{"dp_type": "Project", "free_text": "Aluminum-26"}
[{"awards": "1744771 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities; 5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "datasets": [{"dataset_uid": "601601", "doi": "10.15784/601601", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "people": "Halberstadt, Anna Ruth; Buchband, Hannah; Balco, Gregory", "repository": "USAP-DC", "science_program": null, "title": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities", "url": "https://www.usap-dc.org/view/dataset/601601"}, {"dataset_uid": "601602", "doi": "10.15784/601602", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "people": "Balco, Gregory; Buchband, Hannah; Halberstadt, Anna Ruth", "repository": "USAP-DC", "science_program": null, "title": "5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "url": "https://www.usap-dc.org/view/dataset/601602"}], "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "The purpose of this project is to use geological data that record past changes in the Antarctic ice sheets to test computer models for ice sheet change. The geologic data mainly consist of dated glacial deposits that are preserved above the level of the present ice sheet, and range in age from thousands to millions of years old. These provide information about the size, thickness, and rate of change of the ice sheets during past times when the ice sheets were larger than present. In addition, some of these data are from below the present ice surface and therefore also provide some information about past warm periods when ice sheets were most likely smaller than present. The primary purpose of the computer model is to predict future ice sheet changes, but because significant changes in the size of ice sheets are slow and likely occur over hundreds of years or longer, the only way to determine whether these models are accurate is to test their ability to reproduce past ice sheet changes. The primary purpose of this project is to carry out such a test. The research team will compile relevant geologic data, in some cases generate new data by dating additional deposits, and develop methods and software to compare data to model simulations. In addition, this project will (i) contribute to building and sustaining U.S. science capacity through postdoctoral training in geochronology, ice sheet modeling, and data science, and (ii) improve public access to geologic data and model simulations relevant to ice sheet change through online database and website development. Technical aspects of this project are primarily focused on the field of cosmogenic-nuclide exposure-dating, which is a method that relies on the production of rare stable and radio-nuclides by cosmic-ray interactions with rocks and minerals exposed at the Earth\u0027s surface. Because the advance and retreat of ice sheets results in alternating cosmic-ray exposure and shielding of underlying bedrock and surficial deposits, this technique is commonly used to date and reconstruct past ice sheet changes. First, this project will contribute to compiling and systematizing a large amount of cosmogenic-nuclide exposure age data collected in Antarctica during the past three decades. Second, it will generate additional geochemical data needed to improve the extent and usefulness of measurements of stable cosmogenic nuclides, cosmogenic neon-21 in particular, that are useful for constraining ice-sheet behavior on million-year timescales. Third, it will develop a computational framework for comparison of the geologic data set with existing numerical model simulations of Antarctic ice sheet change during the past several million years, with particular emphasis on model simulations of past warm periods, for example the middle Pliocene ca. 3-3.3 million years ago, during which the Antarctic ice sheets are hypothesized to have been substantially smaller than present. Fourth, guided by the results of this comparison, it will generate new model simulations aimed at improving agreement between model simulations and geologic data, as well as diagnosing which processes or parameterizations in the models are or are not well constrained by the data. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "BERYLLIUM-10 ANALYSIS; AMD; ICE SHEETS; GLACIATION; Amd/Us; LABORATORY; USA/NSF; Antarctica; ALUMINUM-26 ANALYSIS; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Balco, Gregory", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements", "uid": "p0010342", "west": -180.0}, {"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Putkonen, Jaakko; Bergelin, Marie", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}, {"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": "POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786))", "dataset_titles": "Ohio Range Subglacial rock core cosmogenic nuclide data", "datasets": [{"dataset_uid": "601351", "doi": "10.15784/601351", "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "people": "Mukhopadhyay, Sujoy", "repository": "USAP-DC", "science_program": null, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "url": "https://www.usap-dc.org/view/dataset/601351"}], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. The investigators propose to collect geochemical data from the Ohio Range and Scott Glacier to quantify past variability in the height of the WAIS. Limited available cosmogenic nuclide data are broadly consistent with a model indicating that Pliocene WAIS elevations and volumes were smaller than at present, and that WAIS collapse was common. The PIs will use geologic observations and cosmogenic nuclide concentrations from bedrock samples at multiple locations and at multiple elevations, including sub-ice samples, to constrain WAIS ice volume changes in a \"dipstick\" like fashion. Data obtained from the proposed research will provide targets for data-ice sheet model comparisons to accurately characterize Plio-Pleistocene and future WAIS behavior. As part of this project, the investigators will work with the Natural History Museum and the Earth \u0026 Planetary Science department at Harvard to develop an exhibit that will become part of the Museum\u0027s recently opened Earth and Planetary Science Gallery. The project involves mentoring of a female graduate student as well as an undergraduate student.", "east": -116.38, "geometry": "POINT(-116.415 -84.788)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Sheet Fluctuations; ALUMINUM-26 ANALYSIS; BERYLLIUM-10 ANALYSIS; Cosmogenic Radionuclides; USAP-DC; FIELD INVESTIGATION; AMD; Ohio Range; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; LABORATORY", "locations": "Ohio Range", "north": -84.786, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukhopadhyay, Sujoy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "uid": "p0010113", "west": -116.45}, {"awards": "1341680 Sletten, Ronald", "bounds_geometry": "POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77))", "dataset_titles": "Chemical and physical characterization of Beacon Valley and Victoria Valley permafrost cores", "datasets": [{"dataset_uid": "601247", "doi": "10.15784/601247", "keywords": "Aluminum-26; Antarctica; Be-10; Cosmogenic; Dry Valleys; Geochemistry; Permafrost", "people": "Sletten, Ronald S.", "repository": "USAP-DC", "science_program": null, "title": "Chemical and physical characterization of Beacon Valley and Victoria Valley permafrost cores", "url": "https://www.usap-dc.org/view/dataset/601247"}], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "Intellectual Merit: This project will yield new information on the long term Antarctic climate and landscape evolution from measurements of cosmogenic nuclides in quartz sand from two unique permafrost cores collected in Beacon Valley, Antarctica. The two cores have already been drilled in ice-cemented, sand-rich permafrost at 5.5 and 30.6 meters depth, and are currently in cold storage at the University of Washington. The cores are believed to record the monotonic accumulation of sand that has been blown into lower Beacon Valley and inflated the surface over time. The rate of accumulation and any hiatus in the accumulation are believed to reflect in part the advance and retreat of the Taylor Glacier. Preliminary measurements of cosmogenically-produced beryllium (10Be) and aluminum (26Al) in quartz sand in the 5.5 meter depth core reveal that it has been accreting at a rate of 2.5 meter/Myr for the past million years. Furthermore, prior to that time, lower Beacon Valley was most likely covered (shielded from the atmosphere thereby having no or very low production of cosmogenic nuclides in quartz) by Taylor Glacier from 1 to 3.5 Myr BP. These preliminary measurements also suggest that the 30.6 meter core may provide a record of over 10 million years. The emphasis is the full characterization of the core and analysis of cosmogenic nuclides (including cosmogenic neon) in the 30.6 meter permafrost core to develop a burial history of the sands and potentially a record the waxing and waning of the Taylor Glacier. This will allow new tests of our current understanding of surface dynamics and climate history in the McMurdo Dry Valleys (MDV) based on the dated stratigraphy of eolian sand that has been accumulating and inflating the surface for millions of years. This is a new process of surface inflation whose extent has not been well documented, and holds the potential to develop a continuous history of surface burial and glacial expansion. This project will provide a new proxy for understanding the climatic history of the Dry