{"dp_type": "Dataset", "free_text": "GNSS"}
[{"awards": "1929991 Pettit, Erin C", "bounds_geometry": ["POLYGON((-112.31 -74.8,-111.61500000000001 -74.8,-110.92 -74.8,-110.225 -74.8,-109.53 -74.8,-108.83500000000001 -74.8,-108.14 -74.8,-107.445 -74.8,-106.75 -74.8,-106.055 -74.8,-105.36 -74.8,-105.36 -74.83,-105.36 -74.86,-105.36 -74.89,-105.36 -74.92,-105.36 -74.94999999999999,-105.36 -74.97999999999999,-105.36 -75.00999999999999,-105.36 -75.03999999999999,-105.36 -75.07,-105.36 -75.1,-106.055 -75.1,-106.75 -75.1,-107.445 -75.1,-108.14 -75.1,-108.83500000000001 -75.1,-109.53 -75.1,-110.225 -75.1,-110.92 -75.1,-111.61500000000001 -75.1,-112.31 -75.1,-112.31 -75.07,-112.31 -75.03999999999999,-112.31 -75.00999999999999,-112.31 -74.97999999999999,-112.31 -74.94999999999999,-112.31 -74.92,-112.31 -74.89,-112.31 -74.86,-112.31 -74.83,-112.31 -74.8))"], "date_created": "Fri, 23 Aug 2024 00:00:00 GMT", "description": "This is a dataset of elevations of sub-ice-shelf seafloor and ice-shelf bottom derived from active-source-seismic sounding conducted at discrete points distributed over the Thwaites Eastern Ice Shelf (TEIS) and Dotson Ice Shelf (DIS). Also included are the ice-shelf surface elevation at each seismic-shot location derived from the concurrent GNSS recording and P-wave speed profile through firn derived from shallow refraction-seismic surveys on each ice shelf. Raw seismic records are also provided as SEGY files.", "east": -105.36, "geometry": ["POINT(-108.83500000000001 -74.94999999999999)"], "keywords": "Antarctica; Cryosphere; Dotson Ice Shelf; Thwaites Glacier", "locations": "Dotson Ice Shelf; Antarctica; Thwaites Glacier", "north": -74.8, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Pettit, Erin; Truffer, Martin; Scambos, Ted; Wild, Christian; Pomraning, Dale; Wallin, Bruce", "project_titles": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment", "projects": [{"proj_uid": "p0010162", "repository": "USAP-DC", "title": "NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.1, "title": "Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020", "uid": "601827", "west": -112.31}, {"awards": "1841467 MacAyeal, Douglas; 1841607 Banwell, Alison", "bounds_geometry": ["POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1))"], "date_created": "Wed, 20 Mar 2024 00:00:00 GMT", "description": "This dataset contains all of the field data (GNSS, weather station data, timelapse camera images) used in the publication \u0027Banwell et al., 2024\u0027, which documents observations of surface meltwater-induced flexure and fracture at a doline on north George VI Ice Shelf, Antarctic Peninsula. ", "east": -67.5, "geometry": ["POINT(-67.89 -71.35)"], "keywords": "Antarctica; Antarctic Peninsula; AWS; Cryosphere; GNSS; GPS Data; Ice-Shelf Flexure; Ice Shelf Fracture; Ice-Shelf Melt; Timelaps Images", "locations": "Antarctic Peninsula; Antarctica", "north": -71.1, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Banwell, Alison; Willis, Ian; Stevens, Laura; Dell, Rebecca; MacAyeal, Douglas", "project_titles": "NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture", "projects": [{"proj_uid": "p0010449", "repository": "USAP-DC", "title": "NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -71.6, "title": "Dataset for: Banwell et al. 2024, \u0027Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica\u0027, Journal of Glaciology.", "uid": "601771", "west": -68.28}, {"awards": "1744649 Christianson, Knut; 1643353 Christianson, Knut", "bounds_geometry": ["POLYGON((-179.9989061 -89.752739299,-143.999017884 -89.752739299,-107.999129669 -89.752739299,-71.9992414529 -89.752739299,-35.9993532372 -89.752739299,0.000534978500013 -89.752739299,36.0004231942 -89.752739299,72.0003114099 -89.752739299,108.000199626 -89.752739299,144.000087841 -89.752739299,179.999976057 -89.752739299,179.999976057 -89.7772743702,179.999976057 -89.8018094414,179.999976057 -89.8263445126,179.999976057 -89.8508795838,179.999976057 -89.875414655,179.999976057 -89.8999497262,179.999976057 -89.9244847974,179.999976057 -89.9490198686,179.999976057 -89.9735549398,179.999976057 -89.998090011,144.000087841 -89.998090011,108.000199626 -89.998090011,72.0003114099 -89.998090011,36.0004231942 -89.998090011,0.000534978499985 -89.998090011,-35.9993532372 -89.998090011,-71.9992414529 -89.998090011,-107.999129669 -89.998090011,-143.999017884 -89.998090011,-179.9989061 -89.998090011,-179.9989061 -89.9735549398,-179.9989061 -89.9490198686,-179.9989061 -89.9244847974,-179.9989061 -89.8999497262,-179.9989061 -89.875414655,-179.9989061 -89.8508795838,-179.9989061 -89.8263445126,-179.9989061 -89.8018094414,-179.9989061 -89.7772743702,-179.9989061 -89.752739299))"], "date_created": "Thu, 06 Jan 2022 00:00:00 GMT", "description": "These are ground-based GNSS data collected from a subglacial lake ~15 km from the geographic South Pole.\r\nData were collected with two separate antenna/receiver systems: 1) Septentrio Altus APS3G antenna/receiver 2) Trimble NetR8 and Trimble Zephyr Geodetic antenna.", "east": 179.999976057, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GNSS; GPS; GPS Data; South Pole; Subglacial Lakes", "locations": "South Pole; Antarctica; South Pole", "north": -89.752739299, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Hills, Benjamin", "project_titles": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow", "projects": [{"proj_uid": "p0010160", "repository": "USAP-DC", "title": "Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -89.998090011, "title": "South Pole Lake GNSS", "uid": "601502", "west": -179.9989061}, {"awards": "1917149 Grapenthin, Ronni; 1643952 Grapenthin, Ronni; 2039432 Grapenthin, Ronni", "bounds_geometry": ["POLYGON((166 -77.1,166.39 -77.1,166.78 -77.1,167.17 -77.1,167.56 -77.1,167.95 -77.1,168.34 -77.1,168.73 -77.1,169.12 -77.1,169.51 -77.1,169.9 -77.1,169.9 -77.18,169.9 -77.26,169.9 -77.34,169.9 -77.42,169.9 -77.5,169.9 -77.58,169.9 -77.66,169.9 -77.74,169.9 -77.82,169.9 -77.9,169.51 -77.9,169.12 -77.9,168.73 -77.9,168.34 -77.9,167.95 -77.9,167.56 -77.9,167.17 -77.9,166.78 -77.9,166.39 -77.9,166 -77.9,166 -77.82,166 -77.74,166 -77.66,166 -77.58,166 -77.5,166 -77.42,166 -77.34,166 -77.26,166 -77.18,166 -77.1))"], "date_created": "Fri, 03 Sep 2021 00:00:00 GMT", "description": "We use NASA\u0027s Jet Propulsion Laboratory\u0027s (JPL) GipsyX software in PPP mode with ambiguity resolution \r\napplied to 24 hour segments of data to generate daily position solutions. We use JPL\u0027s orbit and\r\nclock products and International GNSS Service (IGS) antenna phase center models. Where available, \r\nwe use JPL\u0027s second order ionospheric corrections, otherwise we fall back on those provided by the \r\nIGS. To correct tropospheric delays, we use the GPT2 model as implemented in GipsyX. Ocean tidal \r\nloading corrections utilize the TPXO7.2 and ATLAS model, a combination of hydrodynamic model and \r\naltimetry data, with respect to Earth\u0027s Center of Mass implemented in SPOTL. We obtain position \r\nsolutions for each station day in a fiducial-free reference frame, which we then transform into \r\nthe 2014 International Reference Frame using JPL\u0027s transformation coefficients and generate\r\ntimeseries of position change relative to the first epoch, given in the *.series files which \r\nare ASCII files with the following columns:\r\n\r\ndecimal year\r\ndisplacement east (m)\r\ndisplacement north (m)\r\ndisplacement up (m) \r\nsigma east (m)\r\nsigma north (m)\r\nsigma up (m)\r\neast-north covariance\r\neast-up covariance\r\nnorth-up covariance\r\nYear (YYYY)\r\nMonth (MM)\r\nDay (DD)\r\nHour (hh)\r\nMinute (mm)\r\nSecond (ss)\r\nSolution path\r\n \r\nWe generate position time series relative to stable Antarctic plate by removing the plate velocities \r\nmodeled by Argus et al (2010). These are provided in the *.npy files that be readily read into \r\npython scripts:\r\n\r\npos_ts = np.load(\u0027test.npy\u0027).flatten()[0]\r\n\r\npos_ts[\u0027itrf\u0027] provides