{"dp_type": "Dataset", "free_text": "Spectroscopy"}
[{"awards": "2019719 Brook, Edward; 1841844 Steig, Eric", "bounds_geometry": null, "date_created": "Wed, 25 Jan 2023 00:00:00 GMT", "description": "This data set contains replicate measurements of D17O from a 92-m deep section of core at Summit, Greenland and other operational data necessary to reconstruct figures presented in Davidge et al., 2022. Details of the entire dataset and a description of the relevant methods can be found in Davidge et al., 2022. The names of each sheet indicate the corresponding figure numbers. The D17O record spans about two years of accumulation. Discrete measurements by laser spectroscopy are provided at 1.4-cm resolution. For the purpose of method development, continuous-flow measurements are provided with nine replicates and are averaged to multiple depth resolutions as described in Davidge et al., 2022.", "east": null, "geometry": null, "keywords": "Antarctica; Continuous Flow; Glaciology; Greenland; Ice Core Data; Laser Spectroscopy; Oxygen Isotope; Triple Oxygen Isotopes", "locations": "Greenland; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Davidge, Lindsey", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": null, "title": "Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland", "uid": "601659", "west": null}, {"awards": "1744954 Lubin, Dan", "bounds_geometry": ["POINT(-148.81 -81.65)"], "date_created": "Fri, 18 Mar 2022 00:00:00 GMT", "description": "This data set comprises radiative and turbulent flux components of the surface energy balance at Siple Dome, West Antarctica, measured between 21 December 2019 and 19 January 2020. Radiative fluxes were measured by Kipp \u0026 Zonen pyranometers and pyrgeometers. A Campbell Scientific open path eddy covariance system measured sensible and latent heat fluxes. An Apogee infrared sensor measured surface skin temperature. Sky conditions were observed using an ALCOR System digital all-sky camera. A StellarNet shortwave spectroradiometer system measured downwelling spectral irradiance in the wavelength range 350-1700 nm.", "east": -148.81, "geometry": ["POINT(-148.81 -81.65)"], "keywords": "Antarctica; Siple Dome; Spectroscopy", "locations": "Siple Dome; Antarctica", "north": -81.65, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Lubin, Dan; Ghiz, Madison", "project_titles": "Surface Energy Balance on West Antarctica and the Ross Ice Shelf", "projects": [{"proj_uid": "p0010296", "repository": "USAP-DC", "title": "Surface Energy Balance on West Antarctica and the Ross Ice Shelf"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -81.65, "title": "Siple Dome Surface Energy Flux", "uid": "601540", "west": -148.81}, {"awards": "1644013 Gaetani, Glenn", "bounds_geometry": ["POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))"], "date_created": "Wed, 12 Jan 2022 00:00:00 GMT", "description": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "east": 169.6, "geometry": ["POINT(166.85 -77.775)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Melt Inclusions; Raman Spectroscopy; Ross Island; Vapor Bubbles; Volcanic", "locations": "Ross Island; Antarctica", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Gaetani, Glenn", "project_titles": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion", "projects": [{"proj_uid": "p0010081", "repository": "USAP-DC", "title": "Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.45, "title": "G170 Raman Spectroscopy \u0026 Tomography Volumes of Melt Inclusions and Vapor Bubbles", "uid": "601508", "west": 164.1}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Mon, 27 Jul 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). \r\n", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Isotope; WAIS Divide; WAIS Divide Ice Core; West Antarctic Ice Sheet", "locations": "WAIS Divide; West Antarctic Ice Sheet; Antarctica", "north": -79.481, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology", "persons": "Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Resampling of Deep Polar Ice Cores using Information Theory", "uid": "601365", "west": -112.1115}, {"awards": "1807522 Jones, Tyler", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Tue, 26 May 2020 00:00:00 GMT", "description": "The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory.", "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Delta 18O; Delta Deuterium; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Snow/ice; Snow/Ice; WAIS Divide Ice Core; Water