{"dp_type": "Dataset", "free_text": "Iceberg"}
[{"awards": "2139002 Huth, Alexander", "bounds_geometry": ["POLYGON((-67 -66,-66.3 -66,-65.6 -66,-64.9 -66,-64.2 -66,-63.5 -66,-62.8 -66,-62.1 -66,-61.4 -66,-60.7 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.7 -70,-61.4 -70,-62.1 -70,-62.8 -70,-63.5 -70,-64.2 -70,-64.9 -70,-65.6 -70,-66.3 -70,-67 -70,-67 -69.6,-67 -69.2,-67 -68.8,-67 -68.4,-67 -68,-67 -67.6,-67 -67.2,-67 -66.8,-67 -66.4,-67 -66))"], "date_created": "Thu, 24 Aug 2023 00:00:00 GMT", "description": "This dataset contains a model (Elmer/Ice Fortran modules) to simulate rifting on ice shelves. The model combines the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. Additionally, it accounts for rift-flank boundary processes, including pressure on rift-flank walls from seawater, contact between flanks, and ice m\u00e9lange that may also transmit stress between flanks.\r\n\r\nThis dataset also contains the input data (Elmer restart files), input files (Elmer .sifs), and Slurm batch scripts to run five experiments. All experiments aim to simulate the final two years of rift propagation that led to the calving of tabular iceberg A68 from Larsen C ice shelf in 2017. However, each experiment differs in its treatment of rift-flank boundary processes, which affects the rift path.\r\n\r\nFor more information, see the associated publication (Huth et al., 2023).", "east": -60.0, "geometry": ["POINT(-63.5 -68)"], "keywords": "Antarctica; Glaciology; Iceberg; Ice Shelf Dynamics; Larsen C Ice Shelf; Model Data; Modeling", "locations": "Larsen C Ice Shelf; Antarctica", "north": -66.0, "nsf_funding_programs": "Post Doc/Travel", "persons": "Huth, Alexander", "project_titles": "OPP-PRF Calving, Icebergs, and Climate", "projects": [{"proj_uid": "p0010276", "repository": "USAP-DC", "title": "OPP-PRF Calving, Icebergs, and Climate"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Simulations of ice-shelf rifting on Larsen C Ice Shelf", "uid": "601718", "west": -67.0}, {"awards": "1933764 Enderlin, Ellyn; 1643455 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 06 Apr 2023 00:00:00 GMT", "description": "This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Elevation; Glaciology; Iceberg; Meltwater; Submarine Melt", "locations": "Antarctica; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Remotely-sensed iceberg geometries and meltwater fluxes", "uid": "601679", "west": -180.0}, {"awards": "1933764 Enderlin, Ellyn", "bounds_geometry": ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"], "date_created": "Mon, 24 Oct 2022 00:00:00 GMT", "description": "This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994\u20142100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994\u20142019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in \u201c.mat\u201d format, which can be read using MATLAB\u2019s \u201cload\u201d function or using Python with the Scipy \u201cscipy.io.loadmat\u201d function. ", "east": -62.0, "geometry": ["POINT(-62.55 -65.4)"], "keywords": "Antarctica; Antarctic Peninsula; Crane Glacier; Glacier Dynamics; Glacier Mass Discharge; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Modeling; Model Output", "locations": "Antarctic Peninsula; Crane Glacier; Antarctica", "north": -65.2, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate", "project_titles": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs", "projects": [{"proj_uid": "p0010210", "repository": "USAP-DC", "title": "Antarctic Submarine Melt Variability from Remote Sensing of Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.6, "title": "Crane Glacier centerline observations and modeling results ", "uid": "601617", "west": -63.1}, {"awards": "1744835 Wagner, Till", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Tue, 18 Jan 2022 00:00:00 GMT", "description": "Because of difficulties in adequately simulating their breakup, large Antarctic icebergs to date have either not been represented in models or represented but with no breakup scheme such that they consistently survive too long and travel too far compared with observations. Here, we introduce a representation of iceberg fracturing using a breakup scheme based on the \u201cfootloose mechanism.\u201d We optimize the parameters of this breakup scheme by forcing the iceberg model with an ocean state estimate and comparing the modeled iceberg trajectories and areas with the Antarctic Iceberg Tracking Database. We show that including large icebergs and a representation of their breakup substantially affects the iceberg meltwater distribution, with implications for the circulation and stratification of the Southern Ocean.\r\n\r\nThis data link includes the model developed for the study, including a link to the forcing fields needed to replicate the model results. ", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Footloose Mechanism; Iceberg Breakup; Iceberg Decay; Model; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "persons": "Wagner, Till", "project_titles": "Modeling Giant Icebergs and Their Decay", "projects": [{"proj_uid": "p0010290", "repository": "USAP-DC", "title": "Modeling Giant Icebergs and Their Decay"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Model of iceberg drift and decay including breakup", "uid": "601510", "west": -180.0}, {"awards": "9909367 Leventer, Amy", "bounds_geometry": ["POINT(62.99 -67.13)"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This data set was acquired with a Jumbo Piston Core Sediment Sampler during R/V Nathaniel B. Palmer expedition NBP0101 conducted in 2001. This data file is of Microsoft Excel format and includes Quantitative Diatom Assemblage data; counts completed on randomly settled slides (Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12 (1), 171-178, doi:10.1007/BF00678093). These counts were completed at closely spaced intervals in NBP0101 JPC41, a jumbo piston core from Iceberg Alley, Mac.Robertson Shelf, East Antarctica", "east": 62.99, "geometry": ["POINT(62.99 -67.13)"], "keywords": "Antarctica; Biota; Diatom; East Antarctica; Mac. Robertson Shelf; Marine Geoscience; Microscope; NBP0101; Paleoclimate; Piston Corer; R/v Nathaniel B. Palmer; Sediment Core; Species Abundance", "locations": "Antarctica; Mac. Robertson Shelf; Mac. Robertson Shelf; East Antarctica", "north": -67.13, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Leventer, Amy", "project_titles": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin", "projects": [{"proj_uid": "p0000609", "repository": "USAP-DC", "title": "Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.13, "title": "Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101", "uid": "601307", "west": 62.99}, {"awards": "1822289 Vernet, Maria", "bounds_geometry": ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"], "date_created": "Mon, 29 Apr 2019 00:00:00 GMT", "description": "Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. \r\n\r\n\r\n\r\nThis RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored.", "east": -55.020546, "geometry": ["POINT(-57.2113475 -63.396513)"], "keywords": "Antarctica; Biota; Chlorophyll; CTD; Glacier; Iceberg; Ice Shelf; Larsen C Ice Shelf; Oceans; Physical Oceanography; Phytoplankton; Sample Location; Sea Ice; Southern Ocean; Station List", "locations": "Southern Ocean; Antarctica; Larsen C Ice Shelf", "north": -62.131908, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Pan, B. Jack; Vernet, Maria", "project_titles": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\"", "projects": [{"proj_uid": "p0010029", "repository": "USAP-DC", "title": "RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: \"Time zero\""}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.661118, "title": "CTD stations and logs for Araon 2018 ANA08D expedition to Larson C", "uid": "601178", "west": -59.402149}, {"awards": "1443733 Winsor, Peter", "bounds_geometry": ["POLYGON((-62.68 -64.72,-62.648 -64.72,-62.616 -64.72,-62.584 -64.72,-62.552 -64.72,-62.52 -64.72,-62.488 -64.72,-62.456 -64.72,-62.424 -64.72,-62.392 -64.72,-62.36 -64.72,-62.36 -64.74,-62.36 -64.76,-62.36 -64.78,-62.36 -64.8,-62.36 -64.82,-62.36 -64.84,-62.36 -64.86,-62.36 -64.88,-62.36 -64.9,-62.36 -64.92,-62.392 -64.92,-62.424 -64.92,-62.456 -64.92,-62.488 -64.92,-62.52 -64.92,-62.552 -64.92,-62.584 -64.92,-62.616 -64.92,-62.648 -64.92,-62.68 -64.92,-62.68 -64.9,-62.68 -64.88,-62.68 -64.86,-62.68 -64.84,-62.68 -64.82,-62.68 -64.8,-62.68 -64.78,-62.68 -64.76,-62.68 -64.74,-62.68 -64.72))"], "date_created": "Tue, 07 Aug 2018 00:00:00 GMT", "description": "This dataset includes timelapse images from five cameras set up at four different locations in and just outside of Andvord Bay on the Western Antarctic Peninsula. The cameras were set up to track glacier ice motion, calving and tracking of ice bergs, and sea ice formation and melt. Two cameras (hi-res) were Canon Rebel DSLR in a timelapse system designed by Harbortronics; the remaining three cameras (lo-res) were from Campbell Scientific and were part of a weather station.", "east": -62.36, "geometry": ["POINT(-62.52 -64.82)"], "keywords": "Antarctica; Antarctic Peninsula; Glaciers/ice Sheet; Glaciers/Ice Sheet; Iceberg; Photo; Photo/video; Photo/Video", "locations": "Antarctica; Antarctic Peninsula", "north": -64.72, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "persons": "Truffer, Martin; Winsor, Peter", "project_titles": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)", "projects": [{"proj_uid": "p0010010", "repository": "USAP-DC", "title": "Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "FjordEco", "south": -64.92, "title": "Andvord Bay Glacier Timelapse", "uid": "601111", "west": -62.68}, {"awards": "0944193 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-88 42,-87.9 42,-87.8 42,-87.7 42,-87.6 42,-87.5 42,-87.4 42,-87.3 42,-87.2 42,-87.1 42,-87 42,-87 41.9,-87 41.8,-87 41.7,-87 41.6,-87 41.5,-87 41.4,-87 41.3,-87 41.2,-87 41.1,-87 41,-87.1 41,-87.2 41,-87.3 41,-87.4 41,-87.5 41,-87.6 41,-87.7 41,-87.8 41,-87.9 41,-88 41,-88 41.1,-88 41.2,-88 41.3,-88 41.4,-88 41.5,-88 41.6,-88 41.7,-88 41.8,-88 41.9,-88 42))"], "date_created": "Mon, 25 Aug 2014 00:00:00 GMT", "description": "This data set represents a typical single iceberg capsize experiment. Included in this data set are all the parameters of the plastic iceberg\u0027s density and dimensions, the density of the water surrounding the iceberg, and the value of gravitational acceleration. The timeseries data consists of all the kinematic and energetic variables as a function of time for the iceberg capsize experiment.", "east": -87.0, "geometry": ["POINT(-87.5 41.5)"], "keywords": "Antarctica; Glaciology; Iceberg; Kinetics", "locations": "Antarctica", "north": 42.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "MacAyeal, Douglas", "project_titles": "Collaborative Research: Explosive Ice-Shelf Disintegration", "projects": [{"proj_uid": "p0000005", "repository": "USAP-DC", "title": "Collaborative Research: Explosive Ice-Shelf Disintegration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": 41.0, "title": "Iceberg Capsize Kinematics and Energetics", "uid": "609590", "west": -88.0}, {"awards": "0838937 Costa, Daniel", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.\n", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Antarctica; Biota; Oceans; Ross Sea; Southern Ocean", "locations": "Antarctica; Southern Ocean; Ross Sea", "north": -75.0, "nsf_funding_programs": null, "persons": "Costa, Daniel", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600025", "west": 162.0}, {"awards": "0944489 Williams, Trevor", "bounds_geometry": ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences\n", "east": 163.0, "geometry": ["POINT(54 -68)"], "keywords": "Geochronology; George V Land; IODP U1356; IODP U1361; Marine Sediments; ODP1165; Prydz Bay; Solid Earth; Southern Ocean; Wilkes Land", "locations": "Southern Ocean; George V Land; Prydz Bay; Wilkes Land", "north": -58.0, "nsf_funding_programs": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "project_titles": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "projects": [{"proj_uid": "p0000353", "repository": "USAP-DC", "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "uid": "600116", "west": -55.0}, {"awards": "0838892 Burns, Jennifer", "bounds_geometry": ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal\u0027s diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts.", "east": 169.0, "geometry": ["POINT(165.5 -76.5)"], "keywords": "Biota; Oceans; Ross Sea; Seals; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -75.0, "nsf_funding_programs": null, "persons": "Burns, Jennifer", "project_titles": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "projects": [{"proj_uid": "p0000661", "repository": "USAP-DC", "title": "Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea", "uid": "600101", "west": 162.0}, {"awards": "0540915 Scambos, Ted", "bounds_geometry": ["POLYGON((-60 -47,-55.5 -47,-51 -47,-46.5 -47,-42 -47,-37.5 -47,-33 -47,-28.5 -47,-24 -47,-19.5 -47,-15 -47,-15 -50.3,-15 -53.6,-15 -56.9,-15 -60.2,-15 -63.5,-15 -66.8,-15 -70.1,-15 -73.4,-15 -76.7,-15 -80,-19.5 -80,-24 -80,-28.5 -80,-33 -80,-37.5 -80,-42 -80,-46.5 -80,-51 -80,-55.5 -80,-60 -80,-60 -76.7,-60 -73.4,-60 -70.1,-60 -66.8,-60 -63.5,-60 -60.2,-60 -56.9,-60 -53.6,-60 -50.3,-60 -47))"], "date_created": "Mon, 31 Jan 2011 00:00:00 GMT", "description": "This data set includes a variety of station data from two Antarctic icebergs. In 2006, researchers installed specialized weather stations called Automated Meteorological Ice Geophysical Observing Stations (AMIGOS) on two icebergs, A22A and UK211 (nicknamed Amigosberg), near Marambio Station in Antarctica.The AMIGOS stations were outfitted with Global Positioning System (GPS) sensors, cameras, and an electronic thermometer. They collected data from their installation in March 2006 until the icebergs crumbled into the ocean, in 2006 (Amigosberg) and 2007 (A22A). Available data include GPS, temperature and ablation measurements, and photographs of the station base and of flag lines extending out to the edges of the icebergs. Snow pit data from iceberg A22A is also included.\n\nThis data set was collected as part of a National Science Foundation Office of Polar Programs Special Grant for Exploratory Research, to explore the possibility of using drfting icebergs to investigate ice shelf evolution caused by climate change. The expedition, nicknamed IceTrek, was conducted jointly with Argentine scientists. The data are available via FTP in ASCII text (.txt) and Joint Photographic Experts Group (.jpg) formats.", "east": -15.0, "geometry": ["POINT(-37.5 -63.5)"], "keywords": "Ablation; Atmosphere; Glaciology; GPS; Meteorology; Oceans; Photo/video; Photo/Video; Sea Ice; Southern Ocean; Temperature", "locations": "Southern Ocean", "north": -47.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan", "project_titles": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves", "projects": [{"proj_uid": "p0000003", "repository": "USAP-DC", "title": "Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007", "uid": "609466", "west": -60.0}, {"awards": "0636319 Shaw, Timothy", "bounds_geometry": ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.6638, "geometry": ["POINT(-47.29195 -60.14805)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Oceans; Sea Ice; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Weddell Sea; Sea Surface; Southern Ocean", "north": -57.5061, "nsf_funding_programs": null, "persons": "Shaw, Tim; Twining, Benjamin", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.79, "title": "Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600064", "west": -51.9201}, {"awards": "0636543 Murray, Alison", "bounds_geometry": ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -42.57138, "geometry": ["POINT(-47.277705 -60.21953)"], "keywords": "Biota; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Ice; Southern Ocean; Weddell Sea", "locations": "Southern Ocean; Weddell Sea", "north": -57.58068, "nsf_funding_programs": null, "persons": "Murray, Alison", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -62.85838, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600065", "west": -51.98403}, {"awards": "0636730 Vernet, Maria", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.