{"dp_type": "Dataset", "free_text": "Oligocene"}
[{"awards": "1743643 Passchier, Sandra", "bounds_geometry": ["POINT(-42.933 -61.849)"], "date_created": "Wed, 22 Jun 2022 00:00:00 GMT", "description": "This dataset contains measurements of major and trace elements on 190 samples of Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. The composition of detrital, biogenic and authigenic sediment components was assessed via whole rock geochemistry of sediment samples. Instrument analysis was completed at Montclair State University.", "east": -42.933, "geometry": ["POINT(-42.933 -61.849)"], "keywords": "Antarctica; Glaciation; IODP 650; IODP 696; Paleoceanography; Provenance; Sediment Core Data; Weathering; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -61.849, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Hojnacki, Victoria; Li, Xiaona; States, Abbey; Lepp, Allison", "project_titles": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "projects": [{"proj_uid": "p0010101", "repository": "USAP-DC", "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.849, "title": "Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent", "uid": "601582", "west": -42.933}, {"awards": "1743643 Passchier, Sandra", "bounds_geometry": ["POINT(-42.933 -61.849)"], "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Diatoms were generally either absent or present in trace amounts in the Eocene-Oligocene interval and were not removed. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive Index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": -42.933, "geometry": ["POINT(-42.933 -61.849)"], "keywords": "Antarctica; Glaciation; IODP 696; Marine Geoscience; Marine Sediments; Paleoceanography; Sediment Core Data; Weddell Sea", "locations": "Antarctica; Weddell Sea", "north": -61.849, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Lepp, Allison; Horowitz Castaldo, Josie; Light, Jennifer", "project_titles": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition", "projects": [{"proj_uid": "p0010101", "repository": "USAP-DC", "title": "Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -61.849, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent", "uid": "601581", "west": -42.933}, {"awards": "1443556 Thomson, Stuart", "bounds_geometry": ["POLYGON((-180 -83.5,-178 -83.5,-176 -83.5,-174 -83.5,-172 -83.5,-170 -83.5,-168 -83.5,-166 -83.5,-164 -83.5,-162 -83.5,-160 -83.5,-160 -83.75,-160 -84,-160 -84.25,-160 -84.5,-160 -84.75,-160 -85,-160 -85.25,-160 -85.5,-160 -85.75,-160 -86,-162 -86,-164 -86,-166 -86,-168 -86,-170 -86,-172 -86,-174 -86,-176 -86,-178 -86,180 -86,179 -86,178 -86,177 -86,176 -86,175 -86,174 -86,173 -86,172 -86,171 -86,170 -86,170 -85.75,170 -85.5,170 -85.25,170 -85,170 -84.75,170 -84.5,170 -84.25,170 -84,170 -83.75,170 -83.5,171 -83.5,172 -83.5,173 -83.5,174 -83.5,175 -83.5,176 -83.5,177 -83.5,178 -83.5,179 -83.5,-180 -83.5))"], "date_created": "Tue, 13 Jul 2021 00:00:00 GMT", "description": "List of supplementary tables from publication\r\nHe, J., Thomson, S.N., Reiners, P.W., Hemming, S.R., and Licht, K.J., 2021, Rapid erosion of the central Transantarctic Mountains at the Eocene-Oligocene transition: Evidence from skewed (U-Th)/He date distributions near Beardmore Glacier: Earth and Planetary Science Letters, v. 567, p. 117009, doi:10.1016/j.epsl.2021.117009.\r\n\r\nSupp. Table 1 U-Th/He data\r\nSupp. Table 2 Trace and REE data\r\nSupp. Table 3 Compilation with elevation-weighted resampling\r\nSupp. Table 4 Summary statistics and sampling distribution of large-n samples and compilations.\r\nSupp. Table 5 Perpendicular distance of BAR and CMK sample to Kukri Peneplain\r\nSupp. Table 6 Compilation of apatite He data from east Antarctica used in Fig. 1\r\n", "east": -160.0, "geometry": ["POINT(-175 -84.75)"], "keywords": "Antarctica; Beardmore Glacier; Erosion; Landscape Evolution; Shackleton Glacier; Transantarctic Mountains; (U-Th)/He", "locations": "Beardmore Glacier; Shackleton Glacier; Antarctica; Transantarctic Mountains", "north": -83.