Isotopes; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica", "north": -79.481, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James", "project_titles": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory", "projects": [{"proj_uid": "p0010100", "repository": "USAP-DC", "title": "Collaborative Research: Targeted resampling of deep polar ice cores using information theory"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core", "uid": "601326", "west": -112.1115}, {"awards": "1644073 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-180 -72.45,-179.354 -72.45,-178.708 -72.45,-178.062 -72.45,-177.416 -72.45,-176.77 -72.45,-176.124 -72.45,-175.478 -72.45,-174.832 -72.45,-174.186 -72.45,-173.54 -72.45,-173.54 -73.068,-173.54 -73.686,-173.54 -74.304,-173.54 -74.922,-173.54 -75.54,-173.54 -76.158,-173.54 -76.776,-173.54 -77.394,-173.54 -78.012,-173.54 -78.63,-174.186 -78.63,-174.832 -78.63,-175.478 -78.63,-176.124 -78.63,-176.77 -78.63,-177.416 -78.63,-178.062 -78.63,-178.708 -78.63,-179.354 -78.63,180 -78.63,179.818 -78.63,179.636 -78.63,179.454 -78.63,179.272 -78.63,179.09 -78.63,178.908 -78.63,178.726 -78.63,178.544 -78.63,178.362 -78.63,178.18 -78.63,178.18 -78.012,178.18 -77.394,178.18 -76.776,178.18 -76.158,178.18 -75.54,178.18 -74.922,178.18 -74.304,178.18 -73.686,178.18 -73.068,178.18 -72.45,178.362 -72.45,178.544 -72.45,178.726 -72.45,178.908 -72.45,179.09 -72.45,179.272 -72.45,179.454 -72.45,179.636 -72.45,179.818 -72.45,-180 -72.45))"], "date_created": "Wed, 13 Nov 2019 00:00:00 GMT", "description": "Biogenic silica concentrations collected from CTD casts during RVIB Nathaniel B. Palmer cruise in the Ross Sea, Southern Ocean from December 2017-February 2018", "east": -173.54, "geometry": ["POINT(-177.68 -75.54)"], "keywords": "Antarctica; Biogenic Silica; Biogenic Silica Concentrations; Chemistry:Water; Geochemistry; NBP1801; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Sea Water; Southern Ocean; Spectroscopy; Water Measurements; Water Samples", "locations": "Ross Sea; Southern Ocean; Antarctica", "north": -72.45, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ditullio, Giacomo; Schanke, Nicole", "project_titles": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay", "projects": [{"proj_uid": "p0010045", "repository": "USAP-DC", "title": "Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.63, "title": "Biogenic silica concentrations from the Ross Sea", "uid": "601225", "west": 178.18}, {"awards": "1758224 Salvatore, Mark", "bounds_geometry": ["POLYGON((-180 -83,-177 -83,-174 -83,-171 -83,-168 -83,-165 -83,-162 -83,-159 -83,-156 -83,-153 -83,-150 -83,-150 -83.5,-150 -84,-150 -84.5,-150 -85,-150 -85.5,-150 -86,-150 -86.5,-150 -87,-150 -87.5,-150 -88,-153 -88,-156 -88,-159 -88,-162 -88,-165 -88,-168 -88,-171 -88,-174 -88,-177 -88,180 -88,177 -88,174 -88,171 -88,168 -88,165 -88,162 -88,159 -88,156 -88,153 -88,150 -88,150 -87.5,150 -87,150 -86.5,150 -86,150 -85.5,150 -85,150 -84.5,150 -84,150 -83.5,150 -83,153 -83,156 -83,159 -83,162 -83,165 -83,168 -83,171 -83,174 -83,177 -83,-180 -83))"], "date_created": "Fri, 15 Mar 2019 00:00:00 GMT", "description": "This data set contains reflectance spectra (350 - 2500 nm) of a range of rocks and sediments from the Central Transantarctic Mountains. Data were acquired using an Analytical Spectral Devices (ASD) FieldSpec4 high-resolution spectrometer under illumination with a high-output halogen bulb, with illumination and observation angles fixed at 0 and 30 degrees off-nadir, respectively. Data were acquired for the purposes of validation and \u0027ground truthing\u0027 of orbital multispectral data.", "east": -150.0, "geometry": ["POINT(180 -85.5)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Remote Sensing; Rocks; Solid Earth; Spectroscopy; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -83.