\n", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; Biota; Chemistry:fluid; Chemistry:Fluid; Geochemistry; NBP0902; Oceans; Physical Oceanography; Sea Surface; Southern Ocean; Weddell Sea", "locations": "Sea Surface; Antarctica; Southern Ocean; Weddell Sea", "north": -52.0, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean.", "projects": [{"proj_uid": "p0000532", "repository": "USAP-DC", "title": "Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600068", "west": -55.0}, {"awards": "0636723 Helly, John", "bounds_geometry": ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children\u0027s books will participate in cruises to produce an account of the expedition and a daily interactive website.", "east": -40.0, "geometry": ["POINT(-47.5 -58.5)"], "keywords": "Antarctica; NBP0902; Oceans; Physical Oceanography; Southern Ocean; Weddell Sea", "locations": "Antarctica; Southern Ocean; Weddell Sea", "north": -52.0, "nsf_funding_programs": null, "persons": "Helly, John", "project_titles": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "projects": [{"proj_uid": "p0000511", "repository": "USAP-DC", "title": "Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean", "uid": "600067", "west": -55.0}, {"awards": "0538594 Ponganis, Paul", "bounds_geometry": ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, \u0027backpack\u0027 near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego.", "east": 166.317, "geometry": ["POINT(166.15 -77.7165)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -77.683, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "projects": [{"proj_uid": "p0000535", "repository": "USAP-DC", "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.75, "title": "The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins", "uid": "600057", "west": 165.983}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(-178 -78)"], "date_created": "Mon, 15 Dec 2008 00:00:00 GMT", "description": "Since November of 2006, 12 thermistors were planted in the upper 16 meters of the firn on the Ross Ice Shelf near its calving front. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as the ice shelf evolves. Data are available in comma-delimited ASCII format. Data are available via FTP.", "east": -178.0, "geometry": ["POINT(-178 -78)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ross Ice Shelf; Snow/ice; Snow/Ice; Temperature", "locations": "Antarctica; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ross Ice Shelf Firn Temperature, Antarctica", "uid": "609354", "west": -178.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -78)"], "date_created": "Fri, 28 Nov 2008 00:00:00 GMT", "description": "Since November of 2005, 12 thermistors were planted in the upper 2.5 meters of the firn on iceberg C16, Antarctica. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as an iceberg moves north into warmer climate.", "east": 168.0, "geometry": ["POINT(168 -78)"], "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Snow/ice; Snow/Ice; Southern Ocean; Temperature", "locations": "Southern Ocean; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Iceberg Firn Temperatures, Antarctica", "uid": "609352", "west": 168.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -77)"], "date_created": "Tue, 25 Nov 2008 00:00:00 GMT", "description": "Time series of tiltmeter observations (tilt about two horizontal axes in microradians) for a 34 day period on iceberg C16 while it was aground near Ross Island in late 2001 to early 2002. Data shows tilts associated with differential basal melting of the iceberg, tidal motion and short-term tilts induced by iceberg tremor phenomena triggered by collisions between B15A and C16. The sample rate was 5 seconds. Data are available in comma-delimited ASCII format. Data are available via FTP.", "east": 168.0, "geometry": ["POINT(168 -77)"], "keywords": "Glaciology; Iceberg; Oceans; Ross Ice Shelf; Sea Ice; Southern Ocean; Tiltmeter", "locations": "Ross Ice Shelf; Southern Ocean", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Kim, Young-Jin; Bliss, Andrew; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Iceberg Tiltmeter Measurements, Antarctica", "uid": "609353", "west": 168.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(-178 -78)"], "date_created": "Tue, 11 Nov 2008 00:00:00 GMT", "description": "From November 2004 to March 2005, on the Ross Ice Shelf, Antarctica, an automated \"web cam\" was operated on the southward facing lip of a large ice-shelf rift to produce a photographic record of processes active in ice-shelf rift systems. Four times each day, the camera took a photograph in four repeating directions.", "east": -178.0, "geometry": ["POINT(-178 -78)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Photo/video; Photo/Video; Ross Ice Shelf", "locations": "Antarctica; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brunt, Kelly; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Ice Shelf Rift Time-Lapse Photography, Antarctica", "uid": "609351", "west": -178.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POLYGON((-178 -60,-149.2 -60,-120.4 -60,-91.6 -60,-62.8 -60,-34 -60,-5.2 -60,23.6 -60,52.4 -60,81.2 -60,110 -60,110 -61.8,110 -63.6,110 -65.4,110 -67.2,110 -69,110 -70.8,110 -72.6,110 -74.4,110 -76.2,110 -78,81.2 -78,52.4 -78,23.6 -78,-5.2 -78,-34 -78,-62.8 -78,-91.6 -78,-120.4 -78,-149.2 -78,-178 -78,-178 -76.2,-178 -74.4,-178 -72.6,-178 -70.8,-178 -69,-178 -67.2,-178 -65.4,-178 -63.6,-178 -61.8,-178 -60))"], "date_created": "Mon, 20 Oct 2008 00:00:00 GMT", "description": "During 2001-2006, 6 giant icebergs (B15A, B15J, B15K, C16 and C25) adrift in the southwestern Ross Sea, Antarctica, were instrumented with global positioning system (GPS) receivers, magnetic compasses and automatic weather stations (AWS), to monitor their behavior in the near-coastal environment and to record their exit into the Southern Ocean. The GPS and AWS data were collected on a 20-minute interval, Many of the station data timeseries are continuous for periods of up to 7 years, with icebergs C16 and B15J having the longest records.\n\nThe data is considered useful for examining the processes of iceberg drift (and other behaviors) on time scales that are shorter than what is possible through satellite image iceberg tracking. Data are available in comma-delimited ASCII format and Matlab native mat files.", "east": 110.0, "geometry": ["POINT(-34 -69)"], "keywords": "AWS; Glaciology; GPS; Iceberg; Meteorology; Oceans; Ross Sea; Sea Ice; Southern Ocean; Weatherstation", "locations": "Ross Sea; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica", "uid": "609350", "west": -178.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -77)"], "date_created": "Wed, 01 Oct 2008 00:00:00 GMT", "description": "Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to understand the relevance of IHT to iceberg calving, drift and break-up. The seismic observations reveal that the IHT signal consists of extended episodes of stick-slip icequakes (typically thousands per hour) generated when the ice-cliff edges of two tabular icebergs rub together during glancing, strike/slip type iceberg collisions (e.g., between C16 and B15A). With the source mechanism revealed, IHT may provide a promising signal useful for the study of iceberg behavior and iceberg-related processes such as climate-induced ice-shelf disintegration.