the ITRF data as above\r\npos_ts[\u0027plate\u0027] provides the data with Antarctic plate motion removed. ", "east": 169.9, "geometry": ["POINT(167.95 -77.5)"], "keywords": "Antarctica; GPS; Mount Erebus; Ross Island", "locations": "Antarctica; Ross Island; Ross Island; Mount Erebus", "north": -77.1, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Grapenthin, Ronni", "project_titles": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica", "projects": [{"proj_uid": "p0010255", "repository": "USAP-DC", "title": "Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Erebus GPS timeseries ", "uid": "601471", "west": 166.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Sub-ice-shelf seafloor elevation derived from point-source active-seismic data on Thwaites Eastern Ice Shelf and Dotson Ice Shelf, December 2019 and January 2020
|
1929991 |
2024-08-23 | Muto, Atsuhiro; Alley, Karen; Roccaro, Alexander; Pettit, Erin; Truffer, Martin; Scambos, Ted; Wild, Christian; Pomraning, Dale; Wallin, Bruce |
NSF-NERC: Thwaites-Amundsen Regional Survey and Network (TARSAN) Integrating Atmosphere-Ice-Ocean Processes affecting the Sub-Ice-Shelf Environment |
This is a dataset of elevations of sub-ice-shelf seafloor and ice-shelf bottom derived from active-source-seismic sounding conducted at discrete points distributed over the Thwaites Eastern Ice Shelf (TEIS) and Dotson Ice Shelf (DIS). Also included are the ice-shelf surface elevation at each seismic-shot location derived from the concurrent GNSS recording and P-wave speed profile through firn derived from shallow refraction-seismic surveys on each ice shelf. Raw seismic records are also provided as SEGY files. | ["POLYGON((-112.31 -74.8,-111.61500000000001 -74.8,-110.92 -74.8,-110.225 -74.8,-109.53 -74.8,-108.83500000000001 -74.8,-108.14 -74.8,-107.445 -74.8,-106.75 -74.8,-106.055 -74.8,-105.36 -74.8,-105.36 -74.83,-105.36 -74.86,-105.36 -74.89,-105.36 -74.92,-105.36 -74.94999999999999,-105.36 -74.97999999999999,-105.36 -75.00999999999999,-105.36 -75.03999999999999,-105.36 -75.07,-105.36 -75.1,-106.055 -75.1,-106.75 -75.1,-107.445 -75.1,-108.14 -75.1,-108.83500000000001 -75.1,-109.53 -75.1,-110.225 -75.1,-110.92 -75.1,-111.61500000000001 -75.1,-112.31 -75.1,-112.31 -75.07,-112.31 -75.03999999999999,-112.31 -75.00999999999999,-112.31 -74.97999999999999,-112.31 -74.94999999999999,-112.31 -74.92,-112.31 -74.89,-112.31 -74.86,-112.31 -74.83,-112.31 -74.8))"] | ["POINT(-108.83500000000001 -74.94999999999999)"] | false | false |
Dataset for: Banwell et al. 2024, 'Observed meltwater-induced flexure and fracture at a doline on George VI Ice Shelf, Antarctica', Journal of Glaciology.
|
1841467 1841607 |
2024-03-20 | Banwell, Alison; Willis, Ian; Stevens, Laura; Dell, Rebecca; MacAyeal, Douglas |
NSFGEO-NERC: Ice-shelf Instability Caused by Active Surface Meltwater Production, Movement, Ponding and Hydrofracture |
This dataset contains all of the field data (GNSS, weather station data, timelapse camera images) used in the publication 'Banwell et al., 2024', which documents observations of surface meltwater-induced flexure and fracture at a doline on north George VI Ice Shelf, Antarctic Peninsula. | ["POLYGON((-68.28 -71.1,-68.202 -71.1,-68.124 -71.1,-68.046 -71.1,-67.968 -71.1,-67.89 -71.1,-67.812 -71.1,-67.734 -71.1,-67.656 -71.1,-67.578 -71.1,-67.5 -71.1,-67.5 -71.14999999999999,-67.5 -71.19999999999999,-67.5 -71.25,-67.5 -71.3,-67.5 -71.35,-67.5 -71.39999999999999,-67.5 -71.44999999999999,-67.5 -71.5,-67.5 -71.55,-67.5 -71.6,-67.578 -71.6,-67.656 -71.6,-67.734 -71.6,-67.812 -71.6,-67.89 -71.6,-67.968 -71.6,-68.046 -71.6,-68.124 -71.6,-68.202 -71.6,-68.28 -71.6,-68.28 -71.55,-68.28 -71.5,-68.28 -71.44999999999999,-68.28 -71.39999999999999,-68.28 -71.35,-68.28 -71.3,-68.28 -71.25,-68.28 -71.19999999999999,-68.28 -71.14999999999999,-68.28 -71.1))"] | ["POINT(-67.89 -71.35)"] | false | false |
South Pole Lake GNSS
|
1744649 1643353 |
2022-01-06 | Hills, Benjamin |