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Thomson, Stuart; He, John; Reiners, Peter; Hemming, Sidney R.; Licht, Kathy", "project_titles": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis", "projects": [{"proj_uid": "p0010188", "repository": "USAP-DC", "title": "Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains", "uid": "601462", "west": 170.0}, {"awards": "1245283 Passchier, Sandra", "bounds_geometry": ["POINT(74.787 -67.696167)"], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of terrigenous particle-size distributions on Eocene sediment from Ocean Drilling Program Site 1166 in Prydz Bay. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 74.787, "geometry": ["POINT(74.787 -67.696167)"], "keywords": "Antarctica; Eocene; Marine Geoscience; ODP1166; Particle Size; Prydz Bay; Sediment Core Data", "locations": "Antarctica; Prydz Bay", "north": -67.696167, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Ciarletta, Daniel", "project_titles": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin", "projects": [{"proj_uid": "p0000309", "repository": "USAP-DC", "title": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.696167, "title": "Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay", "uid": "601455", "west": 74.787}, {"awards": "1245283 Passchier, Sandra", "bounds_geometry": ["POINT(75.4045 -67.549667)"], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 742 in Prydz Bay. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 75.4045, "geometry": ["POINT(75.4045 -67.549667)"], "keywords": "Antarctica; Eocene; Marine Geoscience; ODP742; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "locations": "Antarctica; Prydz Bay", "north": -67.549667, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Ciarletta, Daniel", "project_titles": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin", "projects": [{"proj_uid": "p0000309", "repository": "USAP-DC", "title": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.549667, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay", "uid": "601454", "west": 75.4045}, {"awards": "1245283 Passchier, Sandra", "bounds_geometry": ["POINT(75.081833 -67.276167)"], "date_created": "Mon, 21 Jun 2021 00:00:00 GMT", "description": "This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 739 in Prydz Bay. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": 75.081833, "geometry": ["POINT(75.081833 -67.276167)"], "keywords": "Antarctica; Eocene; Marine Geoscience; ODP739; Oligocene; Particle Size; Prydz Bay; Sediment Core Data", "locations": "Antarctica; Prydz Bay", "north": -67.276167, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Ciarletta, Daniel", "project_titles": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin", "projects": [{"proj_uid": "p0000309", "repository": "USAP-DC", "title": "The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.276167, "title": "Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay", "uid": "601453", "west": 75.081833}, {"awards": "1341585 Sorlien, Christopher", "bounds_geometry": ["POLYGON((-180 -73.22,-179.17 -73.22,-178.34 -73.22,-177.51 -73.22,-176.68 -73.22,-175.85 -73.22,-175.02 -73.22,-174.19 -73.22,-173.36 -73.22,-172.53 -73.22,-171.7 -73.22,-171.7 -73.765,-171.7 -74.31,-171.7 -74.855,-171.7 -75.4,-171.7 -75.945,-171.7 -76.49,-171.7 -77.035,-171.7 -77.58,-171.7 -78.125,-171.7 -78.67,-172.53 -78.67,-173.36 -78.67,-174.19 -78.67,-175.02 -78.67,-175.85 -78.67,-176.68 -78.67,-177.51 -78.67,-178.34 -78.67,-179.17 -78.67,180 -78.67,178.56 -78.67,177.12 -78.67,175.68 -78.67,174.24 -78.67,172.8 -78.67,171.36 -78.67,169.92 -78.67,168.48 -78.67,167.04 -78.67,165.6 -78.67,165.6 -78.125,165.6 -77.58,165.6 -77.035,165.6 -76.49,165.6 -75.945,165.6 -75.4,165.6 -74.855,165.6 -74.31,165.6 -73.765,165.6 -73.22,167.04 -73.22,168.48 -73.22,169.92 -73.22,171.36 -73.22,172.8 -73.22,174.24 -73.22,175.68 -73.22,177.12 -73.22,178.56 -73.22,-180 -73.22))"], "date_created": "Fri, 25 May 2018 00:00:00 GMT", "description": "This