\n\nHere, a single day of seismometer data for a single station on iceberg C16 is provided as an example of \"a day in the life of an iceberg\" for use by scientists and students wishing to know more about IHT. The station data is from C16 \"B\" site on C16\u0027s northeast corner, and the day is 27 December, 2003, a day when B15A struck C16 and caused an episode of tremor that was particularly easy to identify and understand. \n\nThis represents only a small fraction of the total data that exist for the seismic program on iceberg C16. The full data are archived at the IRIS data center (where seismic data is commonly archived). This one-day data set is to provide glaciologists with ready access to a good example of IHT that they can use for teaching and for demonstration purposes. Data are available in comma-delimited ASCII format and Matlab native mat files. Data are available via FTP.", "east": 168.0, "geometry": ["POINT(168 -77)"], "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "locations": "Southern Ocean; Ross Sea", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "uid": "609349", "west": 168.0}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(-178 -78)"], "date_created": "Wed, 01 Oct 2008 00:00:00 GMT", "description": "In October 2005, three geodetic GPS receivers were deployed on the Ross Ice Shelf near the ice front to observe short-term fluctuations in ice-shelf velocity associated with tidal forcing and other phenomena. Two stations were placed on either side of a large rift that is expected to eventually create the next iceberg to calve from the Ross Ice Shelf (called \"Nascent Iceberg\"). One station was established at a location near station R13, occupied in 1979 during the RIGGS project (Thomas et al., 1984), to determine if the near-ice-front part of the Ross Ice Shelf has significantly changed its long-term flow since the late 1970s.", "east": -178.0, "geometry": ["POINT(-178 -78)"], "keywords": "Antarctica; Geodesy; Geology/Geophysics - Other; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPS; Ross Ice Shelf; Southern Ocean", "locations": "Southern Ocean; Antarctica; Ross Ice Shelf", "north": -78.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Brunt, Kelly; King, Matthew; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica", "uid": "609347", "west": -178.0}, {"awards": "0229638 Ponganis, Paul", "bounds_geometry": ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"], "date_created": "Tue, 01 Jan 2008 00:00:00 GMT", "description": "The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies.", "east": 167.0, "geometry": ["POINT(165 -77.5)"], "keywords": "Antarctica; Biota; Oceans; Penguin; Southern Ocean", "locations": "Southern Ocean; Antarctica", "north": -77.0, "nsf_funding_programs": null, "persons": "Ponganis, Paul", "project_titles": "Diving Physiology and Behavior of Emperor Penguins", "projects": [{"proj_uid": "p0000239", "repository": "USAP-DC", "title": "Diving Physiology and Behavior of Emperor Penguins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Diving Physiology and Behavior of Emperor Penguins", "uid": "600031", "west": 163.0}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": null, "date_created": "Mon, 01 Jan 2001 00:00:00 GMT", "description": "Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1 km Data Set. NSIDC regularly reviews images of those ice shelves considered susceptible to rapid change due to climatic warming, and of several other major shelves that occasionally calve major icebergs.\n\nThe images in this site represent a selected subset of the available scenes, generally the clearest and most informative scenes available. The scenes are derived from either the AVHRR visible (vis) or thermal (temp) channels, enhanced by combining two channels using principal components processing. In the thermal images, bright areas are colder areas. A few additional scenes from other sensors (MODIS, Landsat) are included to provide some supplemental information on ice shelf structure and events.\n\nIf you wish to save an image, you can do so through the \u0027Save image as\u0027 option of the browser\u0027s pop-up menu. For more information contact NSIDC User Services.", "east": null, "geometry": null, "keywords": "Antarctica; AVHRR; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Sample/collection Description; Sample/Collection Description; Sea Ice", "locations": "Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Raup, Bruce H.; Bohlander, Jennifer", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Images of Antarctic Ice Shelves", "uid": "609102", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Simulations of ice-shelf rifting on Larsen C Ice Shelf
|
2139002 |
2023-08-24 | Huth, Alexander |
OPP-PRF Calving, Icebergs, and Climate |
This dataset contains a model (Elmer/Ice Fortran modules) to simulate rifting on ice shelves. The model combines the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. Additionally, it accounts for rift-flank boundary processes, including pressure on rift-flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. This dataset also contains the input data (Elmer restart files), input files (Elmer .sifs), and Slurm batch scripts to run five experiments. All experiments aim to simulate the final two years of rift propagation that led to the calving of tabular iceberg A68 from Larsen C ice shelf in 2017. However, each experiment differs in its treatment of rift-flank boundary processes, which affects the rift path. For more information, see the associated publication (Huth et al., 2023). | ["POLYGON((-67 -66,-66.3 -66,-65.6 -66,-64.9 -66,-64.2 -66,-63.5 -66,-62.8 -66,-62.1 -66,-61.4 -66,-60.7 -66,-60 -66,-60 -66.4,-60 -66.8,-60 -67.2,-60 -67.6,-60 -68,-60 -68.4,-60 -68.8,-60 -69.2,-60 -69.6,-60 -70,-60.7 -70,-61.4 -70,-62.1 -70,-62.8 -70,-63.5 -70,-64.2 -70,-64.9 -70,-65.6 -70,-66.3 -70,-67 -70,-67 -69.6,-67 -69.2,-67 -68.8,-67 -68.4,-67 -68,-67 -67.6,-67 -67.2,-67 -66.8,-67 -66.4,-67 -66))"] | ["POINT(-63.5 -68)"] | false | false |
Remotely-sensed iceberg geometries and meltwater fluxes
|
1933764 1643455 |
2023-04-06 | Enderlin, Ellyn; Dickson, Adam; Miller, Emily; Dryak, Mariama; Oliver, Caitlin; Aberle, Rainey |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset includes manually-extracted iceberg geometries and meltwater fluxes from 2011-2022 WorldView digital elevation model time series for 15 study sites around Antarctica. Each file contains the coordinates, median surface elevation, density, volume, surface area, draft, and submerged area estimated for an iceberg on two different observation dates (specified in the file name). The submarine meltwater flux for each iceberg, calculated as the volume change over time corrected for surface mass balance processes and creep thinning between observation dates, is provided for each iceberg. Dates listed in file names are in YYYYMMDDhhmmss format. Site abbreviations in file names are as follows: BG = Blanchard Glacier, CG = Cadman Glacier, FG = Ferrigno Glacier, FI = Filchner Ice Shelf, HG = Heim Glacier, LA = Edgeworth Glacier (Larsen A tributary), LB = Cadman Glacier (Larsen B tributary), LG = Leonardo Glacier, MI = Mertz Ice Tongue, PT = Polar Times, RI = Ronne Ice Shelf, SG = Seller Glacier, TG = Thwaites Glacier, TI = Totten Ice Shelf, and WG = Widdowson Glacier. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Crane Glacier centerline observations and modeling results
|
1933764 |
2022-10-24 | Aberle, Rainey; Enderlin, Ellyn; Marshall, Hans-Peter; Kopera, Michal; Meehan, Tate |
Antarctic Submarine Melt Variability from Remote Sensing of Icebergs |
This dataset contains observed and modeled conditions along the Crane Glacier centerline for ~1994—2100. Observations include centerline (cl) coordinates, downscaled RACMO climate variables (runoff, snowfall, snowmelt, and surface mass balance), bed elevations (b), surface elevations (h), glacier width (W), calving front positions (xcf), and surface speeds (U) when available for the 1994—2019 period. Modeling results include glacier centerline geometry, speed, glacier mass discharge (Q_gl), and calving front and grounding line positions (x_cf and x_gl) under different future climate scenarios with varying surface mass balance (SMB), ocean thermal forcing (FT), SMB with potential feedbacks associated with enhanced surface melt water discharge and plume strengthening (SMB_enh), and concurrent SMB_enh and FT perturbations (SMB_enh_FT). Data are in “.mat” format, which can be read using MATLAB’s “load” function or using Python with the Scipy “scipy.io.loadmat” function. | ["POLYGON((-63.1 -65.2,-62.99 -65.2,-62.88 -65.2,-62.77 -65.2,-62.660000000000004 -65.2,-62.55 -65.2,-62.44 -65.2,-62.33 -65.2,-62.22 -65.2,-62.11 -65.2,-62 -65.2,-62 -65.24000000000001,-62 -65.28,-62 -65.32,-62 -65.36,-62 -65.4,-62 -65.44,-62 -65.47999999999999,-62 -65.52,-62 -65.56,-62 -65.6,-62.11 -65.6,-62.22 -65.6,-62.33 -65.6,-62.44 -65.6,-62.55 -65.6,-62.660000000000004 -65.6,-62.77 -65.6,-62.88 -65.6,-62.99 -65.6,-63.1 -65.6,-63.1 -65.56,-63.1 -65.52,-63.1 -65.47999999999999,-63.1 -65.44,-63.1 -65.4,-63.1 -65.36,-63.1 -65.32,-63.1 -65.28,-63.1 -65.24000000000001,-63.1 -65.2))"] | ["POINT(-62.55 -65.4)"] | false | false |
