{"dp_type": "Dataset", "free_text": "Biogeochemical Cycles"}
[{"awards": "1745078 Brook, Edward J.", "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (\u03b413C-CH4 and \u03b4D-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Atmospheric Gases; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Greenhouse Gas; Methane; West Antarctic Ice Sheet Divide", "locations": "West Antarctic Ice Sheet Divide; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J.", "project_titles": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores", "projects": [{"proj_uid": "p0010416", "repository": "USAP-DC", "title": "Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": null, "title": "Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica", "uid": "601813", "west": null}, {"awards": null, "bounds_geometry": null, "date_created": "Tue, 23 Jul 2024 00:00:00 GMT", "description": "This dataset includes measurements of the Deuterium isotopic Composition of Atmospheric Methane (\u03b4D-CH4) of gas bubbles from the Talos Dome Ice Core (TALDICE). All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data are displayed as a function of TALDICE depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation: Award #200020_172506, and #200020B_200328L.", "east": null, "geometry": null, "keywords": "Abrupt Climate Change; Antarctica; Biogeochemical Cycles; Carbon Cycle; Cryosphere; Ice Core Records; Talos Dome", "locations": "Antarctica; Talos Dome", "north": null, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Riddell-Young, Benjamin; Iseli, Rene; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, James; Clark, Reid; Brook, Edward J.", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": null, "title": "Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica", "uid": "601814", "west": null}, {"awards": "0839107 Powell, Ross", "bounds_geometry": ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"], "date_created": "Fri, 01 Jan 2016 00:00:00 GMT", "description": "The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF\u0027s Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings.\nThe latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations.\nSocietal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars.", "east": -163.5, "geometry": ["POINT(-163.6 -84.25)"], "keywords": "Antarctica; Glaciology; Oceans; Southern Ocean; WISSARD", "locations": "Southern Ocean; Antarctica", "north": -84.0, "nsf_funding_programs": null, "persons": "Powell, Ross", "project_titles": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)", "projects": [{"proj_uid": "p0000105", "repository": "USAP-DC", "title": "Collaborative Research: Integrative Study of Marine Ice Sheet Stability \u0026 Subglacial Life Habitats in W Antarctica - Lake \u0026 Ice Stream Subglacial Access Research Drilling (LISSARD)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.5, "title": "Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)", "uid": "600155", "west": -163.7}, {"awards": "0739780 Taylor, Kendrick", "bounds_geometry": ["POINT(-112.117 -79.666)"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records.", "east": -112.117, "geometry": ["POINT(-112.117 -79.666)"], "keywords": "Antarctica; Atmosphere; Black Carbon; Chemistry:ice; Chemistry:Ice; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "locations": "WAIS Divide; Antarctica", "north": -79.666, "nsf_funding_programs": null, "persons": "Taylor, Kendrick C.", "project_titles": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "projects": [{"proj_uid": "p0000022", "repository": "USAP-DC", "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.666, "title": "WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning", "uid": "600142", "west": -112.117}, {"awards": "0338097 DiTullio, Giacomo", "bounds_geometry": ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images.", "east": -165.03, "geometry": ["POINT(-167.485 -65.435)"], "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; Diatom; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -52.24, "nsf_funding_programs": null, "persons": "DiTullio, Giacomo", "project_titles": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "projects": [{"proj_uid": "p0000540", "repository": "USAP-DC", "title": "Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.63, "title": "Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea", "uid": "600036", "west": -169.94}, {"awards": "0440478 Tang, Kam", "bounds_geometry": ["POINT(166.66267 -77.85067)"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. \n\nThe research objective of this proposal is therefore to address these over-arching questions: \n1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? \n3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? \n\nExperiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience.", "east": 