Valleys and will test models for the evolution of permafrost in Beacon Valley. Broader impacts: The landscape history of the McMurdo Dry Valleys is important because geological deposits there comprise the richest terrestrial record available from Antarctica. By testing the current age model for these deposits, we will improve understanding of Antarctica?s role in global climate change. This project will train one graduate and one undergraduate student in geochemistry, geochronology, and glacial and periglacial geology. They will participate substantively in the research and are expected to develop their own original ideas. Results from this work will be incorporated into undergraduate and graduate teaching curricula, will be published in the peer reviewed literature, and the data will be made public.", "east": 162.0, "geometry": "POINT(161 -77.5)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "USAP-DC; NOT APPLICABLE; BOREHOLES; Antarctica", "locations": "Antarctica", "north": -77.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Sletten, Ronald S.; Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ancient landscape-active Surfaces: Periglacial Hyperinflation in soils of Beacon Valley, Antarctica", "uid": "p0010068", "west": 160.0}, {"awards": "1341728 Stone, John", "bounds_geometry": "POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81))", "dataset_titles": "Cosmogenic nuclide data, Harter Nunatak; Cosmogenic nuclide data, John Nunatak; Cosmogenic nuclide data, Mt Axtell; Cosmogenic nuclide data, Mt Goodwin; Cosmogenic nuclide data, Mt Tidd; Cosmogenic nuclide data, Mt Turcotte; Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "datasets": [{"dataset_uid": "200076", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Tidd", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200080", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, John Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200079", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Harter Nunatak", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200075", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Axtell", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601214", "doi": "10.15784/601214", "keywords": "Aluminum-26; Antarctica; Be-10; Bedrock Core; Beryllium-10; Chemistry:rock; Chemistry:Rock; Cosmogenic; Cosmogenic Dating; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope Data; Pirrit Hills; Rocks; Solid Earth; Subglacial Bedrock", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Pirrit Hills subglacial bedrock core RB-2, cosmogenic Be-10, Al-26 data", "url": "https://www.usap-dc.org/view/dataset/601214"}, {"dataset_uid": "200078", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Goodwin", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "200077", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic nuclide data, Mt Turcotte", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Tue, 08 Oct 2019 00:00:00 GMT", "description": "Stone/1341728 This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past and if so, when did this occur. This topic is of interest to geologists who have long been studying the history and behavior of ice sheets (including the WAIS) in order to determine what climatic conditions allow an ice sheet to survive and what conditions have caused them to collapse in the past. The bulk of this research has focused on the last ice age, when climate conditions were far colder than the present; this project will focus on the response of ice sheets to warmer climates in the past. A new and potentially transformative approach that uses the analysis of atoms transformed by cosmic-rays in bedrock beneath the WAIS will allow a definitive test for ice free conditions in the past. This is because the cosmic rays capable of producing the necessary reactions can penetrate only a few meters through glacier ice. Therefore, if they are detected in samples from hundreds of meters below the current ice sheet surface this would provide definitive proof of mostly ice-free conditions in the past. The concentrations of different cosmic ray products in cores from different depths will help answer the question of how frequently bedrock has been exposed, how much the ice sheet has thinned, and which time periods in the past produced climatic conditions capable of making the ice sheet unstable. Short bedrock cores beneath the ice sheet near the Pirrit Hills in West Antarctica will be collected using a new agile sub-ice geological drill (capable of drilling up to 200 meters beneath the ice surface) that is being developed by the Ice Drilling Program Office (IDPO) to support this and other projects. Favorable drilling sites have already been identified based on prior reconnaissance mapping, sample analysis and