{"dp_type": "Dataset", "free_text": "Cosmogenic Radionuclides"}
[{"awards": "1738989 Venturelli, Ryan", "bounds_geometry": ["POINT(-110.96038 -75.21526)"], "date_created": "Mon, 10 Jul 2023 00:00:00 GMT", "description": "Included in this dataset are in situ carbon-14 concentrations for a series of bedrock cores recovered from the subglacial extension of Kay Peak, a grounding-line-proximal ridge of the volcanic edifice Mount Murphy (near Thwaites and Pope glaciers). Concentrations measured in these bedrock samples have been used in the associated publication to demonstrate that the Thwaites-Pope glacier system was thinner in the Holocene than it is today. ", "east": -110.96038, "geometry": ["POINT(-110.96038 -75.21526)"], "keywords": "Antarctica; Cosmogenic Radionuclides; Mount Murphy; Subglacial Bedrock", "locations": "Mount Murphy; Antarctica", "north": -75.21526, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Venturelli, Ryan; Goehring, Brent; Balco, Gregory", "project_titles": "NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System", "projects": [{"proj_uid": "p0010165", "repository": "USAP-DC", "title": "NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.21526, "title": "In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers", "uid": "601705", "west": -110.96038}, {"awards": "1644128 Welten, Kees; 1644094 Caffee, Marc", "bounds_geometry": ["POINT(-112.05 -79.28)"], "date_created": "Sat, 20 May 2023 00:00:00 GMT", "description": "This dataset contains a continuous depth profile of 10Be measured in ice core samples from the WAIS Divide Core between 2850 and 3240 m depth.", "east": -112.05, "geometry": ["POINT(-112.05 -79.28)"], "keywords": "10Be; Antarctica; Beryllium; Cosmogenic Radionuclides; Ice Core Data; WAIS Divide", "locations": "WAIS Divide; Antarctica", "north": -79.28, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Welten, Kees; Caffee, Marc; Woodruff, Thomas", "project_titles": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements", "projects": [{"proj_uid": "p0010280", "repository": "USAP-DC", "title": "Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.28, "title": "WAIS Divide Core 10Be data, 2850-3240 m", "uid": "601692", "west": -112.05}, {"awards": "0839137 Welten, Kees; 0839042 Caffee, Marc", "bounds_geometry": ["POLYGON((-113 -79.25,-112.8 -79.25,-112.6 -79.25,-112.4 -79.25,-112.2 -79.25,-112 -79.25,-111.8 -79.25,-111.6 -79.25,-111.4 -79.25,-111.2 -79.25,-111 -79.25,-111 -79.3,-111 -79.35,-111 -79.4,-111 -79.45,-111 -79.5,-111 -79.55,-111 -79.6,-111 -79.65,-111 -79.7,-111 -79.75,-111.2 -79.75,-111.4 -79.75,-111.6 -79.75,-111.8 -79.75,-112 -79.75,-112.2 -79.75,-112.4 -79.75,-112.6 -79.75,-112.8 -79.75,-113 -79.75,-113 -79.7,-113 -79.65,-113 -79.6,-113 -79.55,-113 -79.5,-113 -79.45,-113 -79.4,-113 -79.35,-113 -79.3,-113 -79.25))"], "date_created": "Tue, 27 Jul 2021 00:00:00 GMT", "description": "This is the second part of the 10Be data set for the WAIS Divide Core WDC06A ice core, from 1190.69 to 2453.25 m depth, produced by UC Berkeley\u0027s Space Sciences Laboratory and Purdue University\u0027s PRIME Laboratory. Each sample represents a continuous ice core section of ~3 m long (although they vary from 1.9 to 4.2 m). Experimental procedures for the extraction of 10Be from the ice samples and the measurement of 10Be by accelerator mass spectrometry (AMS) are described in Woodruff et al. (2013).", "east": -111.0, "geometry": ["POINT(-112 -79.5)"], "keywords": "Antarctica; West Antarctic Ice Sheet", "locations": "West Antarctic Ice Sheet; Antarctica", "north": -79.25, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "persons": "Welten, Kees; Nishiizumi, Kunihiko; Caffee, M. W.; Woodruff, T. E.", "project_titles": "Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000103", "repository": "USAP-DC", "title": "Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.75, "title": "Cosmogenic 