{"dp_type": "Dataset", "free_text": "Trawl"}
[{"awards": "2011285 Santora, Jarrod", "bounds_geometry": ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"], "date_created": "Tue, 28 May 2024 00:00:00 GMT", "description": "Winter survey data from the Antarctic Peninsula (including hydrography, zooplankton, and top predators) conducted from the R/V Nathaniel B. Palmer during the austral winter (August-September) of 2012-2016. Survey stations were selected from the U.S. Antarctic Marine Living Resources Program\u0027s standard grid, approximately 15-20 nm apart covering the region 60\u00b0 to 64\u00b0 S and 54\u00b0 to 63\u00b0 W. At each station, hydrography and chlorophyll measurements were collected with CTD profilers and Niskin bottles, and macrozooplankton samples were collected using an Isaacs-Kidd Midwater Trawl. Between stations, observers recorded abundance and behavior of top predators (seabirds and marine mammals).", "east": -54.0, "geometry": ["POINT(-58.5 -62)"], "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Cryosphere; Pack Ice; Polynya; Seabirds; Sea Ice; Winter; Zooplankton", "locations": "Antarctic Peninsula; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Santora, Jarrod; Reiss, Christian; Dietrich, Kim; Czapanskiy, Max", "project_titles": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter", "projects": [{"proj_uid": "p0010382", "repository": "USAP-DC", "title": "Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Winter marine communities of the Antarctic Peninsula", "uid": "601795", "west": -63.0}, {"awards": "1443585 Polito, Michael; 1826712 McMahon, Kelton; 1443424 McMahon, Kelton; 1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"], "date_created": "Fri, 13 Sep 2019 00:00:00 GMT", "description": "This data set contains measurements of carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values of whole-body Antarctic krill (Euphausia superba) collected from trawl surveys of waters surrounding the South Shetland Islands and the northern Antarctic Peninsula during the 2006-07 and 2008-90 Austral summers. Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer. Individual krill were lipid-extracted prior to analyses. The data set also includes latitude, longitude, month, and year of sample collection, standard length of the krill to the nearest mm, age class, sex, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Polito et al., 2013 and Polito et al., 2019.", "east": -54.0, "geometry": ["POINT(-58.5 -62)"], "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "locations": "Antarctic Peninsula; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "uid": "601210", "west": -63.0}, {"awards": "1245766 Waller, Rhian", "bounds_geometry": ["POLYGON((-66.5 -63,-65.95 -63,-65.4 -63,-64.85 -63,-64.3 -63,-63.75 -63,-63.2 -63,-62.65 -63,-62.1 -63,-61.55 -63,-61 -63,-61 -63.63,-61 -64.26,-61 -64.89,-61 -65.52,-61 -66.15,-61 -66.78,-61 -67.41,-61 -68.04,-61 -68.67,-61 -69.3,-61.55 -69.3,-62.1 -69.3,-62.65 -69.3,-63.2 -69.3,-63.75 -69.3,-64.3 -69.3,-64.85 -69.3,-65.4 -69.3,-65.95 -69.3,-66.5 -69.3,-66.5 -68.67,-66.5 -68.04,-66.5 -67.41,-66.5 -66.78,-66.5 -66.15,-66.5 -65.52,-66.5 -64.89,-66.5 -64.26,-66.5 -63.63,-66.5 -63))"], "date_created": "Thu, 07 Mar 2019 00:00:00 GMT", "description": "Station location information of trawl and CTD stations used for collecting coral samples and water for incubation during expedition NBP1509 in 2015 near the Antarctic Peninsula.", "east": -61.0, "geometry": ["POINT(-63.75 -66.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Corals; CTD; LMG1509; Oceans; Otter Trawl; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Sample Location; Southern Ocean", "locations": "Southern Ocean; Antarctic Peninsula; Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Waller, Rhian", "project_titles": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress", "projects": [{"proj_uid": "p0010017", "repository": "USAP-DC", "title": "Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.3, "title": "Log Sheets of coral samples for LMG1509", "uid": "601160", "west": -66.5}, {"awards": "1019305 Grim, Jeffrey", "bounds_geometry": null, "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development.", "east": null, "geometry": null, "keywords": "Biota; Fish Logs; LMG1203; LMG1204; LMG1205; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": null, "persons": "Grim, Jeffrey", "project_titles": "PostDoctoral Research Fellowship", "projects": [{"proj_uid": "p0000482", "repository": "USAP-DC", "title": "PostDoctoral Research Fellowship"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes", "uid": "600119", "west": null}, {"awards": "0741301 O\u0027Brien, Kristin", "bounds_geometry": ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. \nThis collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education.