radar surveys of the ice-sheet bed. The cores collected in this study will be analyzed for cosmic-ray-produced isotopes of different elements with a range of half-lives from 5700 yr (C-14) to 1.4 Myr (Be-10), as well as stable Ne-21. The presence or absence of these isotopes will provide a definitive test of whether bedrock surfaces were ice-free in the past and due to their different half-lives, ratios of the isotopes will place constraints on the age, frequency and duration of past exposure episodes. Results from bedrock surfaces at different depths will indicate the degree of past ice-sheet thinning. The aim is to tie evidence of deglaciation in the past to specific periods of warmer climate and thus to gauge the ice sheet\u0027s response to known climate conditions. This project addresses the broad question of ice-sheet sensitivity to climate warming, which previously has been largely determined indirectly from sea-level records. In contrast, this project will provide direct measurements that provide evidence of ice-sheet thinning in West Antarctica. Results from this work will help to identify the climatic factors and thresholds capable of endangering the WAIS in future. The project will make a significant contribution to the ongoing study of climate change, ice-sheet melting and associated sea-level rise. This project has field work in Antarctica.", "east": -85.0, "geometry": "POINT(-85.65 -81.15)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "DEPTH AT SPECIFIC AGES; USAP-DC; Antarctica; NOT APPLICABLE", "locations": "Antarctica", "north": -81.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -81.3, "title": "EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse", "uid": "p0010057", "west": -86.3}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements
|
1744771 |
2022-06-21 | Balco, Gregory | The purpose of this project is to use geological data that record past changes in the Antarctic ice sheets to test computer models for ice sheet change. The geologic data mainly consist of dated glacial deposits that are preserved above the level of the present ice sheet, and range in age from thousands to millions of years old. These provide information about the size, thickness, and rate of change of the ice sheets during past times when the ice sheets were larger than present. In addition, some of these data are from below the present ice surface and therefore also provide some information about past warm periods when ice sheets were most likely smaller than present. The primary purpose of the computer model is to predict future ice sheet changes, but because significant changes in the size of ice sheets are slow and likely occur over hundreds of years or longer, the only way to determine whether these models are accurate is to test their ability to reproduce past ice sheet changes. The primary purpose of this project is to carry out such a test. The research team will compile relevant geologic data, in some cases generate new data by dating additional deposits, and develop methods and software to compare data to model simulations. In addition, this project will (i) contribute to building and sustaining U.S. science capacity through postdoctoral training in geochronology, ice sheet modeling, and data science, and (ii) improve public access to geologic data and model simulations relevant to ice sheet change through online database and website development. Technical aspects of this project are primarily focused on the field of cosmogenic-nuclide exposure-dating, which is a method that relies on the production of rare stable and radio-nuclides by cosmic-ray interactions with rocks and minerals exposed at the Earth's surface. Because the advance and retreat of ice sheets results in alternating cosmic-ray exposure and shielding of underlying bedrock and surficial deposits, this technique is commonly used to date and reconstruct past ice sheet changes. First, this project will contribute to compiling and systematizing a large amount of cosmogenic-nuclide exposure age data collected in Antarctica during the past three decades. Second, it will generate additional geochemical data needed to improve the extent and usefulness of measurements of stable cosmogenic nuclides, cosmogenic neon-21 in particular, that are useful for constraining ice-sheet behavior on million-year timescales. Third, it will develop a computational framework for comparison of the geologic data set with existing numerical model simulations of Antarctic ice sheet change during the past several million years, with particular emphasis on model simulations of past warm periods, for example the middle Pliocene ca. 3-3.3 million years ago, during which the Antarctic ice sheets are hypothesized to have been substantially smaller than present. Fourth, guided by the results of this comparison, it will generate new model simulations aimed at improving agreement between model simulations and geologic data, as well as diagnosing which processes or parameterizations in the models are or are not well constrained by the data. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||||