Collaborative Research: Computational Methods Supporting Joint Seismic and Radar Inversion for Ice Fabric and Temperature in Streaming Flow |
These are ground-based GNSS data collected from a subglacial lake ~15 km from the geographic South Pole. Data were collected with two separate antenna/receiver systems: 1) Septentrio Altus APS3G antenna/receiver 2) Trimble NetR8 and Trimble Zephyr Geodetic antenna. | ["POLYGON((-179.9989061 -89.752739299,-143.999017884 -89.752739299,-107.999129669 -89.752739299,-71.9992414529 -89.752739299,-35.9993532372 -89.752739299,0.000534978500013 -89.752739299,36.0004231942 -89.752739299,72.0003114099 -89.752739299,108.000199626 -89.752739299,144.000087841 -89.752739299,179.999976057 -89.752739299,179.999976057 -89.7772743702,179.999976057 -89.8018094414,179.999976057 -89.8263445126,179.999976057 -89.8508795838,179.999976057 -89.875414655,179.999976057 -89.8999497262,179.999976057 -89.9244847974,179.999976057 -89.9490198686,179.999976057 -89.9735549398,179.999976057 -89.998090011,144.000087841 -89.998090011,108.000199626 -89.998090011,72.0003114099 -89.998090011,36.0004231942 -89.998090011,0.000534978499985 -89.998090011,-35.9993532372 -89.998090011,-71.9992414529 -89.998090011,-107.999129669 -89.998090011,-143.999017884 -89.998090011,-179.9989061 -89.998090011,-179.9989061 -89.9735549398,-179.9989061 -89.9490198686,-179.9989061 -89.9244847974,-179.9989061 -89.8999497262,-179.9989061 -89.875414655,-179.9989061 -89.8508795838,-179.9989061 -89.8263445126,-179.9989061 -89.8018094414,-179.9989061 -89.7772743702,-179.9989061 -89.752739299))"] | ["POINT(0 -89.999)"] | false | false |
Erebus GPS timeseries
|
1917149 1643952 2039432 |
2021-09-03 | Grapenthin, Ronni |
Collaborative Research: Multi-Parameter Geophysical Constraints on Volcano Dynamics of Mt. Erebus and Ross Island, Antarctica |
We use NASA's Jet Propulsion Laboratory's (JPL) GipsyX software in PPP mode with ambiguity resolution applied to 24 hour segments of data to generate daily position solutions. We use JPL's orbit and clock products and International GNSS Service (IGS) antenna phase center models. Where available, we use JPL's second order ionospheric corrections, otherwise we fall back on those provided by the IGS. To correct tropospheric delays, we use the GPT2 model as implemented in GipsyX. Ocean tidal loading corrections utilize the TPXO7.2 and ATLAS model, a combination of hydrodynamic model and altimetry data, with respect to Earth's Center of Mass implemented in SPOTL. We obtain position solutions for each station day in a fiducial-free reference frame, which we then transform into the 2014 International Reference Frame using JPL's transformation coefficients and generate timeseries of position change relative to the first epoch, given in the *.series files which are ASCII files with the following columns: decimal year displacement east (m) displacement north (m) displacement up (m) sigma east (m) sigma north (m) sigma up (m) east-north covariance east-up covariance north-up covariance Year (YYYY) Month (MM) Day (DD) Hour (hh) Minute (mm) Second (ss) Solution path We generate position time series relative to stable Antarctic plate by removing the plate velocities modeled by Argus et al (2010). These are provided in the *.npy files that be readily read into python scripts: pos_ts = np.load('test.npy').flatten()[0] pos_ts['itrf'] provides the ITRF data as above pos_ts['plate'] provides the data with Antarctic plate motion removed. | ["POLYGON((166 -77.1,166.39 -77.1,166.78 -77.1,167.17 -77.1,167.56 -77.1,167.95 -77.1,168.34 -77.1,168.73 -77.1,169.12 -77.1,169.51 -77.1,169.9 -77.1,169.9 -77.18,169.9 -77.26,169.9 -77.34,169.9 -77.42,169.9 -77.5,169.9 -77.58,169.9 -77.66,169.9 -77.74,169.9 -77.82,169.9 -77.9,169.51 -77.9,169.12 -77.9,168.73 -77.9,168.34 -77.9,167.95 -77.9,167.56 -77.9,167.17 -77.9,166.78 -77.9,166.39 -77.9,166 -77.9,166 -77.82,166 -77.74,166 -77.66,166 -77.58,166 -77.5,166 -77.42,166 -77.34,166 -77.26,166 -77.18,166 -77.1))"] | ["POINT(167.95 -77.5)"] | false | false |