\n", "east": -62.44, "geometry": ["POINT(-63.445 -63.695)"], "keywords": "Biota; Oceans; Pot; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -63.29, "nsf_funding_programs": null, "persons": "O\u0027Brien, Kristin", "project_titles": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000483", "repository": "USAP-DC", "title": "Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.1, "title": "Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes", "uid": "600084", "west": -64.45}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Winter marine communities of the Antarctic Peninsula
|
2011285 |
2024-05-28 | Santora, Jarrod; Reiss, Christian; Dietrich, Kim; Czapanskiy, Max |
Collaborative Research: Climate, Changing Abundance and Species Interactions of Marine Birds and Mammals at South Georgia in Winter |
Winter survey data from the Antarctic Peninsula (including hydrography, zooplankton, and top predators) conducted from the R/V Nathaniel B. Palmer during the austral winter (August-September) of 2012-2016. Survey stations were selected from the U.S. Antarctic Marine Living Resources Program's standard grid, approximately 15-20 nm apart covering the region 60° to 64° S and 54° to 63° W. At each station, hydrography and chlorophyll measurements were collected with CTD profilers and Niskin bottles, and macrozooplankton samples were collected using an Isaacs-Kidd Midwater Trawl. Between stations, observers recorded abundance and behavior of top predators (seabirds and marine mammals). | ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"] | ["POINT(-58.5 -62)"] | false | false |
Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009
|
1443585 1826712 1443424 1443386 |
2019-09-13 | Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope values of whole-body Antarctic krill (Euphausia superba) collected from trawl surveys of waters surrounding the South Shetland Islands and the northern Antarctic Peninsula during the 2006-07 and 2008-90 Austral summers. Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer. Individual krill were lipid-extracted prior to analyses. The data set also includes latitude, longitude, month, and year of sample collection, standard length of the krill to the nearest mm, age class, sex, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Polito et al., 2013 and Polito et al., 2019. | ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"] | ["POINT(-58.5 -62)"] | false | false |
Log Sheets of coral samples for LMG1509
|
1245766 |
2019-03-07 | Waller, Rhian |
Cold Corals in Hot Water - Investigating the Physiological Responses of Antarctic Coral Larvae to Climate change Stress |
Station location information of trawl and CTD stations used for collecting coral samples and water for incubation during expedition NBP1509 in 2015 near the Antarctic Peninsula. | ["POLYGON((-66.5 -63,-65.95 -63,-65.4 -63,-64.85 -63,-64.3 -63,-63.75 -63,-63.2 -63,-62.65 -63,-62.1 -63,-61.55 -63,-61 -63,-61 -63.63,-61 -64.26,-61 -64.89,-61 -65.52,-61 -66.15,-61 -66.78,-61 -67.41,-61 -68.04,-61 -68.67,-61 -69.3,-61.55 -69.3,-62.1 -69.3,-62.65 -69.3,-63.2 -69.3,-63.75 -69.3,-64.3 -69.3,-64.85 -69.3,-65.4 -69.3,-65.95 -69.3,-66.5 -69.3,-66.5 -68.67,-66.5 -68.04,-66.5 -67.41,-66.5 -66.78,-66.5 -66.15,-66.5 -65.52,-66.5 -64.89,-66.5 -64.26,-66.5 -63.63,-66.5 -63))"] | ["POINT(-63.75 -66.15)"] | false | false |
Impact of Rising Oceanic Temperatures on the Embryonic Development of Antarctic Notothenioid Fishes
|
1019305 |
2014-01-01 | Grim, Jeffrey |
PostDoctoral Research Fellowship |