10Be in WAIS Divide Ice core, 1190-2453 m", "uid": "601466", "west": -113.0}, {"awards": "1341631 Lyons, W. Berry; 1341736 Adams, Byron", "bounds_geometry": ["POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67046,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38572,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38572,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67046,-177.4099 -84.56828,-177.4099 -84.4661))"], "date_created": "Sun, 03 Jan 2021 00:00:00 GMT", "description": "We collected soil surface samples (n = 21) and depth profiles (n = 25) every 5 cm to refusal (up to 30 cm) from eleven ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS). We measured meteoric 10Be concentrations, which were later used to estimate relative surface exposure ages of the soils from seven locations. ", "east": -174.1338, "geometry": ["POINT(-175.77185 -84.977)"], "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic Radionuclides; Geochemistry; Geomorphology; Shackleton Glacier; Surface Exposure Dates", "locations": "Antarctica; Shackleton Glacier", "north": -84.4661, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Diaz, Melisa A.", "project_titles": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains", "projects": [{"proj_uid": "p0010140", "repository": "USAP-DC", "title": "Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.4879, "title": "Meteoric 10Be data of soils from the Shackleton Glacier region", "uid": "601421", "west": -177.4099}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": ["POLYGON((-116.46 -84.78,-116.452 -84.78,-116.444 -84.78,-116.436 -84.78,-116.428 -84.78,-116.42 -84.78,-116.412 -84.78,-116.404 -84.78,-116.396 -84.78,-116.388 -84.78,-116.38 -84.78,-116.38 -84.781,-116.38 -84.782,-116.38 -84.783,-116.38 -84.784,-116.38 -84.785,-116.38 -84.786,-116.38 -84.787,-116.38 -84.788,-116.38 -84.789,-116.38 -84.79,-116.388 -84.79,-116.396 -84.79,-116.404 -84.79,-116.412 -84.79,-116.42 -84.79,-116.428 -84.79,-116.436 -84.79,-116.444 -84.79,-116.452 -84.79,-116.46 -84.79,-116.46 -84.789,-116.46 -84.788,-116.46 -84.787,-116.46 -84.786,-116.46 -84.785,-116.46 -84.784,-116.46 -84.783,-116.46 -84.782,-116.46 -84.781,-116.46 -84.78))"], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "The data set consists of cosmogenic berrylium-10 and aluminum-26, along with neon-21, in a set of 4 rock-cores obtained from the Ohio Range, West Antarctica. The rock cores were obtained using the WInkie drill. The depth to the cores varies from 12 meters to 28 meters. The recovered rock cores analyzed for the cosmogenic isotopes varies from 22 cm long to 50 cm long. The data include the following formation: sample details, cosmogenic berrylium-10, aluminum-26 and upper bounds for cosmogenic 21 (since samples have nucleogenic 21) and the step heating data for neon. The data are in Mircrosoft excel format.", "east": -116.38, "geometry": ["POINT(-116.42 -84.785)"], "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "locations": "Antarctica; Ohio Range", "north": -84.78, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Mukhopadhyay, Sujoy", "project_titles": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "projects": [{"proj_uid": "p0010113", "repository": "USAP-DC", "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "uid": "601351", "west": -116.46}, {"awards": "1443346 Stone, John", "bounds_geometry": ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"], "date_created": "Thu, 21 Nov 2019 00:00:00 GMT", "description": "This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html .\r\nData for each sample consists of two lines of input parameters, as follows:\t\t\t\t\t\t\t\t\t\r\n{Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled}\r\n{Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization}\r\nFurther information about the V3 input format is given at:\r\nhttp://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html", "east": -158.0, "geometry": ["POINT(-166 -85.15)"], "keywords": "Antarctica; Be-10; Beryllium-10; Cosmogenic; Cosmogenic Dating; Cosmogenic Radionuclides; Deglaciation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Liv Glacier; Rocks; Ross Ice Sheet; Surface Exposure Dates; Transantarctic Mountains", "locations": "Liv Glacier; Transantarctic Mountains; Ross Ice Sheet; Antarctica", "north": -84.5, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Stone, John", "project_titles": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment", "projects": [{"proj_uid": "p0010053", "repository": "USAP-DC", "title": "Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.8, "title": "Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast", "uid": "601226", "west": -174.0}, {"awards": "0636964 Welten, Kees", "bounds_geometry": ["POINT(-112.1115 -79.481)"], "date_created": "Wed, 14 Dec 2016 00:00:00 GMT", "description": null, "east": -112.1115, "geometry": ["POINT(-112.1115 -79.481)"], "keywords": "Antarctica; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Hydrothermal Vent; WAIS Divide; WAIS Divide Ice Core", "locations": "Antarctica; WAIS Divide", "north": -79.481, "nsf_funding_programs": null, "persons": "Welten, Kees", "project_titles": "Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core", "projects": [{"proj_uid": "p0000103", "repository": "USAP-DC", "title": "Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.481, "title": "Cosmogenic Radionuclides in the WAIS Divide Ice Core", "uid": "600383", "west": -112.1115}, {"awards": "1043554 Willenbring, Jane", "bounds_geometry": ["POINT(161.5 -77.5)"], "date_created": "Wed, 09 Nov 2016 00:00:00 GMT", "description": "The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events.\nThis study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete.", "east": 161.5, "geometry": ["POINT(161.5 -77.5)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic Radionuclides; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Isotope; Sample/collection Description; Sample/Collection Description; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -77.5, "nsf_funding_programs": null, "persons": "Willenbring, Jane", "project_titles": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "projects": [{"proj_uid": "p0000429", "repository": "USAP-DC", "title": "Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins", "uid": "600379", "west": 161.5}, {"awards": "0636629 Kurz, Mark", "bounds_geometry": ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change.", "east": 164.3, "geometry": ["POINT(162.5 -78.1)"], "keywords": "Antarctica; Cosmogenic Radionuclides; Dry Valleys; Geology/Geophysics - Other; Glaciology; LIDAR; Navigation; Sample/collection Description; Sample/Collection Description", "locations": "Dry Valleys; Antarctica", "north": -77.8, "nsf_funding_programs": null, "persons": "Soule, S. Adam; Kurz, Mark D.", "project_titles": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "projects": [{"proj_uid": "p0000559", "repository": "USAP-DC", "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills", "uid": "600066", "west": 160.7}, {"awards": "0126343 Nishiizumi, Kunihiko", "bounds_geometry": ["POINT(-148.812 -81.6588)"], "date_created": "Thu, 31 May 2007 00:00:00 GMT", "description": "This data set includes a record of cosmogenic radionuclide concentrations in the Siple Dome A ice core collected as part of the West Antarctic ice core program. The investigators measured profiles of both \u003csup\u003e10\u003c/sup\u003eBe (half-life = 1.5x10\u003csup\u003e6\u003c/sup\u003e years) and \u003csup\u003e36\u003c/sup\u003eCl (half-life = 3.0x10\u003csup\u003e5\u003c/sup\u003e years) in the entire ice core, which spans the time period from the present to about 100,000 years before present. These data are being used for perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. \n\nData are distributed as a PDF file and are available via FTP.", "east": -148.812, "geometry": ["POINT(-148.812 -81.6588)"], "keywords": "Antarctica; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core", "locations": "Siple Dome; Antarctica", "north": -81.6588, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Finkel, R. C.; Nishiizumi, Kunihiko", "project_titles": "Cosmogenic Radionuclides in the Siple Dome Ice Core", "projects": [{"proj_uid": "p0000358", "repository": "USAP-DC", "title": "Cosmogenic Radionuclides in the Siple Dome Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.6588, "title": "Cosmogenic Radionuclides in the Siple Dome A Ice Core", "uid": "609307", "west": -148.812}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
In situ 14C data from a subglacial bedrock core near Pope and Thwaites glaciers
|
1738989 |
2023-07-10 | Venturelli, Ryan; Goehring, Brent; Balco, Gregory |
NSF-NERC: Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System |
Included in this dataset are in situ carbon-14 concentrations for a series of bedrock cores recovered from the subglacial extension of Kay Peak, a grounding-line-proximal ridge of the volcanic edifice Mount Murphy (near Thwaites and Pope glaciers). Concentrations measured in these bedrock samples have been used in the associated publication to demonstrate that the Thwaites-Pope glacier system was thinner in the Holocene than it is today. | ["POINT(-110.96038 -75.21526)"] | ["POINT(-110.96038 -75.21526)"] | false | false |
WAIS Divide Core 10Be data, 2850-3240 m
|
1644128 1644094 |
2023-05-20 | Welten, Kees; Caffee, Marc; Woodruff, Thomas |
Synchronizing the WAIS Divide and Greenland Ice Cores from 30-65 ka BP using high-resolution 10Be measurements |
This dataset contains a continuous depth profile of 10Be measured in ice core samples from the WAIS Divide Core between 2850 and 3240 m depth. | ["POINT(-112.05 -79.28)"] | ["POINT(-112.05 -79.28)"] | false | false |
Cosmogenic 10Be in WAIS Divide Ice core, 1190-2453 m
|
0839137 0839042 |
2021-07-27 | Welten, Kees; Nishiizumi, Kunihiko; Caffee, M. W.; Woodruff, T. E. |
Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core |
This is the second part of the 10Be data set for the WAIS Divide Core WDC06A ice core, from 1190.69 to 2453.25 m depth, produced by UC Berkeley's Space Sciences Laboratory and Purdue University's PRIME Laboratory. Each sample represents a continuous ice core section of ~3 m long (although they vary from 1.9 to 4.2 m). Experimental procedures for the extraction of 10Be from the ice samples and the measurement of 10Be by accelerator mass spectrometry (AMS) are described in Woodruff et al. (2013). | ["POLYGON((-113 -79.25,-112.8 -79.25,-112.6 -79.25,-112.4 -79.25,-112.2 -79.25,-112 -79.25,-111.8 -79.25,-111.6 -79.25,-111.4 -79.25,-111.2 -79.25,-111 -79.25,-111 -79.3,-111 -79.35,-111 -79.4,-111 -79.45,-111 -79.5,-111 -79.55,-111 -79.6,-111 -79.65,-111 -79.7,-111 -79.75,-111.2 -79.75,-111.4 -79.75,-111.6 -79.75,-111.8 -79.75,-112 -79.75,-112.2 -79.75,-112.4 -79.75,-112.6 -79.75,-112.8 -79.75,-113 -79.75,-113 -79.7,-113 -79.65,-113 -79.6,-113 -79.55,-113 -79.5,-113 -79.45,-113 -79.4,-113 -79.35,-113 -79.3,-113 -79.25))"] | ["POINT(-112 -79.5)"] | false | false |
Meteoric 10Be data of soils from the Shackleton Glacier region
|
1341631 1341736 |
2021-01-03 | Diaz, Melisa A. |
Collaborative Research: The Role of Glacial History on the Structure and Functioning of Ecological Communities in the Shackleton Glacier Region of the Transantarctic Mountains |
We collected soil surface samples (n = 21) and depth profiles (n = 25) every 5 cm to refusal (up to 30 cm) from eleven ice-free areas along the Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet (EAIS). We measured meteoric 10Be concentrations, which were later used to estimate relative surface exposure ages of the soils from seven locations. | ["POLYGON((-177.4099 -84.4661,-177.08229 -84.4661,-176.75468 -84.4661,-176.42707 -84.4661,-176.09946 -84.4661,-175.77185 -84.4661,-175.44424 -84.4661,-175.11663 -84.4661,-174.78902 -84.4661,-174.46141 -84.4661,-174.1338 -84.4661,-174.1338 -84.56828,-174.1338 -84.67046,-174.1338 -84.77264,-174.1338 -84.87482,-174.1338 -84.977,-174.1338 -85.07918,-174.1338 -85.18136,-174.1338 -85.28354,-174.1338 -85.38572,-174.1338 -85.4879,-174.46141 -85.4879,-174.78902 -85.4879,-175.11663 -85.4879,-175.44424 -85.4879,-175.77185 -85.4879,-176.09946 -85.4879,-176.42707 -85.4879,-176.75468 -85.4879,-177.08229 -85.4879,-177.4099 -85.4879,-177.4099 -85.38572,-177.4099 -85.28354,-177.4099 -85.18136,-177.4099 -85.07918,-177.4099 -84.977,-177.4099 -84.87482,-177.4099 -84.77264,-177.4099 -84.67046,-177.4099 -84.56828,-177.4099 -84.4661))"] | ["POINT(-175.77185 -84.977)"] | false | false |
Ohio Range Subglacial rock core cosmogenic nuclide data
|
1341658 |
2020-06-28 | Mukhopadhyay, Sujoy |
Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier |
The data set consists of cosmogenic berrylium-10 and aluminum-26, along with neon-21, in a set of 4 rock-cores obtained from the Ohio Range, West Antarctica. The rock cores were obtained using the WInkie drill. The depth to the cores varies from 12 meters to 28 meters. The recovered rock cores analyzed for the cosmogenic isotopes varies from 22 cm long to 50 cm long. The data include the following formation: sample details, cosmogenic berrylium-10, aluminum-26 and upper bounds for cosmogenic 21 (since samples have nucleogenic 21) and the step heating data for neon. The data are in Mircrosoft excel format. | ["POLYGON((-116.46 -84.78,-116.452 -84.78,-116.444 -84.78,-116.436 -84.78,-116.428 -84.78,-116.42 -84.78,-116.412 -84.78,-116.404 -84.78,-116.396 -84.78,-116.388 -84.78,-116.38 -84.78,-116.38 -84.781,-116.38 -84.782,-116.38 -84.783,-116.38 -84.784,-116.38 -84.785,-116.38 -84.786,-116.38 -84.787,-116.38 -84.788,-116.38 -84.789,-116.38 -84.79,-116.388 -84.79,-116.396 -84.79,-116.404 -84.79,-116.412 -84.79,-116.42 -84.79,-116.428 -84.79,-116.436 -84.79,-116.444 -84.79,-116.452 -84.79,-116.46 -84.79,-116.46 -84.789,-116.46 -84.788,-116.46 -84.787,-116.46 -84.786,-116.46 -84.785,-116.46 -84.784,-116.46 -84.783,-116.46 -84.782,-116.46 -84.781,-116.46 -84.78))"] | ["POINT(-116.42 -84.785)"] | false | false |
Cosmogenic nuclide data from glacial deposits along the Liv Glacier coast
|
1443346 |
2019-11-21 | Stone, John |
Collaborative Research: High-resolution Reconstruction of Holocene Deglaciation in the Southern Ross Embayment |
This data set contains measurements of cosmic-ray-produced Be-10 in quartz from glacial erratics and bedrock at sites along and adjacent to Liv Glacier and Amundsen Glacier in the southern Transantarctic Mountains. Samples were collected during the 2016-17 and 2017-18 field seasons working from remote camps along the coast. Locations were determined by hand-held GPS. Elevations are based on barometric altimetry corrected for daily drift and referenced to precise (geodetic) GPS benchmarks established over a range of altitudes at each site. Horizon geometry and the resulting topographic shielding of the cosmic ray flux was determined from vertically-oriented full-sky (fisheye) photographs at each sample location. Samples were processed at the University of Washington Cosmogenic Nuclide Laboratory using established procedures for mineral separation, dissolution, beryllium extraction and purification, described at http://depts.washington.edu/cosmolab/chem.shtml. Beryllium isotope ratios were measured at the Lawrence Livermore Center for Accelerator Mass Spectrometry (LLNL-CAMS) relative to the KNSTD-Be-01-5-4 standard, assuming a standard Be-10/Be-9 ratio of 2.851E-12 (07KNSTD normalization). Data are reported as input for the online CRONUS cosmogenic nuclide calculator (V3, current at the time of submission in November 2019). Exposure ages can be obtained by entering the data into the CRONUS calculator, at: http://hess.ess.washington.edu/math/v3/v3_age_in.html . Data for each sample consists of two lines of input parameters, as follows: {Sample_name, Latitude (DD), Longitude (DD), Altitude (m asl), Scaling_function, Thickness (cm), Density (g/cm^3), Horizon_correction, Erosion_rate (cm/yr), Year_sampled} {Sample_name, Nuclide (in this case Be-10), Target_mineral (quartz), Be-10_concentration (atom/g), Error_Be-10_concentration (atom/g), Normalization} Further information about the V3 input format is given at: http://hess.ess.washington.edu/math/docs/v3/v3_input_explained.html | ["POLYGON((-174 -84.5,-172.4 -84.5,-170.8 -84.5,-169.2 -84.5,-167.6 -84.5,-166 -84.5,-164.4 -84.5,-162.8 -84.5,-161.2 -84.5,-159.6 -84.5,-158 -84.5,-158 -84.63,-158 -84.76,-158 -84.89,-158 -85.02,-158 -85.15,-158 -85.28,-158 -85.41,-158 -85.54,-158 -85.67,-158 -85.8,-159.6 -85.8,-161.2 -85.8,-162.8 -85.8,-164.4 -85.8,-166 -85.8,-167.6 -85.8,-169.2 -85.8,-170.8 -85.8,-172.4 -85.8,-174 -85.8,-174 -85.67,-174 -85.54,-174 -85.41,-174 -85.28,-174 -85.15,-174 -85.02,-174 -84.89,-174 -84.76,-174 -84.63,-174 -84.5))"] | ["POINT(-166 -85.15)"] | false | false |
Cosmogenic Radionuclides in the WAIS Divide Ice Core
|
0636964 |
2016-12-14 | Welten, Kees |
Collaborative Research: Cosmogenic Radionuclides in the Deep WAIS Divide Core |
None | ["POINT(-112.1115 -79.481)"] | ["POINT(-112.1115 -79.481)"] | false | false |
Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins
|
1043554 |
2016-11-09 | Willenbring, Jane |
Collaborative Research: Activation of high-elevation alluvial fans in the Transantarctic Mountains - a proxy for Plio-Pleistocene warmth along East Antarctic ice margins |
The PIs propose to address the question of whether ice surface melting zones developed at high elevations during warm climatic phases in the Transantarctic Mountains. Evidence from sediment cores drilled by the ANDRILL program indicates that open water in the Ross Sea could have been a source of warmth during Pliocene and Pleistocene. The question is whether marine warmth penetrated inland to the ice sheet margins. The glacial record may be ill suited to answer this question, as cold-based glaciers may respond too slowly to register brief warmth. Questions also surround possible orbital controls on regional climate and ice sheet margins. Northern Hemisphere insolation at obliquity and precession timescales is thought to control Antarctic climate through oceanic or atmospheric connections, but new thinking suggests that the duration of Southern Hemisphere summer may be more important. The PIs propose to use high elevation alluvial deposits in the Transantarctic Mountains as a proxy for inland warmth. These relatively young fans, channels, and debris flow levees stand out as visible evidence for the presence of melt water in an otherwise ancient, frozen landscape. Based on initial analyses of an alluvial fan in the Olympus Range, these deposits are sensitive recorders of rare melt events that occur at orbital timescales. For their study they will 1) map alluvial deposits using aerial photography, satellite imagery and GPS assisted field surveys to establish water sources and to quantify parameters effecting melt water production, 2) date stratigraphic sequences within these deposits using OSL, cosmogenic nuclide, and interbedded volcanic ash chronologies, 3) use paired nuclide analyses to estimate exposure and burial times, and rates of deposition and erosion, and 4) use micro and regional scale climate modeling to estimate paleoenvironmental conditions associated with melt events. This study will produce a record of inland melting from sites adjacent to ice sheet margins to help determine controls on regional climate along margins of the East Antarctic Ice Sheet to aid ice sheet and sea level modeling studies. The proposal will support several graduate and undergraduates. A PhD student will be supported on existing funding. The PIs will work with multiple K-12 schools to conduct interviews and webcasts from Antarctica and they will make follow up visits to classrooms after the field season is complete. | ["POINT(161.5 -77.5)"] | ["POINT(161.5 -77.5)"] | false | false |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills
|
0636629 |
2009-01-01 | Soule, S. Adam; Kurz, Mark D. |
Periglacial Landscape Evolution in Antarctic Lava Flows and Glacial Tills |
This project uses cosmogenic nuclide dating and LIDAR studies of surface roughness to understand weathering and landscape evolution in the Dry Valleys of Antarctica. The work focuses on two processes: cryoturbation of frozen soils and the development of patterned, frozen ground on ancient lava flows. The approach includes innovative uses of He3 profiling. Results will also be applied to understanding the glacial history of the Dry Valleys. There are potential applications to understanding the history of the East Antarctic Ice Sheet and the formation of Martian landscapes. The broader impacts include graduate student education. As well, the work may contribute to our understanding of the history of the Antarctic ice sheets, which is important to modeling their behavior during global climate change. | ["POLYGON((160.7 -77.8,161.06 -77.8,161.42 -77.8,161.78 -77.8,162.14 -77.8,162.5 -77.8,162.86 -77.8,163.22 -77.8,163.58 -77.8,163.94 -77.8,164.3 -77.8,164.3 -77.86,164.3 -77.92,164.3 -77.98,164.3 -78.04,164.3 -78.1,164.3 -78.16,164.3 -78.22,164.3 -78.28,164.3 -78.34,164.3 -78.4,163.94 -78.4,163.58 -78.4,163.22 -78.4,162.86 -78.4,162.5 -78.4,162.14 -78.4,161.78 -78.4,161.42 -78.4,161.06 -78.4,160.7 -78.4,160.7 -78.34,160.7 -78.28,160.7 -78.22,160.7 -78.16,160.7 -78.1,160.7 -78.04,160.7 -77.98,160.7 -77.92,160.7 -77.86,160.7 -77.8))"] | ["POINT(162.5 -78.1)"] | false | false |
Cosmogenic Radionuclides in the Siple Dome A Ice Core
|
0126343 |
2007-05-31 | Finkel, R. C.; Nishiizumi, Kunihiko |
Cosmogenic Radionuclides in the Siple Dome Ice Core |
This data set includes a record of cosmogenic radionuclide concentrations in the Siple Dome A ice core collected as part of the West Antarctic ice core program. The investigators measured profiles of both <sup>10</sup>Be (half-life = 1.5x10<sup>6</sup> years) and <sup>36</sup>Cl (half-life = 3.0x10<sup>5</sup> years) in the entire ice core, which spans the time period from the present to about 100,000 years before present. These data are being used for perfecting the ice core chronology, deducing the history of solar activity, deducing the history of variations in the geomagnetic field, and studying the possible role of solar variations on climate. Data are distributed as a PDF file and are available via FTP. | ["POINT(-148.812 -81.6588)"] | ["POINT(-148.812 -81.6588)"] | false | false |