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Salvatore, Mark", "project_titles": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica", "projects": [{"proj_uid": "p0010020", "repository": "USAP-DC", "title": "EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -88.0, "title": "Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments", "uid": "601163", "west": 150.0}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": ["POINT(161.667 -77.117)"], "date_created": "Tue, 19 Dec 2017 00:00:00 GMT", "description": "Metadata presented include high resolution respiration data from Janthinobacterium sp. CG3 for three dissolved organic matter samples Cotton Glacier Supraglacial stream, Pony Lake fulvic acid, and Suwannee River Natural Organic Matter (NOM).", "east": 161.667, "geometry": ["POINT(161.667 -77.117)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Foreman, Christine; Smith, Heidi", "project_titles": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "projects": [{"proj_uid": "p0000408", "repository": "USAP-DC", "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "Respiration Metadata", "uid": "601076", "west": 161.667}, {"awards": "1141978 Foreman, Christine", "bounds_geometry": ["POINT(161.667 -77.117)"], "date_created": "Tue, 19 Dec 2017 00:00:00 GMT", "description": "Metadata presented include Fourier transform ion cyclotron resonance mass spectrometry characterization of carbon source material molecular composition for three isolated lyophilized OM samples: Cotton Glacier Supraglacial stream, IHSS Pony Lake, and IHSS Suwannee River", "east": 161.667, "geometry": ["POINT(161.667 -77.117)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Fluorescence Spectroscopy; Mass Spectrometry", "locations": "Antarctica", "north": -77.117, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "D\u0027Andrilli, Juliana; Foreman, Christine", "project_titles": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica", "projects": [{"proj_uid": "p0000408", "repository": "USAP-DC", "title": "Multidimensional \"omics\" characterization of microbial metabolism and dissolved organic matter in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.117, "title": "FT-ICR MS Metadata", "uid": "601077", "west": 161.667}, {"awards": "1341360 Steig, Eric", "bounds_geometry": ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"], "date_created": "Mon, 05 Jun 2017 00:00:00 GMT", "description": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "east": 106.0, "geometry": ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Snow Pit; WAIS Divide Ice Core", "locations": "Lake Vostok; Antarctica", "north": -77.5, "nsf_funding_programs": null, "persons": "Steig, Eric J.; Schoenemann, Spruce", "project_titles": "Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores", "projects": [{"proj_uid": "p0000316", "repository": "USAP-DC", "title": "Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46, "title": "Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits", "uid": "601031", "west": -112.08}, {"awards": "0839075 Priscu, John", "bounds_geometry": ["POINT(-112.08648 -79.46763)"], "date_created": "Mon, 06 Mar 2017 00:00:00 GMT", "description": "This data set include depth (WDC06A-7 dating) and fluorescence intensity measurements for five fluorophore regions (A, C, M, B, and T) commonly found in natural organic matter. Data from 1300-1700m, 1700-2100m, and 2100-2700m correspond to the early Holocene, deglaciation period, and the Last Glacial Maximum.", "east": -112.08648, "geometry": ["POINT(-112.08648 -79.46763)"], "keywords": "Antarctica; Fluorescence Spectroscopy; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Physical Properties; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.46763, "nsf_funding_programs": null, "persons": "Priscu, John; D\u0027Andrilli, Juliana", "project_titles": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000273", "repository": "USAP-DC", "title": "Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.46763, "title": "Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A", "uid": "601006", "west": -112.08648}, {"awards": "1043167 White, James", "bounds_geometry": ["POINT(-112.08 -79.47)"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public.", "east": -112.08, "geometry": ["POINT(-112.08 -79.47)"], "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Paleoclimate; Snow Accumulation; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.47, "nsf_funding_programs": null, "persons": "White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R.", "project_titles": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "projects": [{"proj_uid": "p0000078", "repository": "USAP-DC", "title": "Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.47, "title": "Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core", "uid": "600169", "west": -112.08}, {"awards": "9980379 Baker, Ian; 0440523 Baker, Ian", "bounds_geometry": ["POINT(106.8 -72.466667)", "POINT(-38.466667 72.583333)", "POINT(-119.516667 -80.016667)"], "date_created": "Mon, 15 Feb 2010 00:00:00 GMT", "description": "This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) D core. Parameters include