Survival of Antarctic notothenioid fishes in the context of global climate change will depend upon the impact of rising oceanic temperatures on their embryonic development, yet little is known regarding the molecular mechanisms underlying this complex suite of processes. Many notothenioids are characterized by secondary pelagicism, which enables them to exploit food sources in the water column and is supported in part by skeletal pedomorphism. Here the PI proposes to examine the hypothesis that reactive oxygen species (ROS) regulate notothenioid skeletal pedomorphism. The research objectives are : 1) To quantify and localize ROS production and identify the point(s) of origin of ROS production in embryonic Antarctic fishes that differ in skeletal phenotypes 2) To determine whether the time course of embryogenesis and the extent of osteological development in embryonic Antarctic fishes can be altered by changing the oxidative status of the animal during embryogenesis 3) To evaluate whether transgenic alteration of oxidative status can induce skeletal pedomorphism in a fish model. Broader Impacts will include teaching undergraduate lectures, recruiting undergraduate students to help with lab analyses (and possibly field work), lectures and demonstrations to high school students, and allowing secondary educators access to personal photos and videos of research animals for curriculum development. | [] | [] | false | false |
Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes
|
0741301 |
2013-01-01 | O'Brien, Kristin |
Collaborative Research: Linkages among Mitochondrial Form, Function and Thermal Tolerance of Antarctic Notothenioid Fishes |
Antarctic notothenioid fishes have evolved in the Southern Ocean for 10-14 MY under an unusual set of circumstances. Their characteristics include the complete absence of the circulating oxygen-binding protein, hemoglobin (Hb) within the Channichthyid (Icefish) family of notothenioids. Moreover, some species within the 16 members of this family have also lost the ability to express the oxygen-binding and storage protein, myoglobin (Mb) in cardiac muscle. Our previous work has determined that the loss of Hb and/or Mb is correlated with significant increases in densities of mitochondria within oxidative tissues, and extensive remodeling of these vital organelles. To date, nothing is known about how modifications in mitochondrial architecture of icefishes affect organelle function, or more importantly, how they affect organismal-level physiology. Most critical for Antarctic fishes is that mitochondrial characteristics have been linked to how well ectotherms can withstand increases in temperature. This collaborative research project will address the hypothesis that the unusual mitochondrial architecture of Antarctic Channichthyids has led to changes in function that impact their ability to withstand elevations in temperature. Specifically, the research will (1) determine if the unusual mitochondrial architecture of icefishes affects function and contributes to organismal thermal sensitivity, (2) identify differences in organismal thermal tolerance between red- and white- blooded notothenioids, (3) identify molecular mechanisms regulating changes in mitochondrial structure in icefishes. The results may establish channichthyid icefishes as a sentinel taxon for signaling the impact of global warming on the Southern Ocean. Broad impacts of this project will be realized by participation of high school biology teachers in field work through cooperation with the ARMADA project at the University of Rhode Island, as well as graduate education. | ["POLYGON((-64.45 -63.29,-64.249 -63.29,-64.048 -63.29,-63.847 -63.29,-63.646 -63.29,-63.445 -63.29,-63.244 -63.29,-63.043 -63.29,-62.842 -63.29,-62.641 -63.29,-62.44 -63.29,-62.44 -63.371,-62.44 -63.452,-62.44 -63.533,-62.44 -63.614,-62.44 -63.695,-62.44 -63.776,-62.44 -63.857,-62.44 -63.938,-62.44 -64.019,-62.44 -64.1,-62.641 -64.1,-62.842 -64.1,-63.043 -64.1,-63.244 -64.1,-63.445 -64.1,-63.646 -64.1,-63.847 -64.1,-64.048 -64.1,-64.249 -64.1,-64.45 -64.1,-64.45 -64.019,-64.45 -63.938,-64.45 -63.857,-64.45 -63.776,-64.45 -63.695,-64.45 -63.614,-64.45 -63.533,-64.45 -63.452,-64.45 -63.371,-64.45 -63.29))"] | ["POINT(-63.445 -63.695)"] | false | false |
Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis
|
0437887 |
2009-01-01 | Sidell, Bruce |
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. |
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |