-93.2 -73,-91.4 -73,-89.6 -73,-87.8 -73,-86 -73,-86 -73.8,-86 -74.6,-86 -75.4,-86 -76.2,-86 -77,-86 -77.8,-86 -78.6,-86 -79.4,-86 -80.2,-86 -81,-87.8 -81,-89.6 -81,-91.4 -81,-93.2 -81,-95 -81,-96.8 -81,-98.6 -81,-100.4 -81,-102.2 -81,-104 -81,-104 -80.2,-104 -79.4,-104 -78.6,-104 -77.8,-104 -77,-104 -76.2,-104 -75.4,-104 -74.6,-104 -73.8,-104 -73)) | POINT(-95 -77) | false | false | |||||||||
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects
|
1850988 |
2021-06-25 | Teets, Nicholas; Michel, Andrew | The cold, dry terrestrial environments of Antarctica are inhospitable for insects, and only three midge species make Antarctica home. Of these, Belgica antarctica is the only species found exclusively in Antarctica, and it has been a resident of Antarctica since the continent split from South America ~30 million years ago. Thus, this species is an excellent system to model the biological history of Antarctica throughout its repeated glaciation events and shifts in climate. This insect is also a classic example of extreme adaptation, and much previous work has focused on identifying the genetic and physiological mechanisms that allow this species to survive where no other insect is capable. However, it has been difficult to pinpoint the unique evolutionary adaptations that are required to survive in Antarctica due to a lack of information from closely related Antarctic and sub-Antarctic species. This project will compare adaptations, genome sequences, and population characteristics of four midge species that span an environmental gradient from sub-Antarctic to Antarctic habitats. In addition to B. antarctica, these species include two species that are strictly sub-Antarctic and a third that is native to the sub-Antarctic but has invaded parts of Antarctica. The researchers, comprised of scientists from the US, UK, Chile, and France, will sample insects from across their geographic range and measure their ability to tolerate environmental stressors (i.e., cold and desiccation), quantify molecular responses to stress, and compare the makeup of the genome and patterns of genetic diversity. This research will contribute to a greater understanding of adaptation to extremes, to an understanding of biodiversity on the planet and to understanding and predicting changes accompanying environmental change. The project will train two graduate students and two postdoctoral researchers, and a K-12 educator will be a member of the field team and will assist with fieldwork and facilitate outreach with schools in the US. The project includes partnership activities with several STEM education organizations to deliver educational content to K-12 and secondary students. This is a project that is jointly funded by the National Science Foundation's Directorate of Geosciences (NSF/GEO) and the National Environment Research Council (NERC) of the United Kingdom (UK) via the NSF/GEO-NERC Lead Agency Agreement. This Agreement allows a single joint US/UK proposal to be submitted and peer-reviewed by the Agency whose investigator has the largest proportion of the budget. Each Agency funds the proportion of the budget and the investigators associated with its own country. UK participation in this project includes deploying scientists as part of the field team, supporting field and sampling logistics at remote Antarctic sites, and genome sequencing, annotation, and analyses. This project focuses on the key physiological adaptations and molecular processes that allow a select few insect species to survive in Antarctica. The focal species are all wingless with limited dispersal capacity, suggesting there is also significant potential to locally adapt to variable environmental conditions across the range of these species. The central hypothesis is that similar molecular mechanisms drive both population-level adaptation to local environmental conditions and macroevolutionary changes across species living in different environments. The specific aims of the project are to 1) Characterize conserved and species-specific adaptations to extreme environments through comparative physiology and transcriptomics, 2) Compare the genome sequences of these species to identify genetic signatures of extreme adaption, and 3) Investigate patterns of diversification and local adaptation across each species? range using population genomics. The project establishes an international collaboration of researchers from the US, UK, Chile, and France with shared interests and complementary expertise in the biology, genomics, and conservation of Antarctic arthropods. The Broader Impacts of the project include training students and partnering with the Living Arts and Science Center to design and implement educational content for K-12 students. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-64.366767 -62.68104,-63.9917036 -62.68104,-63.6166402 -62.68104,-63.2415768 -62.68104,-62.8665134 -62.68104,-62.49145 -62.68104,-62.1163866 -62.68104,-61.7413232 -62.68104,-61.3662598 -62.68104,-60.9911964 -62.68104,-60.616133 -62.68104,-60.616133 -62.9537037,-60.616133 -63.2263674,-60.616133 -63.4990311,-60.616133 -63.7716948,-60.616133 -64.0443585,-60.616133 -64.3170222,-60.616133 -64.5896859,-60.616133 -64.8623496,-60.616133 -65.1350133,-60.616133 -65.407677,-60.9911964 -65.407677,-61.3662598 -65.407677,-61.7413232 -65.407677,-62.1163866 -65.407677,-62.49145 -65.407677,-62.8665134 -65.407677,-63.2415768 -65.407677,-63.6166402 -65.407677,-63.9917036 -65.407677,-64.366767 -65.407677,-64.366767 -65.1350133,-64.366767 -64.8623496,-64.366767 -64.5896859,-64.366767 -64.3170222,-64.366767 -64.0443585,-64.366767 -63.7716948,-64.366767 -63.4990311,-64.366767 -63.2263674,-64.366767 -62.9537037,-64.366767 -62.68104)) | POINT(-62.49145 -64.0443585) | false | false | ||||||||||
Collaborative Research: Organic and Inorganic Geochemical Investigation of Hydrologic Change in East Antarctica in the 4 Million Years Before Full Glaciation
|
1908399 1908548 |
2020-12-05 | Feakins, Sarah; Scher, Howard | The East Antarctic Ice Sheet holds the largest volume of freshwater on the planet, in total enough to raise sea level by almost two hundred feet. Even minor adjustments in the volume of ice stored have major implications for coastlines and climates around the world. The question motivating this project is how did the ice grow to cover the continent over thirty million years ago when Antarctica changed from a warmer environment to an ice-covered southern continent? The seafloor of Prydz Bay, a major drainage basin of the East Antarctic Ice Sheet (EAIS), has been drilled previously to recover sediments dating from millions of years prior to and across the time when inception of continental ice sheets occurred in Antarctica. The last remnants of plant material found as 'biomarkers' in the ocean sediments record the chemical signatures of rain and snowfall that fed the plants and later the expanding glaciers. Sediment carried by glaciers was also deposited on the seafloor and can be analyzed to discover how glaciers flowed across the landscape. Here, the researchers will identify precipitation changes that result from, and drive, ice sheet growth. This study will gather data and further analyze samples from the seafloor sediment archives of the International Ocean Discovery Program's (IODP) core repositories. Ultimately these findings can help inform temperature-precipitation-ice linkages within climate and ice sheet models. The project will support the training of three female, early career scientists (PhD & MS students, and research technician) and both PIs and the PhD student will continue their engagement with broadening participation efforts (e.g., Women in Science and Engineering Program; local chapters of Society for the advancement of Native Americans and Chicanos in Science and other access programs) to recruit undergraduate student participants from underrepresented minorities at both campuses and from local community colleges. Antarctic earth science education materials will be assisted by professional illustrations to be open access and used in public education and communication efforts to engage local communities in Los Angeles CA and Columbia SC. The researchers at the University of Southern California and the University of South Carolina will together study the penultimate moment of the early Cenozoic greenhouse climate state: the ~4 million years of global cooling that culminated in the Eocene/Oligocene transition (~34 Ma). Significant gaps remain in the understanding of the conditions that preceded ice expansion on Antarctica. In particular, the supply of raw material for ice sheets (i.e., moisture) and the timing, frequency, and duration of precursor glaciations is poorly constrained. This collaborative proposal combines organic and inorganic proxies to examine how Antarctic hydroclimate changed during the greenhouse to icehouse transition. The central hypothesis is that the hydrological cycle weakened as cooling proceeded. Plant-wax hydrogen and carbon isotopes (hydroclimate proxies) and Hf-Nd isotopes of lithogenous and hydrogenous sediments (mechanical weathering proxies) respond strongly and rapidly to precipitation and glacial advance. This detailed and sensitive combined approach will test whether there were hidden glaciations (and/or warm events) that punctuated the pre-icehouse interval. Studies will be conducted on Prydz Bay marine sediment cores in a depositional area for products of weathering and erosion that were (and are) transported through Lambert Graben from the center of Antarctica. The project will yield proxy information about the presence of plants and the hydroclimate of Antarctica and the timing of glacial advance, and is expected to show drying associated with cooling and ice-sheet growth. The dual approach will untangle climate signals from changes in fluvial versus glacial erosion of plant biomarkers. This proposal is potentially transformative because the combination of organic and inorganic proxies can reveal rapid transitions in aridity and glacial expansion, that may have been missed in slower-response proxies and more distal archives. The research is significant as hydroclimate seems to be a key player in the temperature-cryosphere hysteresis. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((74.787 -67.27617,74.816483 -67.27617,74.845966 -67.27617,74.875449 -67.27617,74.904932 -67.27617,74.934415 -67.27617,74.963898 -67.27617,74.993381 -67.27617,75.022864 -67.27617,75.052347 -67.27617,75.08183 -67.27617,75.08183 -67.31817,75.08183 -67.36017,75.08183 -67.40217,75.08183 -67.44417,75.08183 -67.48617,75.08183 -67.52817,75.08183 -67.57017,75.08183 -67.61217,75.08183 -67.65417,75.08183 -67.69617,75.052347 -67.69617,75.022864 -67.69617,74.993381 -67.69617,74.963898 -67.69617,74.934415 -67.69617,74.904932 -67.69617,74.875449 -67.69617,74.845966 -67.69617,74.816483 -67.69617,74.787 -67.69617,74.787 -67.65417,74.787 -67.61217,74.787 -67.57017,74.787 -67.52817,74.787 -67.48617,74.787 -67.44417,74.787 -67.40217,74.787 -67.36017,74.787 -67.31817,74.787 -67.27617)) | POINT(74.934415 -67.48617) | false | false | ||||||||||
Collaborative Research: THE MCMURDO DRY VALLEYS: A landscape on the Threshold of Change
|
1246342 1246203 1245749 |
2017-12-20 | Levy, Joseph; Gooseff, Michael N.; Fountain, Andrew |
|
Collaborative Research: THE MCMURDO DRY VALLEYS: A Landscape on the Threshold of Change is supported by the Antarctic Integrated System Science (AISS) program in the Antarctic Sciences Section of the Division of Polar Programs within the Geosciences Directorate of the National Sciences Foundation (NSF). The funds will support the collection of state-of-the-art high resolution LIDAR (combining the terms light and radar) imagery of the Dry Valleys of Antarctica in the 2014/2015 Antarctic field season, with LIDAR data collection and processing being provided by the NSF-supported NCALM (National Center for Airborne Laser Mapping) facility. LIDAR images collected in 2014/2015 will be compared to images from 2001 in order to detect decadal change. Additional fieldwork will look at the distribution of buried massive ice, and the impacts that major changes like slumping are having on the biota. All field data will be used to improve models on energy balance, and hydrology. Intellectual Merit: There have been dramatic changes over the past decade in the McMurdo Dry Valleys: glaciers are deflating by tens of meters, rivers are incising by more than three meters, and thermokarst slumps are appearing near several streams and lakes. These observations have all been made by researchers in the field, but none of the changes have been mapped on a valley-wide scale. This award will provide a new baseline map for the entire Dry Valley system, with high-resolution imagery provided for the valley floors, and lower resolution imagery available for the higher elevation areas that are undergoing less change. The project will test the idea that sediment-covered ice is associated with the most dramatic changes, due to differential impacts of the increased solar radiation on sediment-covered compared to clean ice, and despite the current trend of slightly cooling air temperatures within the Dry Valleys. Information collected on the topography, coupled with the GPR determined buried ice distributions, will also be incorporated into improved energy and hydrological models. In addition to providing the new high-resolution digital elevation model (DEM), the project will ultimately result in identification of areas that are susceptible to sediment-enhanced melt-driven change, providing a powerful prediction tool for the impacts of climate change. Broader Impacts: The new DEM will be immediately useful to a wide