{"dp_type": "Dataset", "free_text": "Wilkins Ice Shelf"}
[{"awards": "1745116 Scambos, Ted", "bounds_geometry": ["POLYGON((-73 -70.5,-72.35 -70.5,-71.7 -70.5,-71.05 -70.5,-70.4 -70.5,-69.75 -70.5,-69.1 -70.5,-68.45 -70.5,-67.8 -70.5,-67.15 -70.5,-66.5 -70.5,-66.5 -70.8,-66.5 -71.1,-66.5 -71.4,-66.5 -71.7,-66.5 -72,-66.5 -72.3,-66.5 -72.6,-66.5 -72.9,-66.5 -73.2,-66.5 -73.5,-67.15 -73.5,-67.8 -73.5,-68.45 -73.5,-69.1 -73.5,-69.75 -73.5,-70.4 -73.5,-71.05 -73.5,-71.7 -73.5,-72.35 -73.5,-73 -73.5,-73 -73.2,-73 -72.9,-73 -72.6,-73 -72.3,-73 -72,-73 -71.7,-73 -71.4,-73 -71.1,-73 -70.8,-73 -70.5))"], "date_created": "Mon, 24 Feb 2025 00:00:00 GMT", "description": "Data were collected from two sites, one on the southern Wilkins and another on the southern George VI ice shelves. Both sites were investigated as potential sites of perennial firn aquifers; in the case of the southern Wilkins, an extensive firn aquifer was found (Montgomery et al., 2020). Data sources come from two early-model AMIGOS stations (Scambos et al., 2013), ice cores that were collected by hot-ring coring (Montgomery et al., 2020), and ground-penetrating radar profiles. Thermistor data from several depths within the firn core boreholes, transmitted by the AMIGOS stations, show the progression of the seasonal variations in firn temperature at the sites. Radar data show the depth of the firn aquifer (or, its absence at George VI site), and some drainage effects at a nearby rift at the Wilkins site.", "east": -66.5, "geometry": ["POINT(-69.75 -72)"], "keywords": "AMIGOS; Antarctica; Cryosphere; George VI Ice Shelf; Glaciology; Ground Penetrating Radar; Ice Core Data; Ice Shelf; Wilkins Ice Shelf", "locations": "Wilkins Ice Shelf; Antarctica", "north": -70.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Miller, Julie; Miege, Clement; Montgomery, Lynn; Wallin, Bruce", "project_titles": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences", "projects": [{"proj_uid": "p0010126", "repository": "USAP-DC", "title": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.5, "title": "Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019", "uid": "601905", "west": -73.0}, {"awards": "1745116 Scambos, Ted", "bounds_geometry": ["POLYGON((-72 -70.75,-71.95 -70.75,-71.9 -70.75,-71.85 -70.75,-71.8 -70.75,-71.75 -70.75,-71.7 -70.75,-71.65 -70.75,-71.6 -70.75,-71.55 -70.75,-71.5 -70.75,-71.5 -70.775,-71.5 -70.8,-71.5 -70.825,-71.5 -70.85,-71.5 -70.875,-71.5 -70.9,-71.5 -70.925,-71.5 -70.95,-71.5 -70.975,-71.5 -71,-71.55 -71,-71.6 -71,-71.65 -71,-71.7 -71,-71.75 -71,-71.8 -71,-71.85 -71,-71.9 -71,-71.95 -71,-72 -71,-72 -70.975,-72 -70.95,-72 -70.925,-72 -70.9,-72 -70.875,-72 -70.85,-72 -70.825,-72 -70.8,-72 -70.775,-72 -70.75))"], "date_created": "Wed, 21 Oct 2020 00:00:00 GMT", "description": "This dataset compiles a suite of glaciology (density, stratigraphy), hydrology (slug and dilution tests) and geophysical measurements (GPS, GPR, ApRES) to characterize a firn aquifer observed within the Wilkins Ice Shelf, Antarctica.", "east": -71.5, "geometry": ["POINT(-71.75 -70.875)"], "keywords": "Airborne Radar; Antarctica; Antarctic Peninsula; Firn; Firn Aquifer; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hydrology; Snow/ice; Snow/Ice; Wilkins Ice Shelf", "locations": "Wilkins Ice Shelf; Antarctica; Antarctic Peninsula; Wilkins Ice Shelf", "north": -70.75, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Mi\u00e8ge, Cl\u00e9ment; Montgomery, Lynn; Miller, Julie; Scambos, Ted; Wallin, Bruce; Miller, Olivia; Solomon, Kip; Forster, Richard; Koenig, Lora", "project_titles": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences", "projects": [{"proj_uid": "p0010126", "repository": "USAP-DC", "title": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.0, "title": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer", "uid": "601390", "west": -72.0}, {"awards": "0840375 Costa, Daniel", "bounds_geometry": ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Long-lived animals such as elephant seals may endure variation in food resources over large spatial and temporal scales. Understanding how they respond to these fluctuations requires knowledge of how their foraging behavior and habitat utilization varies over time. Advances in satellite-linked data logging have made it possible to correlate the foraging behavior of marine mammals with their physical and chemical environment and provide insight into the mechanisms controlling at-sea movements, foraging behavior and, ultimately, reproductive success of these pelagic predators. In addition, these technological advances enable marine mammals to be used as highly cost-effective platforms from which detailed oceanographic data can be collected on a scale not possible with conventional methods. The project will extend the four-year-time-series collected on the foraging behavior and habitat utilization of southern elephant seal (Mirounga leonina) foraging in the Western Antarctic Peninsula. It also will extend the oceanographic time-series of CTD profiles collected by the elephant seals foraging from the Livingston Island rookery. Seals have been collecting CTD profiles in the vicinity of the Wilkins Ice Shelf (WIS) since 2005. We thus have a 4 year data set that preceding and during the breakup of the WIS that occurred during March 2008. Deployment of additional tags on seals will provide a unique opportunity to collect oceanographic data after the ice shelf has collapsed.", "east": -54.0, "geometry": ["POINT(-59 -62)"], "keywords": "Biota; CTD Data; Oceans; Physical Oceanography; Seals; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Goebel, Michael; Costa, Daniel", "project_titles": "SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf", "projects": [{"proj_uid": "p0000158", "repository": "USAP-DC", "title": "SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf", "uid": "600108", "west": -64.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Weather, Firn Core, and Ground-penetrating radar data from southern Wilkins and George VI ice shelves, 2018-2019
|
1745116 |
2025-02-24 | Scambos, Ted; Miller, Julie; Miege, Clement; Montgomery, Lynn; Wallin, Bruce |
Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences |
Data were collected from two sites, one on the southern Wilkins and another on the southern George VI ice shelves. Both sites were investigated as potential sites of perennial firn aquifers; in the case of the southern Wilkins, an extensive firn aquifer was found (Montgomery et al., 2020). Data sources come from two early-model AMIGOS stations (Scambos et al., 2013), ice cores that were collected by hot-ring coring (Montgomery et al., 2020), and ground-penetrating radar profiles. Thermistor data from several depths within the firn core boreholes, transmitted by the AMIGOS stations, show the progression of the seasonal variations in firn temperature at the sites. Radar data show the depth of the firn aquifer (or, its absence at George VI site), and some drainage effects at a nearby rift at the Wilkins site. | ["POLYGON((-73 -70.5,-72.35 -70.5,-71.7 -70.5,-71.05 -70.5,-70.4 -70.5,-69.75 -70.5,-69.1 -70.5,-68.45 -70.5,-67.8 -70.5,-67.15 -70.5,-66.5 -70.5,-66.5 -70.8,-66.5 -71.1,-66.5 -71.4,-66.5 -71.7,-66.5 -72,-66.5 -72.3,-66.5 -72.6,-66.5 -72.9,-66.5 -73.2,-66.5 -73.5,-67.15 -73.5,-67.8 -73.5,-68.45 -73.5,-69.1 -73.5,-69.75 -73.5,-70.4 -73.5,-71.05 -73.5,-71.7 -73.5,-72.35 -73.5,-73 -73.5,-73 -73.2,-73 -72.9,-73 -72.6,-73 -72.3,-73 -72,-73 -71.7,-73 -71.4,-73 -71.1,-73 -70.8,-73 -70.5))"] | ["POINT(-69.75 -72)"] | false | false |
Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer
|
1745116 |
2020-10-21 | Miège, Clément; Montgomery, Lynn; Miller, Julie; Scambos, Ted; Wallin, Bruce; Miller, Olivia; Solomon, Kip; Forster, Richard; Koenig, Lora |
Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences |
This dataset compiles a suite of glaciology (density, stratigraphy), hydrology (slug and dilution tests) and geophysical measurements (GPS, GPR, ApRES) to characterize a firn aquifer observed within the Wilkins Ice Shelf, Antarctica. | ["POLYGON((-72 -70.75,-71.95 -70.75,-71.9 -70.75,-71.85 -70.75,-71.8 -70.75,-71.75 -70.75,-71.7 -70.75,-71.65 -70.75,-71.6 -70.75,-71.55 -70.75,-71.5 -70.75,-71.5 -70.775,-71.5 -70.8,-71.5 -70.825,-71.5 -70.85,-71.5 -70.875,-71.5 -70.9,-71.5 -70.925,-71.5 -70.95,-71.5 -70.975,-71.5 -71,-71.55 -71,-71.6 -71,-71.65 -71,-71.7 -71,-71.75 -71,-71.8 -71,-71.85 -71,-71.9 -71,-71.95 -71,-72 -71,-72 -70.975,-72 -70.95,-72 -70.925,-72 -70.9,-72 -70.875,-72 -70.85,-72 -70.825,-72 -70.8,-72 -70.775,-72 -70.75))"] | ["POINT(-71.75 -70.875)"] | false | false |
SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf
|
0840375 |
2010-01-01 | Goebel, Michael; Costa, Daniel |
SGER: Foraging Patterns of Elephant Seals in the Vicinity of the WIlkins Ice Shelf |
Long-lived animals such as elephant seals may endure variation in food resources over large spatial and temporal scales. Understanding how they respond to these fluctuations requires knowledge of how their foraging behavior and habitat utilization varies over time. Advances in satellite-linked data logging have made it possible to correlate the foraging behavior of marine mammals with their physical and chemical environment and provide insight into the mechanisms controlling at-sea movements, foraging behavior and, ultimately, reproductive success of these pelagic predators. In addition, these technological advances enable marine mammals to be used as highly cost-effective platforms from which detailed oceanographic data can be collected on a scale not possible with conventional methods. The project will extend the four-year-time-series collected on the foraging behavior and habitat utilization of southern elephant seal (Mirounga leonina) foraging in the Western Antarctic Peninsula. It also will extend the oceanographic time-series of CTD profiles collected by the elephant seals foraging from the Livingston Island rookery. Seals have been collecting CTD profiles in the vicinity of the Wilkins Ice Shelf (WIS) since 2005. We thus have a 4 year data set that preceding and during the breakup of the WIS that occurred during March 2008. Deployment of additional tags on seals will provide a unique opportunity to collect oceanographic data after the ice shelf has collapsed. | ["POLYGON((-64 -60,-63 -60,-62 -60,-61 -60,-60 -60,-59 -60,-58 -60,-57 -60,-56 -60,-55 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-55 -64,-56 -64,-57 -64,-58 -64,-59 -64,-60 -64,-61 -64,-62 -64,-63 -64,-64 -64,-64 -63.6,-64 -63.2,-64 -62.8,-64 -62.4,-64 -62,-64 -61.6,-64 -61.2,-64 -60.8,-64 -60.4,-64 -60))"] | ["POINT(-59 -62)"] | false | false |