data set includes digital 1 km grids of sub-bottom \n\tstratigraphy of most of Ross Sea. In addition to acoustic basement (same as top\n\tsyn-rift sedimentary rocks in Central Trough and probably other basins), these\n\tgrids include Oligocene and Miocene horizons that are unconformities in most\n\tareas. A sea floor grid is also included. Except for the sea floor grid, the\n\tgrids are trimmed to be relatively close to control of interpreted seismic\n\tstratigraphy. The grids are provided in two way travel time and in depth. Math\n\tcan be performed on the corresponding time and depth grids to recreate the 3D\n\tinterval velocity model that was used. The velocity of the water used was 1450\n\tm/s. More detailed descriptions of the work are found in the Final NSF report\n\tfor PLR1341585 by C. Sorlien, B. Luyendyk, and D. Wilson. The grids are\n\tcontinuous so are merged with the sea floor where there is outcrop, or with\n\tbasement if there is onlap, or with a young unconformity where there is\n\tsub-bottom truncation. The filenames include the name of the horizon\n\t(unconformity) and whether they are in time or depth. \\\"etc.\\\" means there are\n\ttwo or more horizons that have been merged. Most of the horizons are named and\n\tdefined in the ANTOSTRAT (1995) atlas. The starting points for many of these\n\thorizons are ANTOSTRAT [1995] near DSDP sites 273, 272, and 270. In other areas\n\twe deviate from the interpretation of ANTOSTRAT [1995]. late Oligocene through\n\tmiddle Miocene horizons, interpreted very close to the ANTOSTRAT [1995] at DSDP\n\tSite 273 in Central Trough, are much deeper in our interpretation within Terror\n\tRift. These horizon grids usually include the sea floor where there is outcrop\n\tor acoustic basement (top syn-rift in some basins) where there is onlap. \n\n\n\tANTOSTRAT (1995), Seismic Stratigraphic Atlas of the Ross Sea, in Geology and\n\tSeismic Stratigraphy of the Antarctic Margin, edited by A. K. Cooper, Barker,\n\tP. F., Brancolini, G., 22 plates, American Geophysical Union, Washington,\n\tD.C.", "east": -171.7, "geometry": ["POINT(176.95 -75.945)"], "keywords": "Antarctica; Continental Margin; Geology/Geophysics - Other; Marine Geoscience; Miocene; Oligocene; Seismic Reflection", "locations": "Antarctica", "north": -73.22, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Sorlien, Christopher; Wilson, Douglas S.", "project_titles": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea", "projects": [{"proj_uid": "p0000271", "repository": "USAP-DC", "title": "Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.67, "title": "Ross Sea unconformities digital grids in depth and two-way time", "uid": "601098", "west": 165.6}, {"awards": "0338087 Scheltema, Rudolf", "bounds_geometry": ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research.", "east": -54.0, "geometry": ["POINT(-62 -60.5)"], "keywords": "Antarctica; Biota; Oceans; R/v Laurence M. Gould; Sample/collection Description; Sample/Collection Description; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -53.0, "nsf_funding_programs": null, "persons": "Scheltema, Rudolf", "project_titles": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "projects": [{"proj_uid": "p0000189", "repository": "USAP-DC", "title": "Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.0, "title": "Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates", "uid": "600035", "west": -70.0}, {"awards": "0439906 Koch, Paul", "bounds_geometry": ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "During previous NSF-sponsored research, the PI\u0027s discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses.\n\nBecause of extreme isolation of the Antarctic continent since the \nEarly Oligocene, one expects a unique invertebrate benthic fauna with \na high degree of endemism. Yet some invertebrate taxa that constitute \nimportant ecological components of sedimentary benthic communities \ninclude more than 40 percent non-endemic species (e.g., benthic \npolychaetes). To account for non-endemic species, intermittent genetic \nexchange must occur between Antarctic and other (e.g. South American) \npopulations. The most likely mechanism for such gene flow, at least \nfor in-faunal and mobile macrobenthos, is dispersal of planktonic \nlarvae across the sub- Antarctic and Antarctic polar fronts. To test \nfor larval dispersal as a mechanism of maintaining genetic continuity \nacross polar fronts, the scientists propose to (1) take plankton \nsamples along transects across Drake passage during both the austral \nsummer and winter seasons while concurrently collecting the \nappropriate hydrographic data. Such data will help elucidate the \nhydrographic mechanisms that allow dispersal across Drake Passage. \nUsing a molecular phylogenetic approach, they will (2) compare \nseemingly identical adult forms from Antarctic and South America \ncontinents to identify genetic breaks, historical gene flow, and \ncontrol for the presence of cryptic species. (3) Similar molecular \ntools will be used to relate planktonic larvae to their adult forms. \nThrough this procedure, they propose to link the larval forms \nrespectively to their Antarctic or South America origins. The proposed \nwork builds on previous research that provides the basis for this \neffort to develop a synthetic understanding of historical gene flow \nand present day dispersal mechanism in South American/Drake Passage/ \nAntarctic Peninsular region. Furthermore, this work represents one of \nthe first attempts to examine recent gene flow in Antarctic benthic \ninvertebrates. Graduate students and a postdoctoral fellow will be \ntrained during this research\n", "east": 168.0, "geometry": ["POINT(165 -75)"], "keywords": "Biota; Isotope; Penguin; Ross Sea; Seals; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -72.0, "nsf_funding_programs": null, "persons": "Koch, Paul", "project_titles": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "projects": [{"proj_uid": "p0000533", "repository": "USAP-DC", "title": "Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change", "uid": "600041", "west": 162.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Major and trace element analyses of Eocene-Oligocene marine sediments from ODP Site 696, South Orkney Microcontinent
|
1743643 |
2022-06-22 | Passchier, Sandra; Hojnacki, Victoria; Li, Xiaona; States, Abbey; Lepp, Allison |
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition |
This dataset contains measurements of major and trace elements on 190 samples of Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. The composition of detrital, biogenic and authigenic sediment components was assessed via whole rock geochemistry of sediment samples. Instrument analysis was completed at Montclair State University. | ["POINT(-42.933 -61.849)"] | ["POINT(-42.933 -61.849)"] | false | false |
Particle-size distributions of Eocene-Oligocene sediment from ODP Site 696, South Orkney Microcontinent
|
1743643 |
2022-06-21 | Passchier, Sandra; Lepp, Allison; Horowitz Castaldo, Josie; Light, Jennifer |
Timing and Spatial Distribution of Antarctic Ice Sheet Growth and Sea-ice Formation across the Eocene-Oligocene Transition |
This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 696 drilled in 650 m water depth on the South Orkney Microcontinent. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Diatoms were generally either absent or present in trace amounts in the Eocene-Oligocene interval and were not removed. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive Index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(-42.933 -61.849)"] | ["POINT(-42.933 -61.849)"] | false | false |
Apatite (U-Th)/He and TREE Data Central Transantarctic Mountains
|
1443556 |
2021-07-13 | Thomson, Stuart; He, John; Reiners, Peter; Hemming, Sidney R.; Licht, Kathy |
Collaborative Research: East Antarctic Glacial Landscape Evolution (EAGLE): A Study using Combined Thermochronology, Geochronology and Provenance Analysis |
List of supplementary tables from publication He, J., Thomson, S.N., Reiners, P.W., Hemming, S.R., and Licht, K.J., 2021, Rapid erosion of the central Transantarctic Mountains at the Eocene-Oligocene transition: Evidence from skewed (U-Th)/He date distributions near Beardmore Glacier: Earth and Planetary Science Letters, v. 567, p. 117009, doi:10.1016/j.epsl.2021.117009. Supp. Table 1 U-Th/He data Supp. Table 2 Trace and REE data Supp. Table 3 Compilation with elevation-weighted resampling Supp. Table 4 Summary statistics and sampling distribution of large-n samples and compilations. Supp. Table 5 Perpendicular distance of BAR and CMK sample to Kukri Peneplain Supp. Table 6 Compilation of apatite He data from east Antarctica used in Fig. 1 | ["POLYGON((-180 -83.5,-178 -83.5,-176 -83.5,-174 -83.5,-172 -83.5,-170 -83.5,-168 -83.5,-166 -83.5,-164 -83.5,-162 -83.5,-160 -83.5,-160 -83.75,-160 -84,-160 -84.25,-160 -84.5,-160 -84.75,-160 -85,-160 -85.25,-160 -85.5,-160 -85.75,-160 -86,-162 -86,-164 -86,-166 -86,-168 -86,-170 -86,-172 -86,-174 -86,-176 -86,-178 -86,180 -86,179 -86,178 -86,177 -86,176 -86,175 -86,174 -86,173 -86,172 -86,171 -86,170 -86,170 -85.75,170 -85.5,170 -85.25,170 -85,170 -84.75,170 -84.5,170 -84.25,170 -84,170 -83.75,170 -83.5,171 -83.5,172 -83.5,173 -83.5,174 -83.5,175 -83.5,176 -83.5,177 -83.5,178 -83.5,179 -83.5,-180 -83.5))"] | ["POINT(-175 -84.75)"] | false | false |
Particle-size distributions of Eocene sediment from ODP Site 1166, Prydz Bay
|
1245283 |
2021-06-21 | Passchier, Sandra; Ciarletta, Daniel |
The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin |
This dataset contains measurements of terrigenous particle-size distributions on Eocene sediment from Ocean Drilling Program Site 1166 in Prydz Bay. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(74.787 -67.696167)"] | ["POINT(74.787 -67.696167)"] | false | false |
Particle-size distributions of Eocene-Oligocene sediment from ODP Site 742, Prydz Bay
|
1245283 |
2021-06-21 | Passchier, Sandra; Ciarletta, Daniel |
The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin |
This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 742 in Prydz Bay. Carbonate and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(75.4045 -67.549667)"] | ["POINT(75.4045 -67.549667)"] | false | false |
Particle-size distributions of Eocene-Oligocene sediment from ODP Site 739, Prydz Bay
|
1245283 |
2021-06-21 | Passchier, Sandra; Ciarletta, Daniel |
The Stratigraphic Expression of the Onset of Glaciation in Eocene-Oligocene Successions on the Antarctic Continental Margin |
This dataset contains measurements of terrigenous particle-size distributions on Eocene-Oligocene sediment from Ocean Drilling Program Site 739 in Prydz Bay. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2, 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.544 (Quartz) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(75.081833 -67.276167)"] | ["POINT(75.081833 -67.276167)"] | false | false |
Ross Sea unconformities digital grids in depth and two-way time
|
1341585 |
2018-05-25 | Sorlien, Christopher; Wilson, Douglas S. |
Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea |
This data set includes digital 1 km grids of sub-bottom stratigraphy of most of Ross Sea. In addition to acoustic basement (same as top syn-rift sedimentary rocks in Central Trough and probably other basins), these grids include Oligocene and Miocene horizons that are unconformities in most areas. A sea floor grid is also included. Except for the sea floor grid, the grids are trimmed to be relatively close to control of interpreted seismic stratigraphy. The grids are provided in two way travel time and in depth. Math can be performed on the corresponding time and depth grids to recreate the 3D interval velocity model that was used. The velocity of the water used was 1450 m/s. More detailed descriptions of the work are found in the Final NSF report for PLR1341585 by C. Sorlien, B. Luyendyk, and D. Wilson. The grids are continuous so are merged with the sea floor where there is outcrop, or with basement if there is onlap, or with a young unconformity where there is sub-bottom truncation. The filenames include the name of the horizon (unconformity) and whether they are in time or depth. \"etc.\" means there are two or more horizons that have been merged. Most of the horizons are named and defined in the ANTOSTRAT (1995) atlas. The starting points for many of these horizons are ANTOSTRAT [1995] near DSDP sites 273, 272, and 270. In other areas we deviate from the interpretation of ANTOSTRAT [1995]. late Oligocene through middle Miocene horizons, interpreted very close to the ANTOSTRAT [1995] at DSDP Site 273 in Central Trough, are much deeper in our interpretation within Terror Rift. These horizon grids usually include the sea floor where there is outcrop or acoustic basement (top syn-rift in some basins) where there is onlap. ANTOSTRAT (1995), Seismic Stratigraphic Atlas of the Ross Sea, in Geology and Seismic Stratigraphy of the Antarctic Margin, edited by A. K. Cooper, Barker, P. F., Brancolini, G., 22 plates, American Geophysical Union, Washington, D.C. | ["POLYGON((-180 -73.22,-179.17 -73.22,-178.34 -73.22,-177.51 -73.22,-176.68 -73.22,-175.85 -73.22,-175.02 -73.22,-174.19 -73.22,-173.36 -73.22,-172.53 -73.22,-171.7 -73.22,-171.7 -73.765,-171.7 -74.31,-171.7 -74.855,-171.7 -75.4,-171.7 -75.945,-171.7 -76.49,-171.7 -77.035,-171.7 -77.58,-171.7 -78.125,-171.7 -78.67,-172.53 -78.67,-173.36 -78.67,-174.19 -78.67,-175.02 -78.67,-175.85 -78.67,-176.68 -78.67,-177.51 -78.67,-178.34 -78.67,-179.17 -78.67,180 -78.67,178.56 -78.67,177.12 -78.67,175.68 -78.67,174.24 -78.67,172.8 -78.67,171.36 -78.67,169.92 -78.67,168.48 -78.67,167.04 -78.67,165.6 -78.67,165.6 -78.125,165.6 -77.58,165.6 -77.035,165.6 -76.49,165.6 -75.945,165.6 -75.4,165.6 -74.855,165.6 -74.31,165.6 -73.765,165.6 -73.22,167.04 -73.22,168.48 -73.22,169.92 -73.22,171.36 -73.22,172.8 -73.22,174.24 -73.22,175.68 -73.22,177.12 -73.22,178.56 -73.22,-180 -73.22))"] | ["POINT(176.95 -75.945)"] | false | false |
Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates
|
0338087 |
2010-01-01 | Scheltema, Rudolf |
Collaborative Research: Relevance of Planktonic Larval Dispersal to Endemism and Biogeography of Antarctic Benthic Invertebrates |
Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research. | ["POLYGON((-70 -53,-68.4 -53,-66.8 -53,-65.2 -53,-63.6 -53,-62 -53,-60.4 -53,-58.8 -53,-57.2 -53,-55.6 -53,-54 -53,-54 -54.5,-54 -56,-54 -57.5,-54 -59,-54 -60.5,-54 -62,-54 -63.5,-54 -65,-54 -66.5,-54 -68,-55.6 -68,-57.2 -68,-58.8 -68,-60.4 -68,-62 -68,-63.6 -68,-65.2 -68,-66.8 -68,-68.4 -68,-70 -68,-70 -66.5,-70 -65,-70 -63.5,-70 -62,-70 -60.5,-70 -59,-70 -57.5,-70 -56,-70 -54.5,-70 -53))"] | ["POINT(-62 -60.5)"] | false | false |
Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change
|
0439906 |
2010-01-01 | Koch, Paul |
Collaborative Research: Abandoned Elephant Seal Colonies in Antarctica: Integration of Genetic, Isotopic, and Geologic Approaches toward Understanding Holocene Environmental Change |
During previous NSF-sponsored research, the PI's discovered that southern elephant seal colonies once existed along the Victoria Land coast (VLC) of Antarctica, a region where they are no longer observed. Molted seal skin and hair occur along 300 km of coastline, more than 1000 km from any extant colony. The last record of a seal at a former colony site is at ~A.D. 1600. Because abandonment occurred prior to subantarctic sealing, disappearance of the VLC colony probably was due to environmental factors, possibly cooling and encroachment of land-fast, perennial sea ice that made access to haul-out sites difficult. The record of seal inhabitation along the VLC, therefore, has potential as a proxy for climate change. Elephant seals are a predominantly subantarctic species with circumpolar distribution. Genetic studies have revealed significant differentiation among populations, particularly with regard to that at Macquarie I., which is the extant population nearest to the abandoned VLC colony. Not only is the Macquarie population unique genetically, but it is has undergone unexplained decline of 2%/yr over the last 50 years3. In a pilot study, genetic analyses showed a close relationship between the VLC seals and those at Macquarie I. An understanding of the relationship between the two populations, as well as of the environmental pressures that led to the demise of the VLC colonies, will provide a better understanding of present-day population genetic structure, the effect of environmental change on seal populations, and possibly the reasons underlying the modern decline at Macquarie Island. This project addresses several key research problems: (1) Why did elephant seals colonize and then abandon the VLC? (2) What does the elephant seal record reveal about Holocene climate change and sea-ice conditions? (3) What were the foraging strategies of the seals and did these strategies change over time as climate varied? (4) How does the genetic structure of the VLC seals relate to extant populations? (5) How did genetic diversity change over time and with colony decline? (6) Using ancient samples to estimate mtDNA mutation rates, what can be learned about VLC population dynamics over time? (7) What was the ecological relationship between elephant seals and Adelie penguins that occupied the same sites, but apparently at different times? The proposed work includes the professional training of young researchers and incorporation of data into graduate and undergraduate courses. Because of extreme isolation of the Antarctic continent since the Early Oligocene, one expects a unique invertebrate benthic fauna with a high degree of endemism. Yet some invertebrate taxa that constitute important ecological components of sedimentary benthic communities include more than 40 percent non-endemic species (e.g., benthic polychaetes). To account for non-endemic species, intermittent genetic exchange must occur between Antarctic and other (e.g. South American) populations. The most likely mechanism for such gene flow, at least for in-faunal and mobile macrobenthos, is dispersal of planktonic larvae across the sub- Antarctic and Antarctic polar fronts. To test for larval dispersal as a mechanism of maintaining genetic continuity across polar fronts, the scientists propose to (1) take plankton samples along transects across Drake passage during both the austral summer and winter seasons while concurrently collecting the appropriate hydrographic data. Such data will help elucidate the hydrographic mechanisms that allow dispersal across Drake Passage. Using a molecular phylogenetic approach, they will (2) compare seemingly identical adult forms from Antarctic and South America continents to identify genetic breaks, historical gene flow, and control for the presence of cryptic species. (3) Similar molecular tools will be used to relate planktonic larvae to their adult forms. Through this procedure, they propose to link the larval forms respectively to their Antarctic or South America origins. The proposed work builds on previous research that provides the basis for this effort to develop a synthetic understanding of historical gene flow and present day dispersal mechanism in South American/Drake Passage/ Antarctic Peninsular region. Furthermore, this work represents one of the first attempts to examine recent gene flow in Antarctic benthic invertebrates. Graduate students and a postdoctoral fellow will be trained during this research | ["POLYGON((162 -72,162.6 -72,163.2 -72,163.8 -72,164.4 -72,165 -72,165.6 -72,166.2 -72,166.8 -72,167.4 -72,168 -72,168 -72.6,168 -73.2,168 -73.8,168 -74.4,168 -75,168 -75.6,168 -76.2,168 -76.8,168 -77.4,168 -78,167.4 -78,166.8 -78,166.2 -78,165.6 -78,165 -78,164.4 -78,163.8 -78,163.2 -78,162.6 -78,162 -78,162 -77.4,162 -76.8,162 -76.2,162 -75.6,162 -75,162 -74.4,162 -73.8,162 -73.2,162 -72.6,162 -72))"] | ["POINT(165 -75)"] | false | false |