range of disciplines, and will provide a comprehensive new baseline against which future changes will be compared. The project will provide a tool for the whole community to use, and the investigators will work with the community to make them aware of the new assets via public presentations, and perhaps via a workshop. The map will have international interest, and will also serve as a tool for environmental managers to draw on as they consider conservation plans. Several undergraduate and graduate students will participate in the project, and one of the co-PIs is a new investigator. The imagery collected is expected to be of interest to the general public in addition to scientific researchers, and venues for outreach such as museum exhibits and the internet will be explored. The proposed work is synergistic with 1) the co-located McMurdo LTER program, and 2) the NCALM facility that is also funded by the Geosciences Directorate. | POLYGON((160.105465 -77.2119,160.7907435 -77.2119,161.476022 -77.2119,162.1613005 -77.2119,162.846579 -77.2119,163.5318575 -77.2119,164.217136 -77.2119,164.9024145 -77.2119,165.587693 -77.2119,166.2729715 -77.2119,166.95825 -77.2119,166.95825 -77.3189628,166.95825 -77.4260256,166.95825 -77.5330884,166.95825 -77.6401512,166.95825 -77.747214,166.95825 -77.8542768,166.95825 -77.9613396,166.95825 -78.0684024,166.95825 -78.1754652,166.95825 -78.282528,166.2729715 -78.282528,165.587693 -78.282528,164.9024145 -78.282528,164.217136 -78.282528,163.5318575 -78.282528,162.846579 -78.282528,162.1613005 -78.282528,161.476022 -78.282528,160.7907435 -78.282528,160.105465 -78.282528,160.105465 -78.1754652,160.105465 -78.0684024,160.105465 -77.9613396,160.105465 -77.8542768,160.105465 -77.747214,160.105465 -77.6401512,160.105465 -77.5330884,160.105465 -77.4260256,160.105465 -77.3189628,160.105465 -77.2119)) | POINT(163.5318575 -77.747214) | false | false | |||||||||
Model Studies of Surface Water Behavior on Ice Shelves
|
0944248 |
2013-12-21 | MacAyeal, Douglas |
|
MacAyeal/0944248<br/><br/>This award supports a project to develop a better understanding of the processes and conditions that trigger ice shelf instability and explosive disintegration. A significant product of the proposed research will be the establishment of parameterizations of micro- and meso-scale ice-shelf surface processes needed in large scale ice-sheet models designed to predict future sea level rise. The proposed research represents a 3-year effort to conduct numerical model studies of 6 aspects of surface-water evolution on Antarctic ice shelves. These 6 model-study areas include energy balance models of melting ice-shelf surfaces, with treatment of surface ponds and water-filled crevasses, distributed, Darcian water flow modeling to simulate initial firn melting, brine infiltration, pond drainage and crevasse filling, ice-shelf surface topography evolution modeling by phase change (surface melting and freezing), surface-runoff driven erosion and seepage flows, mass loading and flexure effects of ice-shelf and iceberg surfaces; feedbacks between surface-water loads and flexure stresses; possible seiche phenomena of the surface water, ice and underlying ocean that constitute a mechanism for, inducing surface crevassing., surface pond and crevasse convection, and basal crevasse thermohaline convection (as a phenomena related to area 5 above). The broader impacts of the proposed work bears on the socio-environmental concerns of climate change and sea-level rise, and will contribute to the important goal of advising public policy. The project will form the basis of a dissertation project of a graduate student whose training will contribute to the scientific workforce of the nation and the PI and graduate student will additionally participate in a summer science-enrichment program for high-school teachers organized by colleagues at the University of Chicago. | POLYGON((-63.72 -63.73,-62.893 -63.73,-62.066 -63.73,-61.239 -63.73,-60.412 -63.73,-59.585 -63.73,-58.758 -63.73,-57.931 -63.73,-57.104 -63.73,-56.277 -63.73,-55.45 -63.73,-55.45 -64.0876,-55.45 -64.4452,-55.45 -64.8028,-55.45 -65.1604,-55.45 -65.518,-55.45 -65.8756,-55.45 -66.2332,-55.45 -66.5908,-55.45 -66.9484,-55.45 -67.306,-56.277 -67.306,-57.104 -67.306,-57.931 -67.306,-58.758 -67.306,-59.585 -67.306,-60.412 -67.306,-61.239 -67.306,-62.066 -67.306,-62.893 -67.306,-63.72 -67.306,-63.72 -66.9484,-63.72 -66.5908,-63.72 -66.2332,-63.72 -65.8756,-63.72 -65.518,-63.72 -65.1604,-63.72 -64.8028,-63.72 -64.4452,-63.72 -64.0876,-63.72 -63.73)) | POINT(-59.585 -65.518) | false | false |