{"dp_type": "Dataset", "free_text": "Pygoscelis Adeliae"}
[{"awards": "1443386 Emslie, Steven; 2135695 Emslie, Steven", "bounds_geometry": null, "date_created": "Tue, 11 Mar 2025 00:00:00 GMT", "description": "We completed multiple-stable isotope analyses (d13C, d15N, and d34S) of Ad\u00e9lie penguin Pygoscelis adeliae chick-bone collagen to characterize differences in foraging behavior among 15 colony locations across the Ross Sea region. Foraging behavior was represented by d13C, d15N, and d34S values and classified into groups using k-means cluster analyses. Additionally, we report the first stable isotope values for the Ad\u00e9lie penguin colony on Sabrina Island, Balleny Islands. Cluster analyses revealed distinct isotopic signatures for the northernmost and central colonies; however, owing to spatial and temporal variability, isotopic signatures were not strong enough to distinguish the southernmost colonies. Results also indicated that d15N values increased with latitude (66\u201377\u00b0 S), corresponding to higher krill consumption at colonies that foraged in sensible heat polynyas or the open ocean and increased fish consumption for those foraging in latent heat polynyas to the south. Generally, d34S values are used to distinguish foraging grounds, specifically inshore/offshore foraging or foraging over the continental slope versus the continental shelf, in marine animals. Although the southern and central colonies currently forage along the continental shelf and the northern colonies forage over the shelf, slope, and/or open ocean, we found no significant difference in d34S values among colonies. While a positive correlation between d15N and d34S values was evident, d34S signatures did not exhibit distinct patterns specific to individual colonies or regions. The absence of a clear trend reflecting inshore/offshore foraging underscores the need for additional research to bridge this knowledge gap.", "east": null, "geometry": null, "keywords": "Adelie Penguin; Antarctica; Cryosphere; Foraging; Polynya; Pygoscelis Adeliae; Ross Sea; Stable Isotopes", "locations": "Antarctica; Ross Sea", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Emslie, Steven D.; Reaves, Megan; Powers, Shannon", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators; Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea", "projects": [{"proj_uid": "p0010388", "repository": "USAP-DC", "title": "Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea"}, {"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Stable isotopes of Adelie Penguin chick bone collagen", "uid": "601913", "west": null}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-58.62 -62.257,-58.6199 -62.257,-58.6198 -62.257,-58.6197 -62.257,-58.6196 -62.257,-58.6195 -62.257,-58.6194 -62.257,-58.6193 -62.257,-58.6192 -62.257,-58.6191 -62.257,-58.619 -62.257,-58.619 -62.2571,-58.619 -62.2572,-58.619 -62.2573,-58.619 -62.2574,-58.619 -62.2575,-58.619 -62.2576,-58.619 -62.2577,-58.619 -62.2578,-58.619 -62.2579,-58.619 -62.258,-58.6191 -62.258,-58.6192 -62.258,-58.6193 -62.258,-58.6194 -62.258,-58.6195 -62.258,-58.6196 -62.258,-58.6197 -62.258,-58.6198 -62.258,-58.6199 -62.258,-58.62 -62.258,-58.62 -62.2579,-58.62 -62.2578,-58.62 -62.2577,-58.62 -62.2576,-58.62 -62.2575,-58.62 -62.2574,-58.62 -62.2573,-58.62 -62.2572,-58.62 -62.2571,-58.62 -62.257))"], "date_created": "Sun, 11 Oct 2020 00:00:00 GMT", "description": "Many types of animal tissues are increasingly being used for stable isotope analysis, with their application dependent on the time frame they reflect and their availability for collection. Here, we investigated the isotopic values (\u03b413C and \u03b415N) of four tissues (feather, skin, toenail, and bone) collected from fledgling-period chick carcasses of three species of pygoscelid penguins to compare the variability and accuracy of the data among tissues. Samples were collected at 25 de Mayo/King George Island during the 2017/18 austral summer. Chick carcasses are commonly found at active penguin colonies, and \u201copportunistic sampling\u201d can easily be performed without disturbing nesting penguins. A total of 25\u201336 carcasses per species were sampled at active colonies of Ad\u00e9lie Pygoscelis adeliae, Gentoo P. papua, and Chinstrap P. antarcticus penguins. A linear mixed model showed that \u03b413C values varied significantly between tissues, presumably due to tissue-specific isotopic discrimination. In contrast, the only tissue with significantly different \u03b415N values was toenail. Stable isotope