Model of iceberg drift and decay including breakup
|
1744835 |
2022-01-18 | Wagner, Till |
Modeling Giant Icebergs and Their Decay |
Because of difficulties in adequately simulating their breakup, large Antarctic icebergs to date have either not been represented in models or represented but with no breakup scheme such that they consistently survive too long and travel too far compared with observations. Here, we introduce a representation of iceberg fracturing using a breakup scheme based on the “footloose mechanism.” We optimize the parameters of this breakup scheme by forcing the iceberg model with an ocean state estimate and comparing the modeled iceberg trajectories and areas with the Antarctic Iceberg Tracking Database. We show that including large icebergs and a representation of their breakup substantially affects the iceberg meltwater distribution, with implications for the circulation and stratification of the Southern Ocean. This data link includes the model developed for the study, including a link to the forcing fields needed to replicate the model results. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Quantitative Diatom Assemblage Data from Iceberg Alley, Mac. Robertson Shelf, East Antarctica acquired during expedition NBP0101
|
9909367 |
2020-05-01 | Leventer, Amy |
Quaternary Glacial History and Paleoenvironments of the East Antarctic Margin |
This data set was acquired with a Jumbo Piston Core Sediment Sampler during R/V Nathaniel B. Palmer expedition NBP0101 conducted in 2001. This data file is of Microsoft Excel format and includes Quantitative Diatom Assemblage data; counts completed on randomly settled slides (Scherer, R.P., 1994. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. Journal of Paleolimnology, 12 (1), 171-178, doi:10.1007/BF00678093). These counts were completed at closely spaced intervals in NBP0101 JPC41, a jumbo piston core from Iceberg Alley, Mac.Robertson Shelf, East Antarctica | ["POINT(62.99 -67.13)"] | ["POINT(62.99 -67.13)"] | false | false |
CTD stations and logs for Araon 2018 ANA08D expedition to Larson C
|
1822289 |
2019-04-29 | Pan, B. Jack; Vernet, Maria |
RAPID: Collaborative Research: Marine Ecosystem Response to the Larsen C Ice-Shelf Breakout: "Time zero" |
Marine ecosystems under large ice shelves are thought to contain sparse, low-diversity plankton and seafloor communities due the low supply of food from productive sunlight waters. Past studies have shown sub-ice shelf ecosystems to change in response to altered oceanographic processes resulting from ice-shelve retreat. However, information on community changes and ecosystem structure under ice shelves are limited because sub-ice-shelf ecosystems have either been sampled many years after ice-shelf breakout, or have been sampled through small boreholes, yielding extremely limited spatial information. The recent breakout of the A-68 iceberg from the Larsen C ice shelf in the western Weddell Sea provides an opportunity to use a ship-based study to evaluate benthic communities and water column characteristics in an area recently vacated by a large overlying ice shelf. The opportunity will allow spatial assessments at the time of transition from an under ice-shelf environment to one initially exposed to conditions more typical of a coastal Antarctic marine setting. This RAPID project will help determine the state of a coastal Antarctic ecosystem newly exposed from ice-shelf cover and will aid in understanding of rates of community change during transition. The project will conduct a 10-day field program, allowing contrasts to be made of phytoplankton and seafloor megafaunal communities in areas recently exposed by ice-shelf loss to areas exposed for many decades. The project will be undertaken in a collaborative manner with the South Korean Antarctic Agency, KOPRI, by participating in a cruise in March/May 2018. Combining new information in the area of Larsen C with existing observations after the Larsen A and B ice shelf breakups further to the north, the project is expected to generate a dataset that can elucidate fundamental processes of planktonic and benthic community development in transition from food-poor to food-rich ecosystems. The project will provide field experience to two graduate students, a post-doctoral associate and an undergraduate student. Material from the project will be incorporated into graduate courses and the project will communicate daily work and unfolding events through social media and blogs while they explore this area of the world that is largely underexplored. | ["POLYGON((-59.402149 -62.131908,-58.9639887 -62.131908,-58.5258284 -62.131908,-58.0876681 -62.131908,-57.6495078 -62.131908,-57.2113475 -62.131908,-56.7731872 -62.131908,-56.3350269 -62.131908,-55.8968666 -62.131908,-55.4587063 -62.131908,-55.020546 -62.131908,-55.020546 -62.384829,-55.020546 -62.63775,-55.020546 -62.890671,-55.020546 -63.143592,-55.020546 -63.396513,-55.020546 -63.649434,-55.020546 -63.902355,-55.020546 -64.155276,-55.020546 -64.408197,-55.020546 -64.661118,-55.4587063 -64.661118,-55.8968666 -64.661118,-56.3350269 -64.661118,-56.7731872 -64.661118,-57.2113475 -64.661118,-57.6495078 -64.661118,-58.0876681 -64.661118,-58.5258284 -64.661118,-58.9639887 -64.661118,-59.402149 -64.661118,-59.402149 -64.408197,-59.402149 -64.155276,-59.402149 -63.902355,-59.402149 -63.649434,-59.402149 -63.396513,-59.402149 -63.143592,-59.402149 -62.890671,-59.402149 -62.63775,-59.402149 -62.384829,-59.402149 -62.131908))"] | ["POINT(-57.2113475 -63.396513)"] | false | false |
Andvord Bay Glacier Timelapse
|
1443733 |
2018-08-07 | Truffer, Martin; Winsor, Peter |
Collaborative Research: Fjord Ecosystem Structure and Function on the West Antarctic Peninsula - Hotspots of Productivity and Biodiversity? (FjordEco) |
This dataset includes timelapse images from five cameras set up at four different locations in and just outside of Andvord Bay on the Western Antarctic Peninsula. The cameras were set up to track glacier ice motion, calving and tracking of ice bergs, and sea ice formation and melt. Two cameras (hi-res) were Canon Rebel DSLR in a timelapse system designed by Harbortronics; the remaining three cameras (lo-res) were from Campbell Scientific and were part of a weather station. | ["POLYGON((-62.68 -64.72,-62.648 -64.72,-62.616 -64.72,-62.584 -64.72,-62.552 -64.72,-62.52 -64.72,-62.488 -64.72,-62.456 -64.72,-62.424 -64.72,-62.392 -64.72,-62.36 -64.72,-62.36 -64.74,-62.36 -64.76,-62.36 -64.78,-62.36 -64.8,-62.36 -64.82,-62.36 -64.84,-62.36 -64.86,-62.36 -64.88,-62.36 -64.9,-62.36 -64.92,-62.392 -64.92,-62.424 -64.92,-62.456 -64.92,-62.488 -64.92,-62.52 -64.92,-62.552 -64.92,-62.584 -64.92,-62.616 -64.92,-62.648 -64.92,-62.68 -64.92,-62.68 -64.9,-62.68 -64.88,-62.68 -64.86,-62.68 -64.84,-62.68 -64.82,-62.68 -64.8,-62.68 -64.78,-62.68 -64.76,-62.68 -64.74,-62.68 -64.72))"] | ["POINT(-62.52 -64.82)"] | false | false |
Iceberg Capsize Kinematics and Energetics
|
0944193 |
2014-08-25 | MacAyeal, Douglas |
Collaborative Research: Explosive Ice-Shelf Disintegration |
This data set represents a typical single iceberg capsize experiment. Included in this data set are all the parameters of the plastic iceberg's density and dimensions, the density of the water surrounding the iceberg, and the value of gravitational acceleration. The timeseries data consists of all the kinematic and energetic variables as a function of time for the iceberg capsize experiment. | ["POLYGON((-88 42,-87.9 42,-87.8 42,-87.7 42,-87.6 42,-87.5 42,-87.4 42,-87.3 42,-87.2 42,-87.1 42,-87 42,-87 41.9,-87 41.8,-87 41.7,-87 41.6,-87 41.5,-87 41.4,-87 41.3,-87 41.2,-87 41.1,-87 41,-87.1 41,-87.2 41,-87.3 41,-87.4 41,-87.5 41,-87.6 41,-87.7 41,-87.8 41,-87.9 41,-88 41,-88 41.1,-88 41.2,-88 41.3,-88 41.4,-88 41.5,-88 41.6,-88 41.7,-88 41.8,-88 41.9,-88 42))"] | ["POINT(-87.5 41.5)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838937 |
2014-01-01 | Costa, Daniel |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris
|
0944489 |
2014-01-01 | Williams, Trevor; Hemming, Sidney R. |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris |
Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences | ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"] | ["POINT(54 -68)"] | false | false |
Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea
|
0838892 |
2013-01-01 | Burns, Jennifer |
Collaborative Research: Weddell seals as autonomous sensors of the winter oceanography of the Ross Sea |
Marine mammals of the Southern Ocean have evolved diverse life history patterns and foraging strategies to accommodate extreme fluctuations in the physical and biological environment. In light of ongoing climate change and the dramatic shifts in the extent and persistence of sea ice in the Ross Sea, it is critical to understand how Weddell seals, Leptonychotes weddellii, a key apex predator, select and utilize foraging habitats. Recent advances in satellite-linked animal-borne conductivity, temperature and depth (CTD) tags make it possible to simultaneously collect data on seal locations, their diving patterns, and the temperature and salinity profiles of the water columns they utilize. In other ecosystems, such data have revealed that marine predators selectively forage in areas where currents and fronts serve to locally concentrate prey resources, and that these conditions are required to sustain populations. Weddell seals will be studied in McMurdo Sound and at Terra Nova Bay, Ross Sea and will provide the first new data on Weddell seal winter diving behavior and habitat use in almost two decades. The relationship between an animal's diving behavior and physical habitat has enormous potential to enhance monitoring studies and to provide insight into how changes in ice conditions (due either to warming or the impact of large icebergs, such as B15) might impact individual time budgets and foraging success. The second thrust of this project is to use the profiles obtained from CTD seal tags to model the physical oceanography of this region. Current mathematical models of physical oceanographic processes in the Southern Ocean are directed at better understanding the role that it plays in global climate processes, and the linkages between physical and biological oceanographic processes. However, these efforts are limited by the scarcity of oceanographic data at high latitudes in the winter months; CTD tags deployed on animals will collect data at sufficient spatial and temporal resolution to improve data density. The project will contribute to two IPY endorsed initiatives: MEOP (Marine Mammals as Explorers of the Ocean Pole to Pole) and CAML (Census of Antarctic Marine Life). In addition, the highly visual nature of the data and analysis lends itself to public and educational display and outreach, particularly as they relate to global climate change, and we have collaborations with undergraduate and graduate training programs, the Seymour Marine Discovery Center, and the ARMADA program to foster these broader impacts. | ["POLYGON((162 -75,162.7 -75,163.4 -75,164.1 -75,164.8 -75,165.5 -75,166.2 -75,166.9 -75,167.6 -75,168.3 -75,169 -75,169 -75.3,169 -75.6,169 -75.9,169 -76.2,169 -76.5,169 -76.8,169 -77.1,169 -77.4,169 -77.7,169 -78,168.3 -78,167.6 -78,166.9 -78,166.2 -78,165.5 -78,164.8 -78,164.1 -78,163.4 -78,162.7 -78,162 -78,162 -77.7,162 -77.4,162 -77.1,162 -76.8,162 -76.5,162 -76.2,162 -75.9,162 -75.6,162 -75.3,162 -75))"] | ["POINT(165.5 -76.5)"] | false | false |
Climate, Drift, and Image Data from Antarctic Icebergs A22A and UK211, 2006-2007
|
0540915 |
2011-01-31 | Scambos, Ted; Bohlander, Jennifer; Bauer, Rob; Yermolin, Yevgeny; Thom, Jonathan |
Investigating Iceberg Evolution During Drift and Break-Up: A Proxy for Climate-Related Changes in Antarctic Ice Shelves |
This data set includes a variety of station data from two Antarctic icebergs. In 2006, researchers installed specialized weather stations called Automated Meteorological Ice Geophysical Observing Stations (AMIGOS) on two icebergs, A22A and UK211 (nicknamed Amigosberg), near Marambio Station in Antarctica.The AMIGOS stations were outfitted with Global Positioning System (GPS) sensors, cameras, and an electronic thermometer. They collected data from their installation in March 2006 until the icebergs crumbled into the ocean, in 2006 (Amigosberg) and 2007 (A22A). Available data include GPS, temperature and ablation measurements, and photographs of the station base and of flag lines extending out to the edges of the icebergs. Snow pit data from iceberg A22A is also included. This data set was collected as part of a National Science Foundation Office of Polar Programs Special Grant for Exploratory Research, to explore the possibility of using drfting icebergs to investigate ice shelf evolution caused by climate change. The expedition, nicknamed IceTrek, was conducted jointly with Argentine scientists. The data are available via FTP in ASCII text (.txt) and Joint Photographic Experts Group (.jpg) formats. | ["POLYGON((-60 -47,-55.5 -47,-51 -47,-46.5 -47,-42 -47,-37.5 -47,-33 -47,-28.5 -47,-24 -47,-19.5 -47,-15 -47,-15 -50.3,-15 -53.6,-15 -56.9,-15 -60.2,-15 -63.5,-15 -66.8,-15 -70.1,-15 -73.4,-15 -76.7,-15 -80,-19.5 -80,-24 -80,-28.5 -80,-33 -80,-37.5 -80,-42 -80,-46.5 -80,-51 -80,-55.5 -80,-60 -80,-60 -76.7,-60 -73.4,-60 -70.1,-60 -66.8,-60 -63.5,-60 -60.2,-60 -56.9,-60 -53.6,-60 -50.3,-60 -47))"] | ["POINT(-37.5 -63.5)"] | false | false |
Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636319 |
2011-01-01 | Shaw, Tim; Twining, Benjamin |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions:1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.9201 -57.5061,-50.99447 -57.5061,-50.06884 -57.5061,-49.14321 -57.5061,-48.21758 -57.5061,-47.29195 -57.5061,-46.36632 -57.5061,-45.44069 -57.5061,-44.51506 -57.5061,-43.58943 -57.5061,-42.6638 -57.5061,-42.6638 -58.03449,-42.6638 -58.56288,-42.6638 -59.09127,-42.6638 -59.61966,-42.6638 -60.14805,-42.6638 -60.67644,-42.6638 -61.20483,-42.6638 -61.73322,-42.6638 -62.26161,-42.6638 -62.79,-43.58943 -62.79,-44.51506 -62.79,-45.44069 -62.79,-46.36632 -62.79,-47.29195 -62.79,-48.21758 -62.79,-49.14321 -62.79,-50.06884 -62.79,-50.99447 -62.79,-51.9201 -62.79,-51.9201 -62.26161,-51.9201 -61.73322,-51.9201 -61.20483,-51.9201 -60.67644,-51.9201 -60.14805,-51.9201 -59.61966,-51.9201 -59.09127,-51.9201 -58.56288,-51.9201 -58.03449,-51.9201 -57.5061))"] | ["POINT(-47.29195 -60.14805)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636543 |
2010-01-01 | Murray, Alison |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-51.98403 -57.58068,-51.042765 -57.58068,-50.1015 -57.58068,-49.160235 -57.58068,-48.21897 -57.58068,-47.277705 -57.58068,-46.33644 -57.58068,-45.395175 -57.58068,-44.45391 -57.58068,-43.512645 -57.58068,-42.57138 -57.58068,-42.57138 -58.10845,-42.57138 -58.63622,-42.57138 -59.16399,-42.57138 -59.69176,-42.57138 -60.21953,-42.57138 -60.7473,-42.57138 -61.27507,-42.57138 -61.80284,-42.57138 -62.33061,-42.57138 -62.85838,-43.512645 -62.85838,-44.45391 -62.85838,-45.395175 -62.85838,-46.33644 -62.85838,-47.277705 -62.85838,-48.21897 -62.85838,-49.160235 -62.85838,-50.1015 -62.85838,-51.042765 -62.85838,-51.98403 -62.85838,-51.98403 -62.33061,-51.98403 -61.80284,-51.98403 -61.27507,-51.98403 -60.7473,-51.98403 -60.21953,-51.98403 -59.69176,-51.98403 -59.16399,-51.98403 -58.63622,-51.98403 -58.10845,-51.98403 -57.58068))"] | ["POINT(-47.277705 -60.21953)"] | false | false |
Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636730 |
2010-01-01 | Vernet, Maria |
Collaborative Reseach: Free-drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean. |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
Free-Drifting Icebergs as Proliferating Dispersion Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean
|
0636723 |
2010-01-01 | Helly, John |
Collaborative Research: Free Drifting Icebergs as Proliferation Sites of Iron Enrichment, Organic Carbon Production and Export in the Southern Ocean |