sample depth, grain size, ion concentration, and ice core impurity information. Measurements were made using Ion Chromatography (IC), optical microscopy, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS). \n\nData are available via FTP in Microsoft Excel (.xls)and Microsoft Word (.doc) formats.", "east": 106.8, "geometry": ["POINT(106.8 -72.466667)", "POINT(-38.466667 72.583333)", "POINT(-119.516667 -80.016667)"], "keywords": "Antarctica; Arctic; Byrd Glacier; Byrd Ice Core; Chemistry:ice; Chemistry:Ice; Geochemistry; GISP2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Lake Vostok; Paleoclimate; Vostok Ice Core", "locations": "Lake Vostok; Byrd Glacier; Arctic; Antarctica", "north": 72.583333, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Baker, Ian; Obbard, Rachel", "project_titles": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome", "projects": [{"proj_uid": "p0000289", "repository": "USAP-DC", "title": "The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.016667, "title": "Microstructural Location and Composition of Impurities in Polar Ice Cores", "uid": "609436", "west": -119.516667}, {"awards": "0801392 Swanson, Brian", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Microbiology; Oceans; Raman Spectroscopy; Sea Ice; Sea Surface; Southern Ocean", "locations": "Sea Surface; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Swanson, Brian", "project_titles": "Ice Nucleation by Marine Psychrophiles", "projects": [{"proj_uid": "p0000195", "repository": "USAP-DC", "title": "Ice Nucleation by Marine Psychrophiles"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Ice Nucleation by Marine Psychrophiles", "uid": "600087", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Replicate O-17-excess by continuous flow laser spectroscopy for an ice core section at Summit, Greenland
|
2019719 1841844 |
2023-01-25 | Davidge, Lindsey |
Center for Oldest Ice Exploration |
This data set contains replicate measurements of D17O from a 92-m deep section of core at Summit, Greenland and other operational data necessary to reconstruct figures presented in Davidge et al., 2022. Details of the entire dataset and a description of the relevant methods can be found in Davidge et al., 2022. The names of each sheet indicate the corresponding figure numbers. The D17O record spans about two years of accumulation. Discrete measurements by laser spectroscopy are provided at 1.4-cm resolution. For the purpose of method development, continuous-flow measurements are provided with nine replicates and are averaged to multiple depth resolutions as described in Davidge et al., 2022. | [] | [] | false | false |
Siple Dome Surface Energy Flux
|
1744954 |
2022-03-18 | Lubin, Dan; Ghiz, Madison |
Surface Energy Balance on West Antarctica and the Ross Ice Shelf |
This data set comprises radiative and turbulent flux components of the surface energy balance at Siple Dome, West Antarctica, measured between 21 December 2019 and 19 January 2020. Radiative fluxes were measured by Kipp & Zonen pyranometers and pyrgeometers. A Campbell Scientific open path eddy covariance system measured sensible and latent heat fluxes. An Apogee infrared sensor measured surface skin temperature. Sky conditions were observed using an ALCOR System digital all-sky camera. A StellarNet shortwave spectroradiometer system measured downwelling spectral irradiance in the wavelength range 350-1700 nm. | ["POINT(-148.81 -81.65)"] | ["POINT(-148.81 -81.65)"] | false | false |
G170 Raman Spectroscopy & Tomography Volumes of Melt Inclusions and Vapor Bubbles
|
1644013 |
2022-01-12 | Gaetani, Glenn |
Collaborative Research: Determining Magma Storage Depths and Ascent Rates for the Erebus Volcanic Province, Antarctica Using Diffusive Water Loss from Olivine-hosted Melt Inclusion |
G170 Raman Spectroscopy & Tomography Volumes of Melt Inclusions and Vapor Bubbles | ["POLYGON((164.1 -77.1,164.65 -77.1,165.2 -77.1,165.75 -77.1,166.3 -77.1,166.85 -77.1,167.4 -77.1,167.95 -77.1,168.5 -77.1,169.05 -77.1,169.6 -77.1,169.6 -77.235,169.6 -77.37,169.6 -77.505,169.6 -77.64,169.6 -77.775,169.6 -77.91,169.6 -78.045,169.6 -78.18,169.6 -78.315,169.6 -78.45,169.05 -78.45,168.5 -78.45,167.95 -78.45,167.4 -78.45,166.85 -78.45,166.3 -78.45,165.75 -78.45,165.2 -78.45,164.65 -78.45,164.1 -78.45,164.1 -78.315,164.1 -78.18,164.1 -78.045,164.1 -77.91,164.1 -77.775,164.1 -77.64,164.1 -77.505,164.1 -77.37,164.1 -77.235,164.1 -77.1))"] | ["POINT(166.85 -77.775)"] | false | false |
Resampling of Deep Polar Ice Cores using Information Theory
|
1043167 |
2020-07-27 | Jones, Tyler R.; Morris, Valerie; Garland, Joshua; Vaughn, Bruce; White, James |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA), completed in 2015 and described in Jones et al. (2017). The targeted resampling of the WAIS Divide Ice core (1035.4 to 1368.2 m) was completed in 2019 (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory (Garland and Jones et al. 2018). | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Mid-Holocene high-resolution water isotope time series for the WAIS Divide ice core
|
1807522 |
2020-05-26 | Morris, Valerie; Jones, Tyler R.; Vaughn, Bruce; White, James |
Collaborative Research: Targeted resampling of deep polar ice cores using information theory |
The original water stable isotope data for the WAIS Divide Deep Ice Core was generated under the University of Colorado INSTAAR Stable Isotope Lab (NSF Award# 1443328). This data set contains high-resolution dD and d18O data for the West Antarctic Ice Sheet (WAIS) Divide Ice core. Drilling was initiated in 2006 and completed in 2011, and subsequent analyses on the ice were performed at the University of Colorado INSTAAR Stable Isotope Lab using Continuous Flow Analysis (CFA). The targeted resampling of the WAIS Divide Ice core (1035.4 - 1368.2m) occurred for this grant (NSF OPP - Antarctic Glaciology 1807522) to replace data analyzed on an older generation Laser Absorption Spectroscopy instrument. The resampling interval was identified using information theory. | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Biogenic silica concentrations from the Ross Sea
|
1644073 |
2019-11-13 | Ditullio, Giacomo; Schanke, Nicole |
Collaborative Research: Cobalamin and Iron Co-Limitation Of Phytoplankton Species in Terra Nova Bay |
Biogenic silica concentrations collected from CTD casts during RVIB Nathaniel B. Palmer cruise in the Ross Sea, Southern Ocean from December 2017-February 2018 | ["POLYGON((-180 -72.45,-179.354 -72.45,-178.708 -72.45,-178.062 -72.45,-177.416 -72.45,-176.77 -72.45,-176.124 -72.45,-175.478 -72.45,-174.832 -72.45,-174.186 -72.45,-173.54 -72.45,-173.54 -73.068,-173.54 -73.686,-173.54 -74.304,-173.54 -74.922,-173.54 -75.54,-173.54 -76.158,-173.54 -76.776,-173.54 -77.394,-173.54 -78.012,-173.54 -78.63,-174.186 -78.63,-174.832 -78.63,-175.478 -78.63,-176.124 -78.63,-176.77 -78.63,-177.416 -78.63,-178.062 -78.63,-178.708 -78.63,-179.354 -78.63,180 -78.63,179.818 -78.63,179.636 -78.63,179.454 -78.63,179.272 -78.63,179.09 -78.63,178.908 -78.63,178.726 -78.63,178.544 -78.63,178.362 -78.63,178.18 -78.63,178.18 -78.012,178.18 -77.394,178.18 -76.776,178.18 -76.158,178.18 -75.54,178.18 -74.922,178.18 -74.304,178.18 -73.686,178.18 -73.068,178.18 -72.45,178.362 -72.45,178.544 -72.45,178.726 -72.45,178.908 -72.45,179.09 -72.45,179.272 -72.45,179.454 -72.45,179.636 -72.45,179.818 -72.45,-180 -72.45))"] | ["POINT(-177.68 -75.54)"] | false | false |
Laboratory Hyperspectral Reflectance Data of Central Transantarctic Mountain Rocks and Sediments
|
1758224 |
2019-03-15 | Salvatore, Mark |
EAGER: Surface Variability and Spectral Analyses of the Central Transantarctic Mountains, Antarctica |
This data set contains reflectance spectra (350 - 2500 nm) of a range of rocks and sediments from the Central Transantarctic Mountains. Data were acquired using an Analytical Spectral Devices (ASD) FieldSpec4 high-resolution spectrometer under illumination with a high-output halogen bulb, with illumination and observation angles fixed at 0 and 30 degrees off-nadir, respectively. Data were acquired for the purposes of validation and 'ground truthing' of orbital multispectral data. | ["POLYGON((-180 -83,-177 -83,-174 -83,-171 -83,-168 -83,-165 -83,-162 -83,-159 -83,-156 -83,-153 -83,-150 -83,-150 -83.5,-150 -84,-150 -84.5,-150 -85,-150 -85.5,-150 -86,-150 -86.5,-150 -87,-150 -87.5,-150 -88,-153 -88,-156 -88,-159 -88,-162 -88,-165 -88,-168 -88,-171 -88,-174 -88,-177 -88,180 -88,177 -88,174 -88,171 -88,168 -88,165 -88,162 -88,159 -88,156 -88,153 -88,150 -88,150 -87.5,150 -87,150 -86.5,150 -86,150 -85.5,150 -85,150 -84.5,150 -84,150 -83.5,150 -83,153 -83,156 -83,159 -83,162 -83,165 -83,168 -83,171 -83,174 -83,177 -83,-180 -83))"] | ["POINT(180 -85.5)"] | false | false |
Respiration Metadata
|
1141978 |
2017-12-19 | Foreman, Christine; Smith, Heidi |
Multidimensional "omics" characterization of microbial metabolism and dissolved organic matter in Antarctica |