data revealed dietary differences among species, with Gentoo Penguins having higher average isotopic values in tissues compared to Ad\u00e9lie and Chinstrap penguins. In addition, Chinstrap Penguins showed a consistent, but not statistically significant, trend in having higher \u03b413C values compared to Ad\u00e9lie Penguins. Gentoo Penguins displayed the highest isotopic variability of any species for all tissues. Isotopic composition was most variable in skin in all three species making skin the least reliable tissue for isotope analysis, whereas isotopic values were least variable in toenails. Comparison of isotopic values between two bones (tibiotarsus and coracoid) showed no significant differences in isotopic values, indicating that when the same bone is not available for sampling from carcasses, sampling of any major skeletal element is likely to provide a meaningful comparison. These results allow for more informed opportunistic sampling to accurately estimate and compare penguin diet among species and between ancient and active colonies.", "east": -58.619, "geometry": ["POINT(-58.6195 -62.2575)"], "keywords": "25 De Mayo/King George Island; Antarctica; Biota; Delta 13C; Delta 15N; Dietary Shifts; Opportunistic Sampling; Penguin; Pygoscelis Penguins; Stranger Point", "locations": "Stranger Point; Antarctica; 25 De Mayo/King George Island", "north": -62.257, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Ciriani, Yanina; Emslie, Steven D.", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.258, "title": "Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica", "uid": "601382", "west": -58.62}, {"awards": "1443386 Emslie, Steven", "bounds_geometry": ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"], "date_created": "Tue, 02 Jun 2020 00:00:00 GMT", "description": "We report new discoveries and radiocarbon dates on active and abandoned Ad\u00e9lie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a \u0027supercolony\u0027) by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there.", "east": 170.19305556, "geometry": ["POINT(175.09652778 -65.65384722)"], "keywords": "Adelie Penguin; Antarctica; Biota; Cape Adare; East Antarctica; Population Movement; Pygoscelis Adeliae; Radiocarbon; Ross Sea; Sea Level Rise; Stable Isotopes", "locations": "Cape Adare; Antarctica; Ross Sea; East Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "McKenzie, Ashley; Patterson, William; Emslie, Steven D.", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.30769444, "title": "The rise and fall of an ancient Adelie penguin \u0027supercolony\u0027 at Cape Adare, Antarctica", "uid": "601327", "west": -180.0}, {"awards": "0125098 Emslie, Steven", "bounds_geometry": ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. \n\nOther data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC.", "east": 160.0, "geometry": ["POINT(55 -75)"], "keywords": "Antarctica; Biota; Geochronology; Oceans; Paleoclimate; Penguin; Radiocarbon; Ross Sea; Southern Ocean", "locations": "Southern Ocean; Antarctica; Ross Sea", "north": -60.0, "nsf_funding_programs": null, "persons": "Emslie, Steven D.", "project_titles": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "projects": [{"proj_uid": "p0000220", "repository": "USAP-DC", "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Occupation History and Diet of Adelie Penguins in the Ross Sea Region", "uid": "600028", "west": -50.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Stable isotopes of Adelie Penguin chick bone collagen
|
1443386 2135695 |
2025-03-11 | Emslie, Steven D.; Reaves, Megan; Powers, Shannon |
Collaborative Research: Using Multiple Stable Isotopes to Investigate Middle to Late Holocene Ecological Responses by Adelie Penguins in the Ross Sea Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
We completed multiple-stable isotope analyses (d13C, d15N, and d34S) of Adélie penguin Pygoscelis adeliae chick-bone collagen to characterize differences in foraging behavior among 15 colony locations across the Ross Sea region. Foraging behavior was represented by d13C, d15N, and d34S values and classified into groups using k-means cluster analyses. Additionally, we report the first stable isotope values for the Adélie penguin colony on Sabrina Island, Balleny Islands. Cluster analyses revealed distinct isotopic signatures for the northernmost and central colonies; however, owing to spatial and temporal variability, isotopic signatures were not strong enough to distinguish the southernmost colonies. Results also indicated that d15N values increased with latitude (66–77° S), corresponding to higher krill consumption at colonies that foraged in sensible heat polynyas or the open ocean and increased fish consumption for those foraging in latent heat polynyas to the south. Generally, d34S values are used to distinguish foraging grounds, specifically inshore/offshore foraging or foraging over the continental slope versus the continental shelf, in marine animals. Although the southern and central colonies currently forage along the continental shelf and the northern colonies forage over the shelf, slope, and/or open ocean, we found no significant difference in d34S values among colonies. While a positive correlation between d15N and d34S values was evident, d34S signatures did not exhibit distinct patterns specific to individual colonies or regions. The absence of a clear trend reflecting inshore/offshore foraging underscores the need for additional research to bridge this knowledge gap. | [] | [] | false | false |
Stable isotope analysis of multiple tissues from chick carcasses of three pygoscelid penguins in Antarctica
|
1443386 |
2020-10-11 | Ciriani, Yanina; Emslie, Steven D. |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
Many types of animal tissues are increasingly being used for stable isotope analysis, with their application dependent on the time frame they reflect and their availability for collection. Here, we investigated the isotopic values (δ13C and δ15N) of four tissues (feather, skin, toenail, and bone) collected from fledgling-period chick carcasses of three species of pygoscelid penguins to compare the variability and accuracy of the data among tissues. Samples were collected at 25 de Mayo/King George Island during the 2017/18 austral summer. Chick carcasses are commonly found at active penguin colonies, and “opportunistic sampling” can easily be performed without disturbing nesting penguins. A total of 25–36 carcasses per species were sampled at active colonies of Adélie Pygoscelis adeliae, Gentoo P. papua, and Chinstrap P. antarcticus penguins. A linear mixed model showed that δ13C values varied significantly between tissues, presumably due to tissue-specific isotopic discrimination. In contrast, the only tissue with significantly different δ15N values was toenail. Stable isotope data revealed dietary differences among species, with Gentoo Penguins having higher average isotopic values in tissues compared to Adélie and Chinstrap penguins. In addition, Chinstrap Penguins showed a consistent, but not statistically significant, trend in having higher δ13C values compared to Adélie Penguins. Gentoo Penguins displayed the highest isotopic variability of any species for all tissues. Isotopic composition was most variable in skin in all three species making skin the least reliable tissue for isotope analysis, whereas isotopic values were least variable in toenails. Comparison of isotopic values between two bones (tibiotarsus and coracoid) showed no significant differences in isotopic values, indicating that when the same bone is not available for sampling from carcasses, sampling of any major skeletal element is likely to provide a meaningful comparison. These results allow for more informed opportunistic sampling to accurately estimate and compare penguin diet among species and between ancient and active colonies. | ["POLYGON((-58.62 -62.257,-58.6199 -62.257,-58.6198 -62.257,-58.6197 -62.257,-58.6196 -62.257,-58.6195 -62.257,-58.6194 -62.257,-58.6193 -62.257,-58.6192 -62.257,-58.6191 -62.257,-58.619 -62.257,-58.619 -62.2571,-58.619 -62.2572,-58.619 -62.2573,-58.619 -62.2574,-58.619 -62.2575,-58.619 -62.2576,-58.619 -62.2577,-58.619 -62.2578,-58.619 -62.2579,-58.619 -62.258,-58.6191 -62.258,-58.6192 -62.258,-58.6193 -62.258,-58.6194 -62.258,-58.6195 -62.258,-58.6196 -62.258,-58.6197 -62.258,-58.6198 -62.258,-58.6199 -62.258,-58.62 -62.258,-58.62 -62.2579,-58.62 -62.2578,-58.62 -62.2577,-58.62 -62.2576,-58.62 -62.2575,-58.62 -62.2574,-58.62 -62.2573,-58.62 -62.2572,-58.62 -62.2571,-58.62 -62.257))"] | ["POINT(-58.6195 -62.2575)"] | false | false |
The rise and fall of an ancient Adelie penguin 'supercolony' at Cape Adare, Antarctica
|
1443386 |
2020-06-02 | McKenzie, Ashley; Patterson, William; Emslie, Steven D. |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
We report new discoveries and radiocarbon dates on active and abandoned Adélie penguin (Pygoscelis adeliae) colonies at Cape Adare, Antarctica. This colony, first established at approximately 2000 BP (calendar years before present, i.e. 1950), is currently the largest for this species with approximately 338 000 breeding pairs, most located on lowlying Ridley Beach. We hypothesize that this colony first formed after fast ice began blocking open-water access by breeding penguins to the Scott Coast in the southern Ross Sea during a cooling period also at approximately 2000 BP. Our results suggest that the new colony at Cape Adare continued to grow, expanding to a large upper terrace above Ridley Beach, until it exceeded approximately 500 000 breeding pairs (a 'supercolony') by approximately 1200 BP. The high marine productivity associated with the Ross Sea polynya and continental shelf break supported this growth, but the colony collapsed to its present size for unknown reasons after approximately 1200 BP. Ridley Beach will probably be abandoned in the near future due to rising sea level in this region. We predict that penguins will retreat to higher elevations at Cape Adare and that the Scott Coast will be reoccupied by breeding penguins as fast ice continues to dissipate earlier each summer, restoring open-water access to beaches there. | ["POLYGON((-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -60,-180 -61.130769444,-180 -62.261538888,-180 -63.392308332,-180 -64.523077776,-180 -65.65384722,-180 -66.784616664,-180 -67.915386108,-180 -69.046155552,-180 -70.176924996,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,-180 -71.30769444,180 -71.30769444,179.019305556 -71.30769444,178.038611112 -71.30769444,177.057916668 -71.30769444,176.077222224 -71.30769444,175.09652778 -71.30769444,174.115833336 -71.30769444,173.135138892 -71.30769444,172.154444448 -71.30769444,171.173750004 -71.30769444,170.19305556 -71.30769444,170.19305556 -70.176924996,170.19305556 -69.046155552,170.19305556 -67.915386108,170.19305556 -66.784616664,170.19305556 -65.65384722,170.19305556 -64.523077776,170.19305556 -63.392308332,170.19305556 -62.261538888,170.19305556 -61.130769444,170.19305556 -60,171.173750004 -60,172.154444448 -60,173.135138892 -60,174.115833336 -60,175.09652778 -60,176.077222224 -60,177.057916668 -60,178.038611112 -60,179.019305556 -60,-180 -60))"] | ["POINT(175.09652778 -65.65384722)"] | false | false |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region
|
0125098 |
2009-01-01 | Emslie, Steven D. |
Occupation History and Diet of Adelie Penguins in the Ross Sea Region |
This project will build on previous studies to investigate the occupation history and diet of Adelie penguins (Pygoscelis adeliae) in the Ross Sea region, Antarctica, with excavations of abandoned and active penguin colonies. Numerous active and abandoned colonies exist on the Victoria Land coast, from Cape Adare to Marble Point will be sampled. Some of these sites have been radiocarbon-dated and indicate a long occupation history for Adelie penguins extending to 13,000 years before present (B. P.). The material recovered from excavations, as demonstrated from previous investigations, will include penguin bones, tissue, and eggshell fragments as well as abundant remains of prey (fish bones, otoliths, squid beaks) preserved in ornithogenic (formed from bird guano) soils. These organic remains will be quantified and subjected to radiocarbon analyses to obtain a colonization history of penguins in this region. Identification of prey remains in the sediments will allow assessment of penguin diet. Other data (ancient DNA) from these sites will be analyzed through collaboration with New Zealand scientists. Past climatic conditions will be interpreted from published ice-core and marine-sediment records. These data will be used to test the hypothesis that Adelie penguins respond to climate change, past and present, in a predictable manner. In addition, the hypothesis that Adelie penguins alter their diet in accordance with climate, sea-ice conditions, and other marine environmental variables along a latitudinal gradient will be tested. Graduate and undergraduate students will be involved in this project and a project Web site will be developed to report results and maintain educational interaction between the PI and students at local middle and high schools in Wilmington, NC. | ["POLYGON((-50 -60,-29 -60,-8 -60,13 -60,34 -60,55 -60,76 -60,97 -60,118 -60,139 -60,160 -60,160 -63,160 -66,160 -69,160 -72,160 -75,160 -78,160 -81,160 -84,160 -87,160 -90,139 -90,118 -90,97 -90,76 -90,55 -90,34 -90,13 -90,-8 -90,-29 -90,-50 -90,-50 -87,-50 -84,-50 -81,-50 -78,-50 -75,-50 -72,-50 -69,-50 -66,-50 -63,-50 -60))"] | ["POINT(55 -75)"] | false | false |