Atmospheric warming has been associated with retreating glaciers, disintegrating ice shelves, and the increasing prevalence of icebergs in the Southern Ocean over the last decade. Our preliminary study of two icebergs in the NW Weddell Sea, an area of high iceberg concentration, showed significant delivery of terrestrial material accompanied by significant enhancement of phytoplankton and zooplankton/micronekton abundance, and primary production surrounding the icebergs. We hypothesize that nutrient enrichment by free-drifting icebergs will increase primary production and sedimentation of organic carbon, thus increasing the draw-down and sequestration of CO2 in the Southern Ocean and impacting the global carbon cycle. Our research addresses the following questions: 1) What is the relationship between the physical dynamics of free-drifting icebergs and the Fe and nutrient distributions of the surrounding water column? 2) What is the relationship between Fe and nutrient distributions associated with free-drifting icebergs and the organic carbon dynamics of the ice-attached and surrounding pelagic communities (microbes, zooplankton, micronekton)? 3) What is impact on the export flux of particulate organic carbon from the mixed layer? An interdisciplinary approach is proposed to examine iceberg structure and dynamics, biogeochemical processes, and carbon cycling that includes measurement of trace element, nutrient and radionuclide distributions; organic carbon dynamics mediated by microbial, ice-attached and zooplankton communities; and particulate organic carbon export fluxes. Results from this project will further our understanding of the relationship between climate change and carbon sequestration in the Southern Ocean. Our findings will be incorporated into the Antarctic Research division of the Ocean Exploration Center (OEC) as part of the SIOExplorer: Digital Library Project. The OEC allows users to access content, which is classified to one of four levels: entry (grade K-6), student (grade 6-12), college, and research. Graduate students, undergraduates, teachers, and volunteers are important participants in the proposed field and laboratory work. For the K-12 level, a professional writer of children's books will participate in cruises to produce an account of the expedition and a daily interactive website. | ["POLYGON((-55 -52,-53.5 -52,-52 -52,-50.5 -52,-49 -52,-47.5 -52,-46 -52,-44.5 -52,-43 -52,-41.5 -52,-40 -52,-40 -53.3,-40 -54.6,-40 -55.9,-40 -57.2,-40 -58.5,-40 -59.8,-40 -61.1,-40 -62.4,-40 -63.7,-40 -65,-41.5 -65,-43 -65,-44.5 -65,-46 -65,-47.5 -65,-49 -65,-50.5 -65,-52 -65,-53.5 -65,-55 -65,-55 -63.7,-55 -62.4,-55 -61.1,-55 -59.8,-55 -58.5,-55 -57.2,-55 -55.9,-55 -54.6,-55 -53.3,-55 -52))"] | ["POINT(-47.5 -58.5)"] | false | false |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins
|
0538594 |
2009-01-01 | Ponganis, Paul |
The Aerobic Dive Limit: Oxygen Transport and Depletion in Emperor Penguins |
The research will examine blood and muscle oxygen store depletion in relation to the documented aerobic dive limit (ADL, onset of post-dive blood lactate accumulation) in diving of emperor penguins. The intellectual merits of this proposal involve its evaluation of the physiological basis of the ADL concept. The ADL is probably the most commonly-used, but rarely measured, factor to interpret and model the behavior and foraging ecology of diving animals. Based on prior studies, and on recent investigations of respiratory and blood oxygen depletion during dives of emperor penguins, it is hypothesized that the ADL is a result of the depletion of myoglobin (Mb)-bound oxygen and increased glycolysis in the primary locomotory muscles. This project will accurately define the physiological mechanisms underlying the ADL through 1) evaluation of the rate and magnitude of muscle oxygen depletion during dives in relation to the previously measured ADL, 2) characterization of the hemoglobin-oxygen dissociation curve in blood of emperor penguins and comparison of that curve to those of other diving and non-diving species, 3) application of the emperor hemoglogin-oxygen dissociation curve to previously collected oxygen and hemoglobin data in order to estimate the rate and magnitude of blood oxygen depletion during dives, and 4) measurement of muscle phosphoocreatine and glycogen concentrations in order to estimate their potential contributions to muscle energy metabolism during diving. The project also continues the census and monitoring of the emperor colonies in the Ross Sea, which is especially important in light of both fisheries activity and the movement of iceberg B15-A. Broader impacts of the project include: 1) technological development of microprocessor-based, 'backpack' near-infrared spectrophotometer, which will be applicable not only to other species, but also to other fields (i.e., exercise physiology), 2) collaboration with the Department of Anesthesia at the U.S. Naval Hospital in San Diego in the training of anesthesia residents in research techniques, 3) the training and thesis research of two graduate students in these techniques and in Antarctic field research, and 4) a better understanding of the ADL concept and its use in the fields of diving behavior and physiology. In addition the annual census of emperor penguin colonies in the Ross Sea, in conjunction with the continued evaluation of previously developed remote cameras to monitor colony status, will form the basis of a new educational web site, and allow development of an educational outreach program to school children through SeaWorld of San Diego. | ["POLYGON((165.983 -77.683,166.0164 -77.683,166.0498 -77.683,166.0832 -77.683,166.1166 -77.683,166.15 -77.683,166.1834 -77.683,166.2168 -77.683,166.2502 -77.683,166.2836 -77.683,166.317 -77.683,166.317 -77.6897,166.317 -77.6964,166.317 -77.7031,166.317 -77.7098,166.317 -77.7165,166.317 -77.7232,166.317 -77.7299,166.317 -77.7366,166.317 -77.7433,166.317 -77.75,166.2836 -77.75,166.2502 -77.75,166.2168 -77.75,166.1834 -77.75,166.15 -77.75,166.1166 -77.75,166.0832 -77.75,166.0498 -77.75,166.0164 -77.75,165.983 -77.75,165.983 -77.7433,165.983 -77.7366,165.983 -77.7299,165.983 -77.7232,165.983 -77.7165,165.983 -77.7098,165.983 -77.7031,165.983 -77.6964,165.983 -77.6897,165.983 -77.683))"] | ["POINT(166.15 -77.7165)"] | false | false |
Ross Ice Shelf Firn Temperature, Antarctica
|
0229546 |
2008-12-15 | Scambos, Ted; Muto, Atsu; Sergienko, Olga; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Since November of 2006, 12 thermistors were planted in the upper 16 meters of the firn on the Ross Ice Shelf near its calving front. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as the ice shelf evolves. Data are available in comma-delimited ASCII format. Data are available via FTP. | ["POINT(-178 -78)"] | ["POINT(-178 -78)"] | false | false |
Iceberg Firn Temperatures, Antarctica
|
0229546 |
2008-11-28 | Thom, Jonathan; Sergienko, Olga; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Since November of 2005, 12 thermistors were planted in the upper 2.5 meters of the firn on iceberg C16, Antarctica. Temperature data are collected every 20 minutes and are transmitted via ARGOS satellite relay. Data are intended to provide a view of how firn temperatures change as an iceberg moves north into warmer climate. | ["POINT(168 -78)"] | ["POINT(168 -78)"] | false | false |
Iceberg Tiltmeter Measurements, Antarctica
|
0229546 |
2008-11-25 | Kim, Young-Jin; Bliss, Andrew; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Time series of tiltmeter observations (tilt about two horizontal axes in microradians) for a 34 day period on iceberg C16 while it was aground near Ross Island in late 2001 to early 2002. Data shows tilts associated with differential basal melting of the iceberg, tidal motion and short-term tilts induced by iceberg tremor phenomena triggered by collisions between B15A and C16. The sample rate was 5 seconds. Data are available in comma-delimited ASCII format. Data are available via FTP. | ["POINT(168 -77)"] | ["POINT(168 -77)"] | false | false |
Ice Shelf Rift Time-Lapse Photography, Antarctica
|
0229546 |
2008-11-11 | Brunt, Kelly; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
From November 2004 to March 2005, on the Ross Ice Shelf, Antarctica, an automated "web cam" was operated on the southward facing lip of a large ice-shelf rift to produce a photographic record of processes active in ice-shelf rift systems. Four times each day, the camera took a photograph in four repeating directions. | ["POINT(-178 -78)"] | ["POINT(-178 -78)"] | false | false |
Giant Icebergs of the Ross Sea, in situ Drift and Weather Measurements, Antarctica