166.66267, "geometry": ["POINT(166.66267 -77.85067)"], "keywords": "Biota; McMurdo Sound; Oceans; Phytoplankton; Ross Sea; Southern Ocean; Zooplankton", "locations": "Southern Ocean; McMurdo Sound; Ross Sea", "north": -77.85067, "nsf_funding_programs": null, "persons": "Smith, Walker; Tang, Kam", "project_titles": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica", "projects": [{"proj_uid": "p0000214", "repository": "USAP-DC", "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.85067, "title": "Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica", "uid": "600043", "west": 166.66267}, {"awards": "0338359 Saltzman, Eric", "bounds_geometry": ["POINT(-148.81 -81.65)"], "date_created": "Wed, 16 Nov 2005 00:00:00 GMT", "description": "This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. \n\nThis data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65\u00b0 S, 148.81\u00b0 W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 \u00b0C.\n\nData are available via FTP.", "east": -148.81, "geometry": ["POINT(-148.81 -81.65)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome; Siple Dome Ice Core; WAISCORES", "locations": "Antarctica; Siple Dome", "north": -81.65, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Saltzman, Eric; Aydin, Murat", "project_titles": "Methyl chloride and methyl bromide in Antarctic ice cores", "projects": [{"proj_uid": "p0000032", "repository": "USAP-DC", "title": "Methyl chloride and methyl bromide in Antarctic ice cores"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": -81.65, "title": "Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)", "uid": "609279", "west": -148.81}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Carbon-13 and Deuterium isotopic composition of atmospheric methane across Heinrich Stadial 4, and Dansgaard Oesgher Event 8, WAIS Divide Replicate Ice Core, Antarctica
|
1745078 |
2024-07-23 | Riddell-Young, Benjamin; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, Andy; Iseli, Rene; Clark, Reid; Brook, Edward J. |
Tracing Past Methane Variations with Stable Isotopes in Antarctic Ice Cores |
This dataset includes ~60-year resolution measurements of the Carbon-13 and Deuterium isotopic Composition of Atmospheric Methane (δ13C-CH4 and δD-CH4, respectively) of gas bubbles from the WAIS Divide Replicate Ice Core. All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data includes depth-adjacent replicate samples (separated by no more than 0.3m of depth). The data are displayed as a function of WAIS Divide Replicate Core depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation, Awards #200020_172506 and #200020B_200328L. | [] | [] | false | false |
Deuterium isotopic composition of atmospheric methane across Dansgaard Oesgher Event 8, Talos Dome Ice Core, Antarctica
|
None | 2024-07-23 | Riddell-Young, Benjamin; Iseli, Rene; Lee, James; Schmitt, Jochen; Fischer, Hubertus; Bauska, Thomas; Menking, James; Clark, Reid; Brook, Edward J. | No project link provided | This dataset includes measurements of the Deuterium isotopic Composition of Atmospheric Methane (δD-CH4) of gas bubbles from the Talos Dome Ice Core (TALDICE). All measurements were made at the University of Bern Ice Core Laboratory (Bern, Switzerland) using a new methane stable isotope analytical system. The data are displayed as a function of TALDICE depth and were corrected for gravitational and diffusional fractionation that occurs in the firn column according to Buizert et al., 2013. 1-sigma measurement uncertainty is also included and is determined from analytical uncertainty and uncertainties associated with diffusional and gravitational fractionation. Additional funding for this work was provided by the Swiss National Foundation: Award #200020_172506, and #200020B_200328L. | [] | [] | false | false |
Integrative Study of Marine Ice Sheet Stability and Subglacial Life Habitats - Robotic Access to Grounding-zones for Exploration and Science (RAGES)
|
0839107 |
2016-01-01 | Powell, Ross |
Collaborative Research: Integrative Study of Marine Ice Sheet Stability & Subglacial Life Habitats in W Antarctica - Lake & Ice Stream Subglacial Access Research Drilling (LISSARD) |