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains
|
1445205 |
2021-07-16 | putkonen, jaakko; Balco, Gregory; Morgan, Daniel |
|
Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica. | POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2)) | POINT(157.7 -83.25) | false | false | |||||
Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier
|
1341658 |
2020-06-28 | Mukhopadhyay, Sujoy |
|
Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. The investigators propose to collect geochemical data from the Ohio Range and Scott Glacier to quantify past variability in the height of the WAIS. Limited available cosmogenic nuclide data are broadly consistent with a model indicating that Pliocene WAIS elevations and volumes were smaller than at present, and that WAIS collapse was common. The PIs will use geologic observations and cosmogenic nuclide concentrations from bedrock samples at multiple locations and at multiple elevations, including sub-ice samples, to constrain WAIS ice volume changes in a "dipstick" like fashion. Data obtained from the proposed research will provide targets for data-ice sheet model comparisons to accurately characterize Plio-Pleistocene and future WAIS behavior. As part of this project, the investigators will work with the Natural History Museum and the Earth & Planetary Science department at Harvard to develop an exhibit that will become part of the Museum's recently opened Earth and Planetary Science Gallery. The project involves mentoring of a female graduate student as well as an undergraduate student. | POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786)) | POINT(-116.415 -84.788) | false | false | |||||
Ancient landscape-active Surfaces: Periglacial Hyperinflation in soils of Beacon Valley, Antarctica
|
1341680 |
2019-11-21 | Sletten, Ronald S.; Stone, John |
|
Intellectual Merit: This project will yield new information on the long term Antarctic climate and landscape evolution from measurements of cosmogenic nuclides in quartz sand from two unique permafrost cores collected in Beacon Valley, Antarctica. The two cores have already been drilled in ice-cemented, sand-rich permafrost at 5.5 and 30.6 meters depth, and are currently in cold storage at the University of Washington. The cores are believed to record the monotonic accumulation of sand that has been blown into lower Beacon Valley and inflated the surface over time. The rate of accumulation and any hiatus in the accumulation are believed to reflect in part the advance and retreat of the Taylor Glacier. Preliminary measurements of cosmogenically-produced beryllium (10Be) and aluminum (26Al) in quartz sand in the 5.5 meter depth core reveal that it has been accreting at a rate of 2.5 meter/Myr for the past million years. Furthermore, prior to that time, lower Beacon Valley was most likely covered (shielded from the atmosphere thereby having no or very low production of cosmogenic nuclides in quartz) by Taylor Glacier from 1 to 3.5 Myr BP. These preliminary measurements also suggest that the 30.6 meter core may provide a record of over 10 million years. The emphasis is the full characterization of the core and analysis of cosmogenic nuclides (including cosmogenic neon) in the 30.6 meter permafrost core to develop a burial history of the sands and potentially a record the waxing and waning of the Taylor Glacier. This will allow new tests of our current understanding of surface dynamics and climate history in the McMurdo Dry Valleys (MDV) based on the dated stratigraphy of eolian sand that has been accumulating and inflating the surface for millions of years. This is a new process of surface inflation whose extent has not been well documented, and holds the potential to develop a continuous history of surface burial and glacial expansion. This project will provide a new proxy for understanding the climatic history of the Dry Valleys and will test models for the evolution of permafrost in Beacon Valley. Broader impacts: The landscape history of the McMurdo Dry Valleys is important because geological deposits there comprise the richest terrestrial record available from Antarctica. By testing the current age model for these deposits, we will improve understanding of Antarctica?s role in global climate change. This project will train one graduate and one undergraduate student in geochemistry, geochronology, and glacial and periglacial geology. They will participate substantively in the research and are expected to develop their own original ideas. Results from this work will be incorporated into undergraduate and graduate teaching curricula, will be published in the peer reviewed literature, and the data will be made public. | POLYGON((160 -77,160.2 -77,160.4 -77,160.6 -77,160.8 -77,161 -77,161.2 -77,161.4 -77,161.6 -77,161.8 -77,162 -77,162 -77.1,162 -77.2,162 -77.3,162 -77.4,162 -77.5,162 -77.6,162 -77.7,162 -77.8,162 -77.9,162 -78,161.8 -78,161.6 -78,161.4 -78,161.2 -78,161 -78,160.8 -78,160.6 -78,160.4 -78,160.2 -78,160 -78,160 -77.9,160 -77.8,160 -77.7,160 -77.6,160 -77.5,160 -77.4,160 -77.3,160 -77.2,160 -77.1,160 -77)) | POINT(161 -77.5) | false | false | |||||