|
0229546 |
2008-10-20 | Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
During 2001-2006, 6 giant icebergs (B15A, B15J, B15K, C16 and C25) adrift in the southwestern Ross Sea, Antarctica, were instrumented with global positioning system (GPS) receivers, magnetic compasses and automatic weather stations (AWS), to monitor their behavior in the near-coastal environment and to record their exit into the Southern Ocean. The GPS and AWS data were collected on a 20-minute interval, Many of the station data timeseries are continuous for periods of up to 7 years, with icebergs C16 and B15J having the longest records. The data is considered useful for examining the processes of iceberg drift (and other behaviors) on time scales that are shorter than what is possible through satellite image iceberg tracking. Data are available in comma-delimited ASCII format and Matlab native mat files. | ["POLYGON((-178 -60,-149.2 -60,-120.4 -60,-91.6 -60,-62.8 -60,-34 -60,-5.2 -60,23.6 -60,52.4 -60,81.2 -60,110 -60,110 -61.8,110 -63.6,110 -65.4,110 -67.2,110 -69,110 -70.8,110 -72.6,110 -74.4,110 -76.2,110 -78,81.2 -78,52.4 -78,23.6 -78,-5.2 -78,-34 -78,-62.8 -78,-91.6 -78,-120.4 -78,-149.2 -78,-178 -78,-178 -76.2,-178 -74.4,-178 -72.6,-178 -70.8,-178 -69,-178 -67.2,-178 -65.4,-178 -63.6,-178 -61.8,-178 -60))"] | ["POINT(-34 -69)"] | false | false |
Iceberg Harmonic Tremor, Seismometer Data, Antarctica
|
0229546 |
2008-10-01 | Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to understand the relevance of IHT to iceberg calving, drift and break-up. The seismic observations reveal that the IHT signal consists of extended episodes of stick-slip icequakes (typically thousands per hour) generated when the ice-cliff edges of two tabular icebergs rub together during glancing, strike/slip type iceberg collisions (e.g., between C16 and B15A). With the source mechanism revealed, IHT may provide a promising signal useful for the study of iceberg behavior and iceberg-related processes such as climate-induced ice-shelf disintegration. Here, a single day of seismometer data for a single station on iceberg C16 is provided as an example of "a day in the life of an iceberg" for use by scientists and students wishing to know more about IHT. The station data is from C16 "B" site on C16's northeast corner, and the day is 27 December, 2003, a day when B15A struck C16 and caused an episode of tremor that was particularly easy to identify and understand. This represents only a small fraction of the total data that exist for the seismic program on iceberg C16. The full data are archived at the IRIS data center (where seismic data is commonly archived). This one-day data set is to provide glaciologists with ready access to a good example of IHT that they can use for teaching and for demonstration purposes. Data are available in comma-delimited ASCII format and Matlab native mat files. Data are available via FTP. | ["POINT(168 -77)"] | ["POINT(168 -77)"] | false | false |
Continuous GPS (static) Data from the Ross Ice Shelf, Antarctica
|
0229546 |
2008-10-01 | Brunt, Kelly; King, Matthew; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
In October 2005, three geodetic GPS receivers were deployed on the Ross Ice Shelf near the ice front to observe short-term fluctuations in ice-shelf velocity associated with tidal forcing and other phenomena. Two stations were placed on either side of a large rift that is expected to eventually create the next iceberg to calve from the Ross Ice Shelf (called "Nascent Iceberg"). One station was established at a location near station R13, occupied in 1979 during the RIGGS project (Thomas et al., 1984), to determine if the near-ice-front part of the Ross Ice Shelf has significantly changed its long-term flow since the late 1970s. | ["POINT(-178 -78)"] | ["POINT(-178 -78)"] | false | false |
Diving Physiology and Behavior of Emperor Penguins
|
0229638 |
2008-01-01 | Ponganis, Paul |
Diving Physiology and Behavior of Emperor Penguins |
The emperor penguin, Aptenodytes forsteri, is the premier avian diver and a top predator in the Antarctic ecosystem. The routine occurrence of 500-m diver during foraging trips to sea is both a physiological and behavior enigma. The objectives of this project address how and why emperors dive as deep and long as they do. The project examines four major topics in the diving biology of emperor penguins: pressure tolerance, oxygen store management, end-organ tolerance of diving hypoxemia/ischemia, and deep-dive foraging behavior. These subjects are relevant to the role of the emperor as a top predator in the Antarctic ecosystem, and to critical concepts in diving physiology, including decompression sickness, nitrogen narcosis, shallow water blackout, hypoxemic tolerance, and extension of aerobic dive time. The following hypotheses will be tested: 1) Prevention of nitrogen narcosis and decompression sickness in emperor penguins is achieved by inhibition of pulmonary gas exchange at depth. 2) Shallow water black out does not occur because of greater cerebral hypoxemic tolerance, and, in deep dives, because of resumption of pulmonary gas exchange during final ascent. 3) The rate of depletion of the blood oxygen store is a function of depth of dive and heart rate. 4) The aerobic dive limit (ADL) reflects the onset of lactate accumulation in locomotory muscle, not total depletion of all oxygen stores. 5) Elevation of tissue antioxidant capacity and free-radical scavenging enzyme activities protect against the routine ischemia/reperfusion which occur during diving. 6) During deep dives, the Antarctic silverfish, Pleuorogramma antarcticum, is the primary prey item for emperors. In addition to evaluation of the hypotheses below, the project has broader impacts in several areas such as partnership with foreign and national institutes and organizations (e.g., the National Institute of Polar Research of Japan, Centro de Investigacioines del Noroeste of Mexico, National Geographic, the University of Texas Southwestern Medical Center, and Sea World). Participation in National Geographic television documentaries will provide unique educational opportunities for the general public; development of state-of-the-art technology (e.g., blood oxygen electrode recorders, blood samplers, and miniaturized digital cameras) will lay the groundwork for future research by this group and others; and the effects of the B15 iceberg on breeding success of emperor penguins will continue to be evaluated with population censuses during planned fieldwork at several Ross Sea emperor penguin colonies. | ["POLYGON((163 -77,163.4 -77,163.8 -77,164.2 -77,164.6 -77,165 -77,165.4 -77,165.8 -77,166.2 -77,166.6 -77,167 -77,167 -77.1,167 -77.2,167 -77.3,167 -77.4,167 -77.5,167 -77.6,167 -77.7,167 -77.8,167 -77.9,167 -78,166.6 -78,166.2 -78,165.8 -78,165.4 -78,165 -78,164.6 -78,164.2 -78,163.8 -78,163.4 -78,163 -78,163 -77.9,163 -77.8,163 -77.7,163 -77.6,163 -77.5,163 -77.4,163 -77.3,163 -77.2,163 -77.1,163 -77))"] | ["POINT(165 -77.5)"] | false | false |
Images of Antarctic Ice Shelves
|
None | 2001-01-01 | Scambos, Ted; Raup, Bruce H.; Bohlander, Jennifer | No project link provided | Recent changes in the extent and stability of ice shelves in the Antarctic Peninsula prompted NSIDC to begin a monitoring program using data from the AVHRR Polar 1 km Data Set. NSIDC regularly reviews images of those ice shelves considered susceptible to rapid change due to climatic warming, and of several other major shelves that occasionally calve major icebergs. The images in this site represent a selected subset of the available scenes, generally the clearest and most informative scenes available. The scenes are derived from either the AVHRR visible (vis) or thermal (temp) channels, enhanced by combining two channels using principal components processing. In the thermal images, bright areas are colder areas. A few additional scenes from other sensors (MODIS, Landsat) are included to provide some supplemental information on ice shelf structure and events. If you wish to save an image, you can do so through the 'Save image as' option of the browser's pop-up menu. For more information contact NSIDC User Services. | [] | [] | false | false |