The RAGES project (Robotic Access to Grounding zones for Exploration and Science) is one of three research components of the WISSARD (Whillans Ice Stream Subglacial Access Research Drilling) integrative initiative that is being funded by the Antarctic Integrated System Science Program of NSF's Office of Polar Programs, Antarctic Division. The overarching scientific objective of WISSARD is to assess the role of water beneath a West Antarctic ice stream in interlinked glaciological, geological, microbiological, geochemical, and oceanographic systems. The RAGES component of WISSARD concentrates on the stability of ice stream grounding zones (GZ), the area where the ice, ocean waters and glacial and sea floor sediment interact. Based on our present limited data and modeling efforts, GZs can be perturbed by (i) internal ice stream dynamics, (ii) filling/draining cycles of subglacial lakes, (iii) increased melting by warming ocean waters, and/or (iv) rates of subglacial sediment (till) supply to the GZ. GZs are seen as high priority targets to investigate due to their unknown contributions to ice sheet stability under future global warming scenarios. The three main science goals for RAGES are to assess: (a) West Antarctic Ice Sheet (WAIS) stability relative to the magnitudes of the four main variables listed above; (b) the degree to which grounding-zone sedimentary systems house important records of past WAIS dynamics; and (c) the importance of microbial activity and subglacial geochemical weathering in supplying nutrients to the WAIS grounding zone, the Ross Ice Shelf (RIS) cavity, and the highly productive Southern Ocean that may ultimately influence global biogeochemical cycles. The RAGES field sampling plan integrates surface geophysical surveys with borehole and subglacial sampling and measurements. The boreholes provide: (1) samples of subglacial water, sediments, and basal ice for biological, geochemical, glaciological, sedimentological, and micropaleontological analyses; (2) measures of subglacial and sub-ice-shelf cavity physical and chemical conditions and their spatial variability; and (3) data on sediment types, state and change of the subglacial water discharge, oceanography, and basal ice at the grounding line and within the nearby sub-ice-shelf cavity. Unique tools to be deployed include a multisensor Sub-Ice ROVer (Remotely Operated Vehicle) and long-term, sub-ice oceanographic moorings. The latest report of the Intergovernmental Panel on Climate Change recognized that the greatest uncertainties in assessing future global sea-level change stem from a poor understanding of ice sheet dynamics and ice sheet vulnerability to oceanic and atmospheric warming. Disintegration of the WAIS (West Antarctic Ice Sheet) alone would contribute 3-5 m to global sea-level rise, making WAIS a focus of scientific concern due to its potential susceptibility to internal or ocean-driven instability. The overall WISSARD project will test the overarching hypothesis that active water drainage connects various subglacial environments and exerts major control on ice sheet flow, geochemistry, metabolic and phylogenetic diversity, and biogeochemical transformations. Societal Relevance: Global warming, melting of ice sheets and consequential sea-level rise are of high societal relevance. Science Resource Development: After a 9-year hiatus WISSARD will provide the US-science community with a renewed capability to access and study sub-ice sheet environments. Developing this technological infrastructure will benefit the broader science community and assets will be accessible for future use through the NSF-OPP drilling contractor. The RAGES project represents a significant advance in polar technology by incorporating the use of complex new instrumentation like the Sub-Ice ROVer and subglacial ocean/lake mooring systems. Furthermore, these projects will pioneer an approach implementing recommendations from the National Research Council committee on Principles of Environmental Stewardship for the Exploration and Study of Subglacial Environments (2007). Education and Outreach (E/O): These activities are grouped into four categories: i) increasing student participation in polar research by fully integrating them in our research programs; ii) introducing new investigators to the polar sciences by incorporating promising young investigators in our programs, iii) promotion of K-12 teaching and learning programs by incorporating various teachers and NSTA programs, and iv) reaching a larger public audience through such venues as popular science magazines, museum based activities and videography and documentary films. In summary, WISSARD will promote scientific exploration of Antarctica by conveying to the public the excitement of accessing and studying what may be some of the last unexplored aquatic environments on Earth, and which represent a potential analogue for extraterrestrial life habitats on Europa and Mars. | ["POLYGON((-163.7 -84,-163.68 -84,-163.66 -84,-163.64 -84,-163.62 -84,-163.6 -84,-163.58 -84,-163.56 -84,-163.54 -84,-163.52 -84,-163.5 -84,-163.5 -84.05,-163.5 -84.1,-163.5 -84.15,-163.5 -84.2,-163.5 -84.25,-163.5 -84.3,-163.5 -84.35,-163.5 -84.4,-163.5 -84.45,-163.5 -84.5,-163.52 -84.5,-163.54 -84.5,-163.56 -84.5,-163.58 -84.5,-163.6 -84.5,-163.62 -84.5,-163.64 -84.5,-163.66 -84.5,-163.68 -84.5,-163.7 -84.5,-163.7 -84.45,-163.7 -84.4,-163.7 -84.35,-163.7 -84.3,-163.7 -84.25,-163.7 -84.2,-163.7 -84.15,-163.7 -84.1,-163.7 -84.05,-163.7 -84))"] | ["POINT(-163.6 -84.25)"] | false | false |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning
|
0739780 |
2011-01-01 | Taylor, Kendrick C. |
WAIS DIVIDE - High Temporal Resolution Black Carbon Record of Southern Hemisphere Biomass Burning |
This award supports a project to develop a 2,000-year high-temporal resolution record of biomass burning from the analysis of black carbon in the WAIS Divide bedrock ice core. Pilot data for the WAIS WD05A core demonstrates that we now have the ability to reconstruct this record with minimal impact on the amount of ice available for other projects. The intellectual merit of this project is that black carbon (BC) aerosols result solely from combustion and play a critical but poorly quantified role in global climate forcing and the carbon cycle. When incorporated into snow and ice, BC increases absorption of solar radiation making seasonal snow packs, mountain glaciers, polar ice sheets, and sea ice much more vulnerable to climate warming. BC emissions in the Southern Hemisphere are dominated by biomass burning in the tropical regions of Southern Africa, South America and South Asia. Biomass burning, which results from both climate and human activities, alters the atmospheric composition of greenhouse gases, aerosols and perturbs key biogeochemical cycles. A long-term record of biomass burning is needed to aid in the interpretation of ice core gas composition and will provide important information regarding human impacts on the environment and climate before instrumental records. | ["POINT(-112.117 -79.666)"] | ["POINT(-112.117 -79.666)"] | false | false |
Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea
|
0338097 |
2010-01-01 | DiTullio, Giacomo |
Collaborative Research: Interactive Effects of Iron, Light and Carbon Dioxide on Phytoplankton Community Dynamics in the Ross Sea |
The objectives of this proposal are to investigate the controls on the large-scale distribution and production of the two major bloom-forming phytoplankton taxa in the Southern Ocean, diatoms and Phaeocystis Antarctica. These two groups, through their involvement in the biogeochemical cycles of carbon, sulfur and nutrient elements, may have played important roles in the climate variations of the late Quaternary, and they also may be key players in future environmental change. A current paradigm is that irradiance and iron availability drive phytoplankton dynamics in the Southern Ocean. Recent work, however, suggests that carbon dioxide (CO2) concentrations may also be important in structuring algal assemblages, due to species-specific differences in the physiology. This proposal examines the interactive effects of iron, light and CO2 on the physiology, ecology and relative dominance of Phaeocystis and diatoms in the Southern Ocean. The Ross Sea is an ideal system in which to investigate the environmental factors that regulate the distribution and production of these two algal groups, since it is characterized by seasonal blooms of both P. Antarctica and diatoms that are typically separated in both space and time. This study will take the form of an interdisciplinary investigation that includes a field survey and statistical analysis of algal assemblage composition, iron, mixed layer depth, and CO2 levels in the southern Ross Sea, coupled with shipboard experiments to examine the response of diatom and P. Antarctica assemblages to high and low levels of iron, light and CO2 during spring and summer. This project will provide information on some of the major factors controlling the production and distribution of the two major bloom forming phytoplankton in the Southern Ocean and the related biogeochemical cycling of carbon, sulfur and nutrient elements. The results may ultimately advance the ability to predict how the Southern Ocean will be affected by and possibly modulate future climate change. This project will also make significant educational contributions at several levels, including the planned research involvement of graduate and undergraduate students, postdoctoral associates, a student teacher, and community outreach and educational activities. A number of activities are planned to interface the project with K-12 education. Presentations will be made at local schools to discuss the research and events of the research cruise. During the cruise there will be daily interactive email contact with elementary classrooms. Established websites will be used to allow students to learn about the ongoing research, and to allow researchers to communicate with students through text and downloaded images. | ["POLYGON((-169.94 -52.24,-169.449 -52.24,-168.958 -52.24,-168.467 -52.24,-167.976 -52.24,-167.485 -52.24,-166.994 -52.24,-166.503 -52.24,-166.012 -52.24,-165.521 -52.24,-165.03 -52.24,-165.03 -54.879,-165.03 -57.518,-165.03 -60.157,-165.03 -62.796,-165.03 -65.435,-165.03 -68.074,-165.03 -70.713,-165.03 -73.352,-165.03 -75.991,-165.03 -78.63,-165.521 -78.63,-166.012 -78.63,-166.503 -78.63,-166.994 -78.63,-167.485 -78.63,-167.976 -78.63,-168.467 -78.63,-168.958 -78.63,-169.449 -78.63,-169.94 -78.63,-169.94 -75.991,-169.94 -73.352,-169.94 -70.713,-169.94 -68.074,-169.94 -65.435,-169.94 -62.796,-169.94 -60.157,-169.94 -57.518,-169.94 -54.879,-169.94 -52.24))"] | ["POINT(-167.485 -65.435)"] | false | false |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial Forms of Phaeocystis Antarctica
|
0440478 |
2009-01-01 | Smith, Walker; Tang, Kam |
Environmental and Ecological Regulation of Differences and Interactions between Solitary and Colonial forms of Phaeocystis antarctica |
Phaeocystis Antarctica is a widely distributed phytoplankton that forms dense blooms and aggregates in the Southern Ocean. This phytoplankton and plays important roles in polar ecology and biogeochemistry, in part because it is a dominant primary producer, a main component of organic matter vertical fluxes, and the principal producer of volatile organic sulfur in the region. Yet P. Antarctica is also one of the lesser known species in terms of its physiology, life history and trophic relationships with other organisms; furthermore, information collected on other Phaeocystis species and from different locations may not be applicable to P. Antarctica in the Ross Sea. P. Antarctica occurs mainly as two morphotypes: solitary cells and mucilaginous colonies, which differ significantly in size, architecture and chemical composition. Relative dominance between solitary cells and colonies determines not only the size spectrum of the population, but also its carbon dynamics, nutrient uptake and utilization. Conventional thinking of the planktonic trophic processes is also challenged by the fact that colony formation could effectively alter the predator-prey interactions and interspecific competition. However, the factors that regulate the differences between solitary and colonial forms of P. Antarctica are not well-understood. The research objective of this proposal is therefore to address these over-arching questions: 1. Do P. Antarctica solitary cells and colonies differ in growth, composition and photosynthetic rates? 2. How do nutrients and grazers affect colony development and size distribution of P. Antarctica? 3. How do nutrients and grazers act synergistically to affect the long-term population dynamics of P. Antarctica? Experiments will be conducted in the McMurdo station with natural P. Antarctica assemblages and co-occurring grazers. Laboratory experiments will be conducted to study size-specific growth and photosynthetic rates of P. Antarctica, size-specific grazing mortality due to microzooplankton and mesozooplankton, the effects of macronutrients on the (nitrogen compounds) relative dominance of solitary cells and colonies, and the effects of micronutrient (Fe) and grazing related chemical signals on P. Antarctica colony development. Because this species is of critical importance in the Southern Ocean, and because this research will provide critical information on factors that regulate the role of P.Antarctica in food webs and biogeochemical cycles, a major gap in knowledge will be addressed. This project will train two marine science Ph.D. students. The investigators will also collaborate with the School of Education and a marine science museum to communicate polar science to a broader audience. | ["POINT(166.66267 -77.85067)"] | ["POINT(166.66267 -77.85067)"] | false | false |
Analysis of Siple Dome Ice Core: Carbonyl Sulfide (COS), Methyl Chloride (CH3Cl), and Methyl Bromide (CH3Br)
|
0338359 |
2005-11-16 | Saltzman, Eric; Aydin, Murat |
Methyl chloride and methyl bromide in Antarctic ice cores |
This data set is part of the WAISCORES (West Antarctic Ice Sheet cores) project, research funded by the National Science Foundation (NSF) and designed to improve understanding of how the West Antarctic ice sheet influences climate and sea level change. WAISCORES investigators acquired and analyzed ice cores from the Siple Dome, in the Siple Coast region, West Antarctica. These data provide researchers with a record of natural climatic variability and anthropogenic influence on biogeochemical cycles. Because ice cores contain an archive of preindustrial air, a baseline can be established, and the extent of human impact on the climate can be ascertained. This data set includes mixing ratios of carbonyl sulfide (COS), methyl chloride (CH3Cl), and methyl bromide (CH3Br). Data samples were retrieved from the Siple C ice core, which was drilled at 81.65° S, 148.81° W in December 1995. The core site sits 620 m above sea level near the edge of the Ross Ice Shelf where there is a mean annual temperature of -25.4 °C. Data are available via FTP. | ["POINT(-148.81 -81.65)"] | ["POINT(-148.81 -81.65)"] | false | false |