EXPROBE-WAIS: Exposed Rock Beneath the West Antarctic Ice Sheet, A Test for Interglacial Ice Sheet Collapse
|
1341728 |
2019-10-08 | Stone, John | Stone/1341728 This award supports a project to determine if the West Antarctic Ice Sheet (WAIS) has thinned and collapsed in the past and if so, when did this occur. This topic is of interest to geologists who have long been studying the history and behavior of ice sheets (including the WAIS) in order to determine what climatic conditions allow an ice sheet to survive and what conditions have caused them to collapse in the past. The bulk of this research has focused on the last ice age, when climate conditions were far colder than the present; this project will focus on the response of ice sheets to warmer climates in the past. A new and potentially transformative approach that uses the analysis of atoms transformed by cosmic-rays in bedrock beneath the WAIS will allow a definitive test for ice free conditions in the past. This is because the cosmic rays capable of producing the necessary reactions can penetrate only a few meters through glacier ice. Therefore, if they are detected in samples from hundreds of meters below the current ice sheet surface this would provide definitive proof of mostly ice-free conditions in the past. The concentrations of different cosmic ray products in cores from different depths will help answer the question of how frequently bedrock has been exposed, how much the ice sheet has thinned, and which time periods in the past produced climatic conditions capable of making the ice sheet unstable. Short bedrock cores beneath the ice sheet near the Pirrit Hills in West Antarctica will be collected using a new agile sub-ice geological drill (capable of drilling up to 200 meters beneath the ice surface) that is being developed by the Ice Drilling Program Office (IDPO) to support this and other projects. Favorable drilling sites have already been identified based on prior reconnaissance mapping, sample analysis and radar surveys of the ice-sheet bed. The cores collected in this study will be analyzed for cosmic-ray-produced isotopes of different elements with a range of half-lives from 5700 yr (C-14) to 1.4 Myr (Be-10), as well as stable Ne-21. The presence or absence of these isotopes will provide a definitive test of whether bedrock surfaces were ice-free in the past and due to their different half-lives, ratios of the isotopes will place constraints on the age, frequency and duration of past exposure episodes. Results from bedrock surfaces at different depths will indicate the degree of past ice-sheet thinning. The aim is to tie evidence of deglaciation in the past to specific periods of warmer climate and thus to gauge the ice sheet's response to known climate conditions. This project addresses the broad question of ice-sheet sensitivity to climate warming, which previously has been largely determined indirectly from sea-level records. In contrast, this project will provide direct measurements that provide evidence of ice-sheet thinning in West Antarctica. Results from this work will help to identify the climatic factors and thresholds capable of endangering the WAIS in future. The project will make a significant contribution to the ongoing study of climate change, ice-sheet melting and associated sea-level rise. This project has field work in Antarctica. | POLYGON((-86.3 -81,-86.17 -81,-86.04 -81,-85.91 -81,-85.78 -81,-85.65 -81,-85.52 -81,-85.39 -81,-85.26 -81,-85.13 -81,-85 -81,-85 -81.03,-85 -81.06,-85 -81.09,-85 -81.12,-85 -81.15,-85 -81.18,-85 -81.21,-85 -81.24,-85 -81.27,-85 -81.3,-85.13 -81.3,-85.26 -81.3,-85.39 -81.3,-85.52 -81.3,-85.65 -81.3,-85.78 -81.3,-85.91 -81.3,-86.04 -81.3,-86.17 -81.3,-86.3 -81.3,-86.3 -81.27,-86.3 -81.24,-86.3 -81.21,-86.3 -81.18,-86.3 -81.15,-86.3 -81.12,-86.3 -81.09,-86.3 -81.06,-86.3 -81.03,-86.3 -81)) | POINT(-85.65 -81.15) | false | false | ||||||
Collaborative Research: Late Quaternary History of Reedy Glacier
|
0229314 |
2015-03-30 | Stone, John |
|
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet. | None | None | false | false |