Metadata presented include high resolution respiration data from Janthinobacterium sp. CG3 for three dissolved organic matter samples Cotton Glacier Supraglacial stream, Pony Lake fulvic acid, and Suwannee River Natural Organic Matter (NOM). | ["POINT(161.667 -77.117)"] | ["POINT(161.667 -77.117)"] | false | false |
FT-ICR MS Metadata
|
1141978 |
2017-12-19 | D'Andrilli, Juliana; Foreman, Christine |
Multidimensional "omics" characterization of microbial metabolism and dissolved organic matter in Antarctica |
Metadata presented include Fourier transform ion cyclotron resonance mass spectrometry characterization of carbon source material molecular composition for three isolated lyophilized OM samples: Cotton Glacier Supraglacial stream, IHSS Pony Lake, and IHSS Suwannee River | ["POINT(161.667 -77.117)"] | ["POINT(161.667 -77.117)"] | false | false |
Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits
|
1341360 |
2017-06-05 | Steig, Eric J.; Schoenemann, Spruce |
Development of a Laser Spectroscopy System for Analysis of 17Oexcess on Ice Cores |
Seasonal 17O Isotope Data from Lake Vostok and WAIS Divide Snow Pits | ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"] | ["POINT(106 -77.5)", "POINT(-112.08 -79.46)"] | false | false |
Fluorescence spectroscopy data from the West Antarctic Ice Sheet (WAIS) Divide ice core, WDC06A
|
0839075 |
2017-03-06 | Priscu, John; D'Andrilli, Juliana |
Collaborative Research: Integrated High Resolution Chemical and Biological Measurements on the Deep WAIS Divide Core |
This data set include depth (WDC06A-7 dating) and fluorescence intensity measurements for five fluorophore regions (A, C, M, B, and T) commonly found in natural organic matter. Data from 1300-1700m, 1700-2100m, and 2100-2700m correspond to the early Holocene, deglaciation period, and the Last Glacial Maximum. | ["POINT(-112.08648 -79.46763)"] | ["POINT(-112.08648 -79.46763)"] | false | false |
Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core
|
1043167 |
2016-01-01 | White, James; Morris, Valerie; Vaughn, Bruce; Jones, Tyler R. |
Collaborative Research: Stable Isotopes of Ice in the Transition and Glacial Sections of the WAIS Divide Deep Ice Core |
This award supports a project to contribute one of the cornerstone analyses, stable isotopes of ice (Delta-D, Delta-O18) to the ongoing West Antarctic Ice Sheet Divide (WAIS) deep ice core. The WAIS Divide drilling project, a multi-institution project to obtain a continuous high resolution ice core record from central West Antarctica, reached a depth of 2560 m in early 2010; it is expected to take one or two more field seasons to reach the ice sheet bed (~3300 m), plus an additional four seasons for borehole logging and other activities including proposed replicate coring. The current proposal requests support to complete analyses on the WAIS Divide core to the base, where the age will be ~100,000 years or more. These analyses will form the basis for the investigation of a number of outstanding questions in climate and glaciology during the last glacial period, focused on the dynamics of the West Antarctic Ice Sheet and the relationship of West Antarctic climate to that of the Northern polar regions, the tropical Pacific, and the rest of the globe, on time scales ranging from years to tens of thousands of years. One new aspect of this work is the growing expertise at the University of Washington in climate modeling with isotope-tracer-enabled general circulation models, which will aid in the interpretation of the data. Another major new aspect is the completion and use of a high-resolution, semi-automated sampling system at the University of Colorado, which will permit the continuous analysis of isotope ratios via laser spectroscopy, at an effective resolution of ~2 cm or less, providing inter-annual time resolution for most of the core. Because continuous flow analyses of stable ice isotopes is a relatively new measurement, we will complement them with parallel measurements, every ~10-20 m, using traditional discrete sampling and analysis by mass spectrometry at the University of Washington. The intellectual merit and the overarching goal of the work are to see Inland WAIS become the reference ice isotope record for West Antarctica. The broader impacts of the work are that the data generated in this project pertain directly to policy-relevant and immediate questions of the stability of the West Antarctic ice sheet, and thus past and future changes in sea level, as well as the nature of climate change in the high southern latitudes. The project will also contribute to the development of modern isotope analysis techniques using laser spectroscopy, with applications well beyond ice cores. The project will involve a graduate student and postdoc who will work with both P.I.s, and spend time at both institutions. Data will be made available rapidly through the Antarctic Glaciological Data Center, for use by other researchers and the public. | ["POINT(-112.08 -79.47)"] | ["POINT(-112.08 -79.47)"] | false | false |
Microstructural Location and Composition of Impurities in Polar Ice Cores
|
9980379 0440523 |
2010-02-15 | Baker, Ian; Obbard, Rachel |
The Physical Properties of the US ITASE Firn and Ice Cores from South Pole to Taylor Dome |
This data set contains measurements of impurities and ions in three polar ice cores: the Vostok 5G ice core and the Byrd ice core from Antarctica, and the Greenland Ice Sheet Project 2 (GISP2) D core. Parameters include sample depth, grain size, ion concentration, and ice core impurity information. Measurements were made using Ion Chromatography (IC), optical microscopy, and Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM/EDS). Data are available via FTP in Microsoft Excel (.xls)and Microsoft Word (.doc) formats. | ["POINT(106.8 -72.466667)", "POINT(-38.466667 72.583333)", "POINT(-119.516667 -80.016667)"] | ["POINT(106.8 -72.466667)", "POINT(-38.466667 72.583333)", "POINT(-119.516667 -80.016667)"] | false | false |
Ice Nucleation by Marine Psychrophiles
|
0801392 |
2010-01-01 | Swanson, Brian |
Ice Nucleation by Marine Psychrophiles |
The primary objective of this research is to investigate polar marine psychrophilic bacteria for their potential to nucleate ice using a combination of microbiological, molecular biological and atmospheric science approaches in the laboratory. Very little is known about how psychrophiles interact and cope with ice or their adaptations to conditions of extreme cold and salinity. This work will involve a series of laboratory experiments using a novel freeze-tube technique for assaying freezing spectra which will provide quantitative information on: (i) the temperature-dependent freezing rates for heterogeneously frozen droplets containing sea-ice bacteria, (ii) the proportional occurrence of ice-nucleation activity versus anti-freeze activity among sea-ice bacterial isolates and (iii) the temperature-dependent freezing rates of bacteria with ice-nucleation activity grown at a range of temperatures and salinities. The compound(s) responsible for the observed activity will be identified, which is an essential step towards the development of an in-situ bacterial ice-nucleation detection assay that can be applied in the field to Antarctic water and cloud samples. One of the goals of this work is to better understand survival and cold adaptation processes of polar marine bacteria confronted with freezing conditions in sea ice. Since sea ice strongly impacts polar, as well as the global climates, this research is of significant interest because it will also provide data for accessing the importance of bacterial ice nucleation in the formation of sea ice. These measurements of ice-nucleation rates will be the first high-resolution measurements for psychrophilic marine bacteria. Another goal is to better understand the impact of bacterial ice initiation processes in polar clouds by making high-resolution measurements of nucleation rates for cloud bacteria found over Arctic and Antarctic regions. Initial measurements indicate these bacteria nucleate ice at warmer temperatures and the effect in polar regions may be quite important, since ice can strongly impact cloud dynamics, cloud radiative properties, precipitation formation, and cloud chemistry. If these initial measurements are confirmed, the data collected here will be important for improving the understanding of polar cloud processes and models. A third goal is to better understand the molecular basis of marine bacterial ice nucleation by characterizing the ice-nucleation compound and comparing it with those of known plant-derived ice-nucleating bacteria, which are the only ice-nucleating bacteria examined in detail to date. The proposed activity will support the beginning academic career of a post-doctoral researcher and will serve as the basis for several undergraduate student laboratory projects. Results from this research will be widely published in various scientific journals and outreach venues. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |