{"dp_type": "Dataset", "free_text": "Algae"}
[{"awards": "1848887 McClintock, James", "bounds_geometry": ["POLYGON((-64.06 -64.76,-64.059 -64.76,-64.058 -64.76,-64.057 -64.76,-64.056 -64.76,-64.055 -64.76,-64.054 -64.76,-64.053 -64.76,-64.05199999999999 -64.76,-64.051 -64.76,-64.05 -64.76,-64.05 -64.76100000000001,-64.05 -64.762,-64.05 -64.763,-64.05 -64.764,-64.05 -64.765,-64.05 -64.766,-64.05 -64.767,-64.05 -64.768,-64.05 -64.76899999999999,-64.05 -64.77,-64.051 -64.77,-64.05199999999999 -64.77,-64.053 -64.77,-64.054 -64.77,-64.055 -64.77,-64.056 -64.77,-64.057 -64.77,-64.058 -64.77,-64.059 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"], "date_created": "Thu, 22 Jun 2023 00:00:00 GMT", "description": "These data are counts of amphipods that had been maintained under ambient pH (8.0 to 8.1) and experimental pH levels of 7.7 (potential end-of-century ocean acidification conditions) and 7.3 (potential next-century conditions). The amphipods were collected from the brown macroalga Desmarestia menziesii and placed into experimental containers (5-gallon buckets) for 5-6 weeks (experimental period significantly shortened by COVID complications). D. menziesii was also present in the buckets and the density of amphipods on the macroalgae was the same as it was in the field collections. The dataset includes counts of amphipods in the initial conditions and at the end of the experiment from the three pH levels.", "east": -64.05, "geometry": ["POINT(-64.055 -64.765)"], "keywords": "Antarctica; Palmer Station", "locations": "Palmer Station; Antarctica", "north": -64.76, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica", "projects": [{"proj_uid": "p0010193", "repository": "USAP-DC", "title": "Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.77, "title": "Amphipod counts from 2020 ocean acidification experiment", "uid": "601702", "west": -64.06}, {"awards": "1850988 Teets, Nicholas", "bounds_geometry": ["POLYGON((-64.366767 -62.681,-51.868477 -62.681,-39.370186999999994 -62.681,-26.87189699999999 -62.681,-14.373606999999993 -62.681,-1.875316999999996 -62.681,10.622973000000016 -62.681,23.121263000000013 -62.681,35.61955300000001 -62.681,48.11784300000001 -62.681,60.616133 -62.681,60.616133 -62.9536677,60.616133 -63.226335399999996,60.616133 -63.4990031,60.616133 -63.7716708,60.616133 -64.04433850000001,60.616133 -64.31700620000001,60.616133 -64.58967390000001,60.616133 -64.86234160000001,60.616133 -65.13500930000001,60.616133 -65.407677,48.11784299999999 -65.407677,35.619552999999996 -65.407677,23.121262999999992 -65.407677,10.622972999999995 -65.407677,-1.875317000000003 -65.407677,-14.373607000000014 -65.407677,-26.87189700000001 -65.407677,-39.37018700000001 -65.407677,-51.868477000000006 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"], "date_created": "Sun, 11 Jun 2023 00:00:00 GMT", "description": "Antarctic winters are challenging for terrestrial invertebrates, and species that\r\nlive there have specialised adaptations to conserve energy and protect against\r\ncold injury in the winter. However, rapidly occurring climate change in these\r\nregions will increase the unpredictability of winter conditions, and there is\r\ncurrently a dearth of knowledge on how the highly adapted invertebrates of\r\nAntarctica will respond to changes in winter temperatures.\r\n2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica,\r\nto simulated winters at three ecologically relevant mean temperature scenarios:\r\nwarm (\u22121\u00b0C), normal (\u22123\u00b0C) and cold (\u22125\u00b0C). Within each scenario, larvae were\r\nplaced into three distinct habitat types in which they are commonly observed\r\n(decaying organic matter, living moss, and Prasiola crispa algae). Following the\r\nsimulated overwintering period, a range of physiological outcomes were measured,\r\nnamely survival, locomotor activity, tissue damage, energy store levels and\r\nmolecular stress responses.\r\n3. Survival, energy stores and locomotor activity were significantly lower following\r\nthe Warm overwintering environment than at lower temperatures, but tissue\r\ndamage and heat shock protein expression (a proxy for protein damage) did not\r\nsignificantly differ between the three temperatures. Survival was also significantly\r\nlower in larvae overwintered in Prasiola crispa algae, although the underlying\r\nmechanism is unclear. Heat shock proteins were expressed least in larvae\r\noverwintering in living moss, suggesting it is less stressful to overwinter in this\r\nsubstrate, perhaps due to a more defined structure affording less direct contact\r\nwith ice.\r\n4. Our results demonstrate that a realistic 2\u00b0C increase in winter microhabitat temperature\r\nreduces survival and causes energy deficits that have implications for subsequent\r\ndevelopment and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters\r\nare expected to become more common in response to climate change. Conversely,\r\nif climate change reduces the length of winter, some of the negative consequences\r\nof winter warming may be attenuated, so it will be important to consider this factor\r\nin future studies. Nonetheless, our results indicate that winter warming could\r\nnegatively impact cold-adapted insects such as the Antarctic midge.", "east": 60.616133, "geometry": ["POINT(-1.875316999999996 -64.04433850000001)"], "keywords": "Antarctica", "locations": "Antarctica", "north": -62.681, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas", "project_titles": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects", "projects": [{"proj_uid": "p0010203", "repository": "USAP-DC", "title": "NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.407677, "title": "Simulated winter warming negatively impacts survival of Antarctica\u0027s only endemic insect", "uid": "601694", "west": -64.366767}, {"awards": "1744602 Iken, Katrin", "bounds_geometry": ["POLYGON((-68 -64.5,-67.5 -64.5,-67 -64.5,-66.5 -64.5,-66 -64.5,-65.5 -64.5,-65 -64.5,-64.5 -64.5,-64 -64.5,-63.5 -64.5,-63 -64.5,-63 -64.95,-63 -65.4,-63 -65.85,-63 -66.3,-63 -66.75,-63 -67.2,-63 -67.65,-63 -68.1,-63 -68.55,-63 -69,-63.5 -69,-64 -69,-64.5 -69,-65 -69,-65.5 -69,-66 -69,-66.5 -69,-67 -69,-67.5 -69,-68 -69,-68 -68.55,-68 -68.1,-68 -67.65,-68 -67.2,-68 -66.75,-68 -66.3,-68 -65.85,-68 -65.4,-68 -64.95,-68 -64.5))"], "date_created": "Tue, 10 Jan 2023 00:00:00 GMT", "description": "The purpose of this dataset was to determine the importance of macroalgal primary producers to the coastal invertebrate food webs along a gradient of sites with increasing mean annual sea ice cover. This dataset contains the carbon and nitrogen stable isotope values, in addition to carbon and nitrogen content, of various coastal primary producers and invertebrate consumers from 15 stations along the Antarctic Peninsula from 64 to 69 degree latitude south collected in 2019. Primary producers included multiple species of macroalgae, particulate organic matter (POM) as a proxy of phytoplankton production, and benthic diatoms (where they occurred). Consumers included various benthic invertebrates of different feeding types, from suspension feeders (like sponges and ascidians) to predators/omnivores (like sea stars). ", "east": -63.0, "geometry": ["POINT(-65.5 -66.75)"], "keywords": "Antarctica; Antarctic Peninsula; Biota; Carbon; Carbon Isotopes; LMG1904; Nitrogen Isotopes; Oceans", "locations": "Antarctic Peninsula; Antarctica", "north": -64.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Iken, Katrin", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -69.0, "title": "Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula", "uid": "601653", "west": -68.0}, {"awards": "1341339 Baker, Bill; 1341333 McClintock, James", "bounds_geometry": ["POLYGON((-64.36222 -64.72805,-64.325105 -64.72805,-64.28799 -64.72805,-64.250875 -64.72805,-64.21376 -64.72805,-64.176645 -64.72805,-64.13953 -64.72805,-64.102415 -64.72805,-64.0653 -64.72805,-64.028185 -64.72805,-63.99107 -64.72805,-63.99107 -64.74691299999999,-63.99107 -64.765776,-63.99107 -64.784639,-63.99107 -64.803502,-63.99107 -64.82236499999999,-63.99107 -64.841228,-63.99107 -64.860091,-63.99107 -64.878954,-63.99107 -64.897817,-63.99107 -64.91668,-64.028185 -64.91668,-64.0653 -64.91668,-64.102415 -64.91668,-64.13953 -64.91668,-64.176645 -64.91668,-64.21376 -64.91668,-64.250875 -64.91668,-64.28799 -64.91668,-64.325105 -64.91668,-64.36222 -64.91668,-64.36222 -64.897817,-64.36222 -64.878954,-64.36222 -64.860091,-64.36222 -64.841228,-64.36222 -64.82236499999999,-64.36222 -64.803502,-64.36222 -64.784639,-64.36222 -64.765776,-64.36222 -64.74691299999999,-64.36222 -64.72805))"], "date_created": "Tue, 22 Nov 2022 00:00:00 GMT", "description": "Data and R code from Sabrina Heiser\u0027s study of the reproductive system of Plocamium sp. in the Palmer Station region.", "east": -63.99107, "geometry": ["POINT(-64.176645 -64.82236499999999)"], "keywords": "Antarctica; Benthic; Biota; Macroalgae; Population Genetics", "locations": "Antarctica", "north": -64.72805, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.91668, "title": "Plocamium reproductive system data and R code", "uid": "601622", "west": -64.36222}, {"awards": "1341339 Baker, Bill; 1341333 McClintock, James", "bounds_geometry": ["POLYGON((-64.3622 -64.72805,-64.325087 -64.72805,-64.287974 -64.72805,-64.250861 -64.72805,-64.213748 -64.72805,-64.176635 -64.72805,-64.139522 -64.72805,-64.102409 -64.72805,-64.065296 -64.72805,-64.028183 -64.72805,-63.99107 -64.72805,-63.99107 -64.74691299999999,-63.99107 -64.765776,-63.99107 -64.784639,-63.99107 -64.803502,-63.99107 -64.82236499999999,-63.99107 -64.841228,-63.99107 -64.860091,-63.99107 -64.878954,-63.99107 -64.897817,-63.99107 -64.91668,-64.028183 -64.91668,-64.065296 -64.91668,-64.102409 -64.91668,-64.139522 -64.91668,-64.176635 -64.91668,-64.213748 -64.91668,-64.250861 -64.91668,-64.287974 -64.91668,-64.325087 -64.91668,-64.3622 -64.91668,-64.3622 -64.897817,-64.3622 -64.878954,-64.3622 -64.860091,-64.3622 -64.841228,-64.3622 -64.82236499999999,-64.3622 -64.803502,-64.3622 -64.784639,-64.3622 -64.765776,-64.3622 -64.74691299999999,-64.3622 -64.72805))"], "date_created": "Tue, 22 Nov 2022 00:00:00 GMT", "description": "Data from Sabrina Heiser\u0027s study of Plocamium sp. benthic transect and transplant studies. ", "east": -63.99107, "geometry": ["POINT(-64.176635 -64.82236499999999)"], "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Secondary Metabolites", "locations": "Antarctica", "north": -64.72805, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.91668, "title": "Plocamium transect and transplant data", "uid": "601621", "west": -64.3622}, {"awards": "1744570 Galloway, Aaron; 1744584 Klein, Andrew; 1744602 Iken, Katrin; 1744550 Amsler, Charles", "bounds_geometry": ["POLYGON((-67.77137 -64.77195,-67.3795463 -64.77195,-66.9877226 -64.77195,-66.59589890000001 -64.77195,-66.2040752 -64.77195,-65.8122515 -64.77195,-65.4204278 -64.77195,-65.0286041 -64.77195,-64.6367804 -64.77195,-64.2449567 -64.77195,-63.853133 -64.77195,-63.853133 -65.16396350000001,-63.853133 -65.555977,-63.853133 -65.9479905,-63.853133 -66.34000400000001,-63.853133 -66.73201750000001,-63.853133 -67.124031,-63.853133 -67.5160445,-63.853133 -67.90805800000001,-63.853133 -68.3000715,-63.853133 -68.692085,-64.2449567 -68.692085,-64.6367804 -68.692085,-65.0286041 -68.692085,-65.4204278 -68.692085,-65.8122515 -68.692085,-66.2040752 -68.692085,-66.59589890000001 -68.692085,-66.9877226 -68.692085,-67.3795463 -68.692085,-67.77137 -68.692085,-67.77137 -68.3000715,-67.77137 -67.90805800000001,-67.77137 -67.5160445,-67.77137 -67.124031,-67.77137 -66.73201750000001,-67.77137 -66.34000400000001,-67.77137 -65.9479905,-67.77137 -65.555977,-67.77137 -65.16396350000001,-67.77137 -64.77195))"], "date_created": "Thu, 17 Nov 2022 00:00:00 GMT", "description": "This dataset consists of a file with results of community analyses from underwater video transects along the benthos at 14 sites between the Joubin Islands in the north and the Terra Firma Islands in the south. ", "east": -63.853133, "geometry": ["POINT(-65.8122515 -66.73201750000001)"], "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "locations": "Antarctic Peninsula; Antarctic Peninsula; Antarctica; Antarctica", "north": -64.77195, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.692085, "title": "Underwater video transect community analysis data", "uid": "601619", "west": -67.77137}, {"awards": "1643248 Hall, Brenda", "bounds_geometry": ["POLYGON((163.2 -78.1,163.26 -78.1,163.32 -78.1,163.38 -78.1,163.44 -78.1,163.5 -78.1,163.56 -78.1,163.62 -78.1,163.68 -78.1,163.74 -78.1,163.8 -78.1,163.8 -78.11999999999999,163.8 -78.14,163.8 -78.16,163.8 -78.17999999999999,163.8 -78.19999999999999,163.8 -78.22,163.8 -78.24,163.8 -78.25999999999999,163.8 -78.28,163.8 -78.3,163.74 -78.3,163.68 -78.3,163.62 -78.3,163.56 -78.3,163.5 -78.3,163.44 -78.3,163.38 -78.3,163.32 -78.3,163.26 -78.3,163.2 -78.3,163.2 -78.28,163.2 -78.25999999999999,163.2 -78.24,163.2 -78.22,163.2 -78.19999999999999,163.2 -78.17999999999999,163.2 -78.16,163.2 -78.14,163.2 -78.11999999999999,163.2 -78.1))"], "date_created": "Tue, 18 Oct 2022 00:00:00 GMT", "description": "This dataset contains radiocarbon dates of subfossil algal mats associated with Ross Sea drift near Walcott and Howchin Glaciers, southern Royal Society Range. These dates constrain the age of Ross Sea drift in this region. ", "east": 163.8, "geometry": ["POINT(163.5 -78.19999999999999)"], "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Howchin Glacier; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range; Walcott Glacier", "locations": "Royal Society Range; Ross Sea Drift; Walcott Glacier; Howchin Glacier; Antarctica", "north": -78.1, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hall, Brenda", "project_titles": "Response of the Antarctic Ice Sheet to the last great global warming", "projects": [{"proj_uid": "p0010301", "repository": "USAP-DC", "title": "Response of the Antarctic Ice Sheet to the last great global warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Walcott Glacier area radiocarbon data", "uid": "601615", "west": 163.2}, {"awards": "1643248 Hall, Brenda", "bounds_geometry": ["POLYGON((163 -78.1,163.07 -78.1,163.14 -78.1,163.21 -78.1,163.28 -78.1,163.35 -78.1,163.42 -78.1,163.48999999999998 -78.1,163.56 -78.1,163.63 -78.1,163.7 -78.1,163.7 -78.13,163.7 -78.16,163.7 -78.19,163.7 -78.22,163.7 -78.25,163.7 -78.28,163.7 -78.31,163.7 -78.34,163.7 -78.37,163.7 -78.4,163.63 -78.4,163.56 -78.4,163.48999999999998 -78.4,163.42 -78.4,163.35 -78.4,163.28 -78.4,163.21 -78.4,163.14 -78.4,163.07 -78.4,163 -78.4,163 -78.37,163 -78.34,163 -78.31,163 -78.28,163 -78.25,163 -78.22,163 -78.19,163 -78.16,163 -78.13,163 -78.1))"], "date_created": "Mon, 17 Oct 2022 00:00:00 GMT", "description": "This dataset contains radiocarbon dates of subfossil algal mats associated with Ross Sea drift in Pyramid Trough. These dates constrain the age of Ross Sea drift in this region. The dataset also includes dates of modern algae.", "east": 163.7, "geometry": ["POINT(163.35 -78.25)"], "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Pyramid Trough; Radiocarbon; Radiocarbon Dates; Ross Sea Drift; Royal Society Range", "locations": "Royal Society Range; Ross Sea Drift; Pyramid Trough; Antarctica", "north": -78.1, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hall, Brenda", "project_titles": "Response of the Antarctic Ice Sheet to the last great global warming", "projects": [{"proj_uid": "p0010301", "repository": "USAP-DC", "title": "Response of the Antarctic Ice Sheet to the last great global warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.4, "title": "Pyramid Trough Radiocarbon Data", "uid": "601614", "west": 163.0}, {"awards": "1744550 Amsler, Charles", "bounds_geometry": ["POLYGON((-67.77137 -64.77195,-67.3795463 -64.77195,-66.9877226 -64.77195,-66.59589890000001 -64.77195,-66.2040752 -64.77195,-65.8122515 -64.77195,-65.4204278 -64.77195,-65.0286041 -64.77195,-64.6367804 -64.77195,-64.2449567 -64.77195,-63.853133 -64.77195,-63.853133 -65.16396350000001,-63.853133 -65.555977,-63.853133 -65.9479905,-63.853133 -66.34000400000001,-63.853133 -66.73201750000001,-63.853133 -67.124031,-63.853133 -67.5160445,-63.853133 -67.90805800000001,-63.853133 -68.3000715,-63.853133 -68.692085,-64.2449567 -68.692085,-64.6367804 -68.692085,-65.0286041 -68.692085,-65.4204278 -68.692085,-65.8122515 -68.692085,-66.2040752 -68.692085,-66.59589890000001 -68.692085,-66.9877226 -68.692085,-67.3795463 -68.692085,-67.77137 -68.692085,-67.77137 -68.3000715,-67.77137 -67.90805800000001,-67.77137 -67.5160445,-67.77137 -67.124031,-67.77137 -66.73201750000001,-67.77137 -66.34000400000001,-67.77137 -65.9479905,-67.77137 -65.555977,-67.77137 -65.16396350000001,-67.77137 -64.77195))"], "date_created": "Fri, 23 Sep 2022 00:00:00 GMT", "description": "This dataset consists of underwater videos of transects along the benthos at 14 sites between the Joubin Islands in the north and the Terra Firma Islands in the south. These were used for community analyses of the benthic communities. ", "east": -63.853133, "geometry": ["POINT(-65.8122515 -66.73201750000001)"], "keywords": "Antarctica; Antarctic Peninsula; Benthic Communities; Biota; Macroalgae; Macroinvertebrates; Oceans; Video Transects", "locations": "Antarctic Peninsula; Antarctica", "north": -64.77195, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity", "projects": [{"proj_uid": "p0010104", "repository": "USAP-DC", "title": "Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.692085, "title": "Underwater transect videos used for community analyses", "uid": "601610", "west": -67.77137}, {"awards": "1341333 McClintock, James; 1341339 Baker, Bill", "bounds_geometry": null, "date_created": "Tue, 15 Mar 2022 00:00:00 GMT", "description": "This file represents the raw gastropod count data used for the analyses in Amsler et al. 2022, Antarctic Science. See the methods there in the main text and supplementary material for specifics on collections and exact coordinates of the collection sites. ", "east": null, "geometry": null, "keywords": "Antarctica; Benthos; Palmer Station", "locations": "Palmer Station; Antarctica", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Raw gastropod collection data from Amsler et al. 2022 Antarctic Science", "uid": "601533", "west": null}, {"awards": "1643248 Hall, Brenda; 0944150 Hall, Brenda", "bounds_geometry": ["POLYGON((164 -78,164.04 -78,164.08 -78,164.12 -78,164.16 -78,164.2 -78,164.24 -78,164.28 -78,164.32 -78,164.36 -78,164.4 -78,164.4 -78.01,164.4 -78.02,164.4 -78.03,164.4 -78.04,164.4 -78.05,164.4 -78.06,164.4 -78.07,164.4 -78.08,164.4 -78.09,164.4 -78.1,164.36 -78.1,164.32 -78.1,164.28 -78.1,164.24 -78.1,164.2 -78.1,164.16 -78.1,164.12 -78.1,164.08 -78.1,164.04 -78.1,164 -78.1,164 -78.09,164 -78.08,164 -78.07,164 -78.06,164 -78.05,164 -78.04,164 -78.03,164 -78.02,164 -78.01,164 -78))"], "date_created": "Tue, 01 Mar 2022 00:00:00 GMT", "description": "This dataset contains raw and calibrated radiocarbon data for lacustrine algal layers from glacial lacustrine deposits associated with Ross Sea drift in Marshall Valley.", "east": 164.4, "geometry": ["POINT(164.2 -78.05)"], "keywords": "Algae; Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marshall Valley; Radiocarbon; Ross Sea Drift; Royal Society Range", "locations": "Marshall Valley; Royal Society Range; Ross Sea Drift; Antarctica", "north": -78.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Glaciology", "persons": "Hall, Brenda", "project_titles": "Response of the Antarctic Ice Sheet to the last great global warming; Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles", "projects": [{"proj_uid": "p0010302", "repository": "USAP-DC", "title": "Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles"}, {"proj_uid": "p0010301", "repository": "USAP-DC", "title": "Response of the Antarctic Ice Sheet to the last great global warming"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.1, "title": "Marshall Valley Radiocarbon Data", "uid": "601529", "west": 164.0}, {"awards": null, "bounds_geometry": ["POINT(-58 -62)"], "date_created": "Mon, 21 Dec 2020 00:00:00 GMT", "description": "Surface spectra of red and green snow algae were collected at two sites on King George Island (KGI), the largest of the South Shetland Islands, and one site on northern Nelson Island (NI), southwest of KGI in January 2018. Optically thick (\u003e 30cm) snow packs were prioritized for spectral albedo data acquisition and corresponding snow algae sampling in order to minimize the impact of the underlying ground on spectral albedo. Sites were also selected based on where it was possible to sample 1) a control site with relatively clean snow having no visible snow algae 2) green snow algae, 3) red snow algae and 4) mixed-phase green and red algae. At each site, duplicates of each snow type were measured with the spectrometer (except at Nelson Island where only one Mixed site was observed). All samples were collected around noon local Chilean time, when the seasonal snow pack was also receiving the most incoming solar radiation. Spectral reflectance measurements were collected with an Analytical Spectral Devices (ASD) FieldSpec\u00ae 4 hyperspectral spectroradiometer (Malvern Panalytical, USA) between 350 and 2500 nm. The sensor was equipped with a light-diffusing fore optic remote cosine receptor (RCR) to measure planar irradiance. We selected three different locations and collected spectral measurements for two samples each of green, red, and mixed snow algae patches, and two algae-free or \u201cclean\u201d snow areas, for a total of 24 measurement sites (2 of each of the 4 types across the 3 sites). Areas with snowmelt ponding were avoided. The RCR was placed upward to collect the downwelling planar irradiance incident upon the snow surface (Ed) and the upwelling planar irradiance reflected from the snow (Eu). Measurements were collected in triplicate. The operator was located in a direction 90 - 135\u00ba away from the sun to minimize solar glint and self-shadowing. Snow conditions did not allow for a tripod, so nadir orientation was determined by practice with a level and by visual assistance of an observer. Since the measurements were carried out under heavily overcast conditions where irradiance is dominated by the diffuse insolation with no solar azimuthal dependence, the influence of slight tilt when measuring the downwelling irradiance (i.e. the cosine error) is expected to be minor (\u003c0.5%). The reflectance measurements were taken prior to excavation of snow sample for laboratory analysis. Post-processing of the data involved computing spectral reflectance, as the ratio of the upwelling flux normalized to the downwelling flux for each wavelength. The mean of the three measurements was calculated for each site. Ambient light conditions were too low in the short-wave infrared wavelengths for getting adequate signal-to-noise for our measurements. In post-processing, reflectance values were truncated at 1350 nm for this analysis. This value represents the limit often used for RF calculations in other studies. In addition, empirical correction coefficients were used to correct for temperature related radiometric inter-channel steps using the procedure and MATLAB code from Hueni et al. (2017). This removed the step function near 1000 nm for most of the spectra, although not fully for all spectra. However, this discontinuity does not significantly impact results or albedo calculations. Albedo was calculated as the integrated R in two different intervals: visible (400-700 nm) and infrared (700-1300 nm). ", "east": -58.0, "geometry": ["POINT(-58 -62)"], "keywords": "Antarctica; South Shetland Islands", "locations": "South Shetland Islands; Antarctica", "north": -62.0, "nsf_funding_programs": null, "persons": "Khan, Alia", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -62.0, "title": "Red and Green Snow Algae Surface Spectra", "uid": "601412", "west": -58.0}, {"awards": "1341339 Baker, Bill", "bounds_geometry": ["POLYGON((-64.03 -64.254,-64.0286 -64.254,-64.0272 -64.254,-64.0258 -64.254,-64.0244 -64.254,-64.023 -64.254,-64.0216 -64.254,-64.0202 -64.254,-64.0188 -64.254,-64.0174 -64.254,-64.016 -64.254,-64.016 -64.2543,-64.016 -64.2546,-64.016 -64.2549,-64.016 -64.2552,-64.016 -64.2555,-64.016 -64.2558,-64.016 -64.2561,-64.016 -64.2564,-64.016 -64.2567,-64.016 -64.257,-64.0174 -64.257,-64.0188 -64.257,-64.0202 -64.257,-64.0216 -64.257,-64.023 -64.257,-64.0244 -64.257,-64.0258 -64.257,-64.0272 -64.257,-64.0286 -64.257,-64.03 -64.257,-64.03 -64.2567,-64.03 -64.2564,-64.03 -64.2561,-64.03 -64.2558,-64.03 -64.2555,-64.03 -64.2552,-64.03 -64.2549,-64.03 -64.2546,-64.03 -64.2543,-64.03 -64.254))"], "date_created": "Wed, 09 Oct 2019 00:00:00 GMT", "description": "Samples of the red alga Plocamium cartilagineum were collected from the area around Palmer Station, Antarctica, and characterized by gas chromatography for their secondary metabolite content. Patterns in secondary metabolite content were used to establish chemical phenotypes (chemotypes).", "east": -64.016, "geometry": ["POINT(-64.023 -64.2555)"], "keywords": "Algae; Antarctica; Biota; Chemical Ecology; Chemotyping; Halogenated Monoterpenes; Natural Products; Oceans; Palmer Station; Plocamium Cartilagineum; Southern Ocean; Terpenes", "locations": "Palmer Station; Southern Ocean; Antarctica; Palmer Station", "north": -64.254, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.257, "title": "Plocamium cartilagineum field chemotyping", "uid": "601215", "west": -64.03}, {"awards": "1341333 McClintock, James", "bounds_geometry": ["POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))"], "date_created": "Mon, 04 Mar 2019 00:00:00 GMT", "description": "These three spreadsheets contain all the data used in Amsler et al. 2019. Impacts of macroalgal-associated gastropods on epiphytic microalgae on the ecologically important Antarctic brown alga Himantothallus grandifolius. Antarctic Science 31: doi:10.1017/S0954102019000014", "east": -63.0, "geometry": ["POINT(-64 -64)"], "keywords": "Antarctica; Benthic; Biota; Macroalgae; Mesograzer; Microscopy; Oceans; Zooplankton", "locations": "Antarctica", "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Data from Amsler et al. 2019 Antarctic Science, doi:10.1017/S0954102019000014", "uid": "601159", "west": -65.0}, {"awards": "1041022 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles; Angus, Robert", "project_titles": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "projects": [{"proj_uid": "p0000426", "repository": "USAP-DC", "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "uid": "600122", "west": -79.0}, {"awards": "0838773 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600095", "west": -79.0}, {"awards": "0838776 Baker, Bill", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Algae; Antarctica; Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean; Antarctica", "north": -60.0, "nsf_funding_programs": null, "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600096", "west": -180.0}, {"awards": "0528728 Vernet, Maria", "bounds_geometry": ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -64.6, "geometry": ["POINT(-66.84 -66.405)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Phytoplankton; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -64.8, "nsf_funding_programs": null, "persons": "Vernet, Maria", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.01, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600048", "west": -69.08}, {"awards": "0529087 Ross, Robin", "bounds_geometry": ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels.", "east": -61.0, "geometry": ["POINT(-66 -65.5)"], "keywords": "Bellingshausen Sea; Biota; Oceans; Southern Ocean", "locations": "Bellingshausen Sea; Southern Ocean", "north": -61.0, "nsf_funding_programs": null, "persons": "Quetin, Langdon B.; Ross, Robin Macurda", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600049", "west": -71.0}, {"awards": "0529666 Fritsen, Christian", "bounds_geometry": ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Bellingshausen Sea; Cryosphere; Oceans; Photosynthetically Active Radiation (par); Sea Ice; Sea Surface; Southern Ocean; Total Integrated Exposure To PAR", "locations": "Bellingshausen Sea; Sea Surface; Southern Ocean", "north": -39.23, "nsf_funding_programs": null, "persons": "Fritsen, Christian", "project_titles": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "projects": [{"proj_uid": "p0000522", "repository": "USAP-DC", "title": "Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)", "uid": "600050", "west": -180.0}, {"awards": "0836061 Dennett, Mark", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Biota; Oceans; Oden; Oden2008; Plankton; Sea Ice; Southern Ocean", "locations": "Amundsen Sea; Antarctica; Southern Ocean", "north": -69.0, "nsf_funding_programs": null, "persons": "Dennett, Mark", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600091", "west": -170.0}, {"awards": "0442857 Baker, Bill", "bounds_geometry": ["POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups.", "east": -63.0, "geometry": ["POINT(-64 -64)"], "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -63.0, "nsf_funding_programs": null, "persons": "Baker, Bill", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600047", "west": -65.0}, {"awards": "0442769 McClintock, James", "bounds_geometry": ["POLYGON((-64.15 -64.78,-64.132 -64.78,-64.114 -64.78,-64.096 -64.78,-64.078 -64.78,-64.06 -64.78,-64.042 -64.78,-64.024 -64.78,-64.006 -64.78,-63.988 -64.78,-63.97 -64.78,-63.97 -64.784,-63.97 -64.788,-63.97 -64.792,-63.97 -64.796,-63.97 -64.8,-63.97 -64.804,-63.97 -64.808,-63.97 -64.812,-63.97 -64.816,-63.97 -64.82,-63.988 -64.82,-64.006 -64.82,-64.024 -64.82,-64.042 -64.82,-64.06 -64.82,-64.078 -64.82,-64.096 -64.82,-64.114 -64.82,-64.132 -64.82,-64.15 -64.82,-64.15 -64.816,-64.15 -64.812,-64.15 -64.808,-64.15 -64.804,-64.15 -64.8,-64.15 -64.796,-64.15 -64.792,-64.15 -64.788,-64.15 -64.784,-64.15 -64.78))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups.", "east": -63.97, "geometry": ["POINT(-64.06 -64.8)"], "keywords": "Antarctica; Biota; Oceans; Southern Ocean", "locations": "Antarctica; Southern Ocean", "north": -64.78, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles", "project_titles": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula; Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing", "projects": [{"proj_uid": "p0000475", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula"}, {"proj_uid": "p0010016", "repository": "USAP-DC", "title": "Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.82, "title": "The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula", "uid": "600046", "west": -64.15}, {"awards": "0836112 Smith, Walker", "bounds_geometry": ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher.\n", "east": -100.0, "geometry": ["POINT(-135 -74)"], "keywords": "Amundsen Sea; Antarctica; Chemistry:fluid; Chemistry:Fluid; CTD Data; Oceans; Oden; Oden2008; Sea Ice; Sea Surface; Southern Ocean", "locations": "Amundsen Sea; Sea Surface; Antarctica; Southern Ocean", "north": -69.0, "nsf_funding_programs": null, "persons": "Smith, Walker", "project_titles": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota", "projects": [{"proj_uid": "p0000137", "repository": "USAP-DC", "title": "Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.0, "title": "Controls on Climate-Active Gases by Amundsen Sea Ice Biota", "uid": "600092", "west": -170.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Amphipod counts from 2020 ocean acidification experiment
|
1848887 |
2023-06-22 | Amsler, Charles |
Assemblage-wide effects of ocean acidification and ocean warming on ecologically important macroalgal-associated crustaceans in Antarctica |
These data are counts of amphipods that had been maintained under ambient pH (8.0 to 8.1) and experimental pH levels of 7.7 (potential end-of-century ocean acidification conditions) and 7.3 (potential next-century conditions). The amphipods were collected from the brown macroalga Desmarestia menziesii and placed into experimental containers (5-gallon buckets) for 5-6 weeks (experimental period significantly shortened by COVID complications). D. menziesii was also present in the buckets and the density of amphipods on the macroalgae was the same as it was in the field collections. The dataset includes counts of amphipods in the initial conditions and at the end of the experiment from the three pH levels. | ["POLYGON((-64.06 -64.76,-64.059 -64.76,-64.058 -64.76,-64.057 -64.76,-64.056 -64.76,-64.055 -64.76,-64.054 -64.76,-64.053 -64.76,-64.05199999999999 -64.76,-64.051 -64.76,-64.05 -64.76,-64.05 -64.76100000000001,-64.05 -64.762,-64.05 -64.763,-64.05 -64.764,-64.05 -64.765,-64.05 -64.766,-64.05 -64.767,-64.05 -64.768,-64.05 -64.76899999999999,-64.05 -64.77,-64.051 -64.77,-64.05199999999999 -64.77,-64.053 -64.77,-64.054 -64.77,-64.055 -64.77,-64.056 -64.77,-64.057 -64.77,-64.058 -64.77,-64.059 -64.77,-64.06 -64.77,-64.06 -64.76899999999999,-64.06 -64.768,-64.06 -64.767,-64.06 -64.766,-64.06 -64.765,-64.06 -64.764,-64.06 -64.763,-64.06 -64.762,-64.06 -64.76100000000001,-64.06 -64.76))"] | ["POINT(-64.055 -64.765)"] | false | false |
Simulated winter warming negatively impacts survival of Antarctica's only endemic insect
|
1850988 |
2023-06-11 | Devlin, Jack; Unfried, Laura; McCabe, Eleanor; Gantz, Josiah D.; Kawarasaki, Yuta; Elnitsky, Michael; Hotaling, Scott; Michel, Andrew; Convey, Peter; Hayward, Scott; Teets, Nicholas |
NSFGEO-NERC: Mechanisms of Adaptation to Terrestrial Antarctica through Comparative Physiology and Genomics of Antarctic and sub-Antarctic Insects |
Antarctic winters are challenging for terrestrial invertebrates, and species that live there have specialised adaptations to conserve energy and protect against cold injury in the winter. However, rapidly occurring climate change in these regions will increase the unpredictability of winter conditions, and there is currently a dearth of knowledge on how the highly adapted invertebrates of Antarctica will respond to changes in winter temperatures. 2. We evaluated the response of larvae of the Antarctic midge, Belgica antarctica, to simulated winters at three ecologically relevant mean temperature scenarios: warm (−1°C), normal (−3°C) and cold (−5°C). Within each scenario, larvae were placed into three distinct habitat types in which they are commonly observed (decaying organic matter, living moss, and Prasiola crispa algae). Following the simulated overwintering period, a range of physiological outcomes were measured, namely survival, locomotor activity, tissue damage, energy store levels and molecular stress responses. 3. Survival, energy stores and locomotor activity were significantly lower following the Warm overwintering environment than at lower temperatures, but tissue damage and heat shock protein expression (a proxy for protein damage) did not significantly differ between the three temperatures. Survival was also significantly lower in larvae overwintered in Prasiola crispa algae, although the underlying mechanism is unclear. Heat shock proteins were expressed least in larvae overwintering in living moss, suggesting it is less stressful to overwinter in this substrate, perhaps due to a more defined structure affording less direct contact with ice. 4. Our results demonstrate that a realistic 2°C increase in winter microhabitat temperature reduces survival and causes energy deficits that have implications for subsequent development and reproduction. While our Warm winter scenario was close tothe range of observed overwintering temperatures for this species, warmer winters are expected to become more common in response to climate change. Conversely, if climate change reduces the length of winter, some of the negative consequences of winter warming may be attenuated, so it will be important to consider this factor in future studies. Nonetheless, our results indicate that winter warming could negatively impact cold-adapted insects such as the Antarctic midge. | ["POLYGON((-64.366767 -62.681,-51.868477 -62.681,-39.370186999999994 -62.681,-26.87189699999999 -62.681,-14.373606999999993 -62.681,-1.875316999999996 -62.681,10.622973000000016 -62.681,23.121263000000013 -62.681,35.61955300000001 -62.681,48.11784300000001 -62.681,60.616133 -62.681,60.616133 -62.9536677,60.616133 -63.226335399999996,60.616133 -63.4990031,60.616133 -63.7716708,60.616133 -64.04433850000001,60.616133 -64.31700620000001,60.616133 -64.58967390000001,60.616133 -64.86234160000001,60.616133 -65.13500930000001,60.616133 -65.407677,48.11784299999999 -65.407677,35.619552999999996 -65.407677,23.121262999999992 -65.407677,10.622972999999995 -65.407677,-1.875317000000003 -65.407677,-14.373607000000014 -65.407677,-26.87189700000001 -65.407677,-39.37018700000001 -65.407677,-51.868477000000006 -65.407677,-64.366767 -65.407677,-64.366767 -65.13500930000001,-64.366767 -64.86234160000001,-64.366767 -64.58967390000001,-64.366767 -64.31700620000001,-64.366767 -64.04433850000001,-64.366767 -63.7716708,-64.366767 -63.4990031,-64.366767 -63.226335399999996,-64.366767 -62.9536677,-64.366767 -62.681))"] | ["POINT(-1.875316999999996 -64.04433850000001)"] | false | false |
Carbon and nitrogen isotope data along a gradient at the Antarctic Peninsula
|
1744602 |
2023-01-10 | Iken, Katrin |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
The purpose of this dataset was to determine the importance of macroalgal primary producers to the coastal invertebrate food webs along a gradient of sites with increasing mean annual sea ice cover. This dataset contains the carbon and nitrogen stable isotope values, in addition to carbon and nitrogen content, of various coastal primary producers and invertebrate consumers from 15 stations along the Antarctic Peninsula from 64 to 69 degree latitude south collected in 2019. Primary producers included multiple species of macroalgae, particulate organic matter (POM) as a proxy of phytoplankton production, and benthic diatoms (where they occurred). Consumers included various benthic invertebrates of different feeding types, from suspension feeders (like sponges and ascidians) to predators/omnivores (like sea stars). | ["POLYGON((-68 -64.5,-67.5 -64.5,-67 -64.5,-66.5 -64.5,-66 -64.5,-65.5 -64.5,-65 -64.5,-64.5 -64.5,-64 -64.5,-63.5 -64.5,-63 -64.5,-63 -64.95,-63 -65.4,-63 -65.85,-63 -66.3,-63 -66.75,-63 -67.2,-63 -67.65,-63 -68.1,-63 -68.55,-63 -69,-63.5 -69,-64 -69,-64.5 -69,-65 -69,-65.5 -69,-66 -69,-66.5 -69,-67 -69,-67.5 -69,-68 -69,-68 -68.55,-68 -68.1,-68 -67.65,-68 -67.2,-68 -66.75,-68 -66.3,-68 -65.85,-68 -65.4,-68 -64.95,-68 -64.5))"] | ["POINT(-65.5 -66.75)"] | false | false |
Plocamium reproductive system data and R code
|
1341339 1341333 |
2022-11-22 | Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Data and R code from Sabrina Heiser's study of the reproductive system of Plocamium sp. in the Palmer Station region. | ["POLYGON((-64.36222 -64.72805,-64.325105 -64.72805,-64.28799 -64.72805,-64.250875 -64.72805,-64.21376 -64.72805,-64.176645 -64.72805,-64.13953 -64.72805,-64.102415 -64.72805,-64.0653 -64.72805,-64.028185 -64.72805,-63.99107 -64.72805,-63.99107 -64.74691299999999,-63.99107 -64.765776,-63.99107 -64.784639,-63.99107 -64.803502,-63.99107 -64.82236499999999,-63.99107 -64.841228,-63.99107 -64.860091,-63.99107 -64.878954,-63.99107 -64.897817,-63.99107 -64.91668,-64.028185 -64.91668,-64.0653 -64.91668,-64.102415 -64.91668,-64.13953 -64.91668,-64.176645 -64.91668,-64.21376 -64.91668,-64.250875 -64.91668,-64.28799 -64.91668,-64.325105 -64.91668,-64.36222 -64.91668,-64.36222 -64.897817,-64.36222 -64.878954,-64.36222 -64.860091,-64.36222 -64.841228,-64.36222 -64.82236499999999,-64.36222 -64.803502,-64.36222 -64.784639,-64.36222 -64.765776,-64.36222 -64.74691299999999,-64.36222 -64.72805))"] | ["POINT(-64.176645 -64.82236499999999)"] | false | false |
Plocamium transect and transplant data
|
1341339 1341333 |
2022-11-22 | Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Data from Sabrina Heiser's study of Plocamium sp. benthic transect and transplant studies. | ["POLYGON((-64.3622 -64.72805,-64.325087 -64.72805,-64.287974 -64.72805,-64.250861 -64.72805,-64.213748 -64.72805,-64.176635 -64.72805,-64.139522 -64.72805,-64.102409 -64.72805,-64.065296 -64.72805,-64.028183 -64.72805,-63.99107 -64.72805,-63.99107 -64.74691299999999,-63.99107 -64.765776,-63.99107 -64.784639,-63.99107 -64.803502,-63.99107 -64.82236499999999,-63.99107 -64.841228,-63.99107 -64.860091,-63.99107 -64.878954,-63.99107 -64.897817,-63.99107 -64.91668,-64.028183 -64.91668,-64.065296 -64.91668,-64.102409 -64.91668,-64.139522 -64.91668,-64.176635 -64.91668,-64.213748 -64.91668,-64.250861 -64.91668,-64.287974 -64.91668,-64.325087 -64.91668,-64.3622 -64.91668,-64.3622 -64.897817,-64.3622 -64.878954,-64.3622 -64.860091,-64.3622 -64.841228,-64.3622 -64.82236499999999,-64.3622 -64.803502,-64.3622 -64.784639,-64.3622 -64.765776,-64.3622 -64.74691299999999,-64.3622 -64.72805))"] | ["POINT(-64.176635 -64.82236499999999)"] | false | false |
Underwater video transect community analysis data
|
1744570 1744584 1744602 1744550 |
2022-11-17 | Amsler, Charles |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
This dataset consists of a file with results of community analyses from underwater video transects along the benthos at 14 sites between the Joubin Islands in the north and the Terra Firma Islands in the south. | ["POLYGON((-67.77137 -64.77195,-67.3795463 -64.77195,-66.9877226 -64.77195,-66.59589890000001 -64.77195,-66.2040752 -64.77195,-65.8122515 -64.77195,-65.4204278 -64.77195,-65.0286041 -64.77195,-64.6367804 -64.77195,-64.2449567 -64.77195,-63.853133 -64.77195,-63.853133 -65.16396350000001,-63.853133 -65.555977,-63.853133 -65.9479905,-63.853133 -66.34000400000001,-63.853133 -66.73201750000001,-63.853133 -67.124031,-63.853133 -67.5160445,-63.853133 -67.90805800000001,-63.853133 -68.3000715,-63.853133 -68.692085,-64.2449567 -68.692085,-64.6367804 -68.692085,-65.0286041 -68.692085,-65.4204278 -68.692085,-65.8122515 -68.692085,-66.2040752 -68.692085,-66.59589890000001 -68.692085,-66.9877226 -68.692085,-67.3795463 -68.692085,-67.77137 -68.692085,-67.77137 -68.3000715,-67.77137 -67.90805800000001,-67.77137 -67.5160445,-67.77137 -67.124031,-67.77137 -66.73201750000001,-67.77137 -66.34000400000001,-67.77137 -65.9479905,-67.77137 -65.555977,-67.77137 -65.16396350000001,-67.77137 -64.77195))"] | ["POINT(-65.8122515 -66.73201750000001)"] | false | false |
Walcott Glacier area radiocarbon data
|
1643248 |
2022-10-18 | Hall, Brenda |
Response of the Antarctic Ice Sheet to the last great global warming |
This dataset contains radiocarbon dates of subfossil algal mats associated with Ross Sea drift near Walcott and Howchin Glaciers, southern Royal Society Range. These dates constrain the age of Ross Sea drift in this region. | ["POLYGON((163.2 -78.1,163.26 -78.1,163.32 -78.1,163.38 -78.1,163.44 -78.1,163.5 -78.1,163.56 -78.1,163.62 -78.1,163.68 -78.1,163.74 -78.1,163.8 -78.1,163.8 -78.11999999999999,163.8 -78.14,163.8 -78.16,163.8 -78.17999999999999,163.8 -78.19999999999999,163.8 -78.22,163.8 -78.24,163.8 -78.25999999999999,163.8 -78.28,163.8 -78.3,163.74 -78.3,163.68 -78.3,163.62 -78.3,163.56 -78.3,163.5 -78.3,163.44 -78.3,163.38 -78.3,163.32 -78.3,163.26 -78.3,163.2 -78.3,163.2 -78.28,163.2 -78.25999999999999,163.2 -78.24,163.2 -78.22,163.2 -78.19999999999999,163.2 -78.17999999999999,163.2 -78.16,163.2 -78.14,163.2 -78.11999999999999,163.2 -78.1))"] | ["POINT(163.5 -78.19999999999999)"] | false | false |
Pyramid Trough Radiocarbon Data
|
1643248 |
2022-10-17 | Hall, Brenda |
Response of the Antarctic Ice Sheet to the last great global warming |
This dataset contains radiocarbon dates of subfossil algal mats associated with Ross Sea drift in Pyramid Trough. These dates constrain the age of Ross Sea drift in this region. The dataset also includes dates of modern algae. | ["POLYGON((163 -78.1,163.07 -78.1,163.14 -78.1,163.21 -78.1,163.28 -78.1,163.35 -78.1,163.42 -78.1,163.48999999999998 -78.1,163.56 -78.1,163.63 -78.1,163.7 -78.1,163.7 -78.13,163.7 -78.16,163.7 -78.19,163.7 -78.22,163.7 -78.25,163.7 -78.28,163.7 -78.31,163.7 -78.34,163.7 -78.37,163.7 -78.4,163.63 -78.4,163.56 -78.4,163.48999999999998 -78.4,163.42 -78.4,163.35 -78.4,163.28 -78.4,163.21 -78.4,163.14 -78.4,163.07 -78.4,163 -78.4,163 -78.37,163 -78.34,163 -78.31,163 -78.28,163 -78.25,163 -78.22,163 -78.19,163 -78.16,163 -78.13,163 -78.1))"] | ["POINT(163.35 -78.25)"] | false | false |
Underwater transect videos used for community analyses
|
1744550 |
2022-09-23 | Amsler, Charles |
Collaborative Research: Sea ice as a driver of Antarctic benthic macroalgal community composition and nearshore trophic connectivity |
This dataset consists of underwater videos of transects along the benthos at 14 sites between the Joubin Islands in the north and the Terra Firma Islands in the south. These were used for community analyses of the benthic communities. | ["POLYGON((-67.77137 -64.77195,-67.3795463 -64.77195,-66.9877226 -64.77195,-66.59589890000001 -64.77195,-66.2040752 -64.77195,-65.8122515 -64.77195,-65.4204278 -64.77195,-65.0286041 -64.77195,-64.6367804 -64.77195,-64.2449567 -64.77195,-63.853133 -64.77195,-63.853133 -65.16396350000001,-63.853133 -65.555977,-63.853133 -65.9479905,-63.853133 -66.34000400000001,-63.853133 -66.73201750000001,-63.853133 -67.124031,-63.853133 -67.5160445,-63.853133 -67.90805800000001,-63.853133 -68.3000715,-63.853133 -68.692085,-64.2449567 -68.692085,-64.6367804 -68.692085,-65.0286041 -68.692085,-65.4204278 -68.692085,-65.8122515 -68.692085,-66.2040752 -68.692085,-66.59589890000001 -68.692085,-66.9877226 -68.692085,-67.3795463 -68.692085,-67.77137 -68.692085,-67.77137 -68.3000715,-67.77137 -67.90805800000001,-67.77137 -67.5160445,-67.77137 -67.124031,-67.77137 -66.73201750000001,-67.77137 -66.34000400000001,-67.77137 -65.9479905,-67.77137 -65.555977,-67.77137 -65.16396350000001,-67.77137 -64.77195))"] | ["POINT(-65.8122515 -66.73201750000001)"] | false | false |
Raw gastropod collection data from Amsler et al. 2022 Antarctic Science
|
1341333 1341339 |
2022-03-15 | Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
This file represents the raw gastropod count data used for the analyses in Amsler et al. 2022, Antarctic Science. See the methods there in the main text and supplementary material for specifics on collections and exact coordinates of the collection sites. | [] | [] | false | false |
Marshall Valley Radiocarbon Data
|
1643248 0944150 |
2022-03-01 | Hall, Brenda |
Sensitivity of the Antarctic Ice Sheet to Climate Change over the Last Two Glacial/Interglacial Cycles Response of the Antarctic Ice Sheet to the last great global warming |
This dataset contains raw and calibrated radiocarbon data for lacustrine algal layers from glacial lacustrine deposits associated with Ross Sea drift in Marshall Valley. | ["POLYGON((164 -78,164.04 -78,164.08 -78,164.12 -78,164.16 -78,164.2 -78,164.24 -78,164.28 -78,164.32 -78,164.36 -78,164.4 -78,164.4 -78.01,164.4 -78.02,164.4 -78.03,164.4 -78.04,164.4 -78.05,164.4 -78.06,164.4 -78.07,164.4 -78.08,164.4 -78.09,164.4 -78.1,164.36 -78.1,164.32 -78.1,164.28 -78.1,164.24 -78.1,164.2 -78.1,164.16 -78.1,164.12 -78.1,164.08 -78.1,164.04 -78.1,164 -78.1,164 -78.09,164 -78.08,164 -78.07,164 -78.06,164 -78.05,164 -78.04,164 -78.03,164 -78.02,164 -78.01,164 -78))"] | ["POINT(164.2 -78.05)"] | false | false |
Red and Green Snow Algae Surface Spectra
|
None | 2020-12-21 | Khan, Alia | No project link provided | Surface spectra of red and green snow algae were collected at two sites on King George Island (KGI), the largest of the South Shetland Islands, and one site on northern Nelson Island (NI), southwest of KGI in January 2018. Optically thick (> 30cm) snow packs were prioritized for spectral albedo data acquisition and corresponding snow algae sampling in order to minimize the impact of the underlying ground on spectral albedo. Sites were also selected based on where it was possible to sample 1) a control site with relatively clean snow having no visible snow algae 2) green snow algae, 3) red snow algae and 4) mixed-phase green and red algae. At each site, duplicates of each snow type were measured with the spectrometer (except at Nelson Island where only one Mixed site was observed). All samples were collected around noon local Chilean time, when the seasonal snow pack was also receiving the most incoming solar radiation. Spectral reflectance measurements were collected with an Analytical Spectral Devices (ASD) FieldSpec® 4 hyperspectral spectroradiometer (Malvern Panalytical, USA) between 350 and 2500 nm. The sensor was equipped with a light-diffusing fore optic remote cosine receptor (RCR) to measure planar irradiance. We selected three different locations and collected spectral measurements for two samples each of green, red, and mixed snow algae patches, and two algae-free or “clean” snow areas, for a total of 24 measurement sites (2 of each of the 4 types across the 3 sites). Areas with snowmelt ponding were avoided. The RCR was placed upward to collect the downwelling planar irradiance incident upon the snow surface (Ed) and the upwelling planar irradiance reflected from the snow (Eu). Measurements were collected in triplicate. The operator was located in a direction 90 - 135º away from the sun to minimize solar glint and self-shadowing. Snow conditions did not allow for a tripod, so nadir orientation was determined by practice with a level and by visual assistance of an observer. Since the measurements were carried out under heavily overcast conditions where irradiance is dominated by the diffuse insolation with no solar azimuthal dependence, the influence of slight tilt when measuring the downwelling irradiance (i.e. the cosine error) is expected to be minor (<0.5%). The reflectance measurements were taken prior to excavation of snow sample for laboratory analysis. Post-processing of the data involved computing spectral reflectance, as the ratio of the upwelling flux normalized to the downwelling flux for each wavelength. The mean of the three measurements was calculated for each site. Ambient light conditions were too low in the short-wave infrared wavelengths for getting adequate signal-to-noise for our measurements. In post-processing, reflectance values were truncated at 1350 nm for this analysis. This value represents the limit often used for RF calculations in other studies. In addition, empirical correction coefficients were used to correct for temperature related radiometric inter-channel steps using the procedure and MATLAB code from Hueni et al. (2017). This removed the step function near 1000 nm for most of the spectra, although not fully for all spectra. However, this discontinuity does not significantly impact results or albedo calculations. Albedo was calculated as the integrated R in two different intervals: visible (400-700 nm) and infrared (700-1300 nm). | ["POINT(-58 -62)"] | ["POINT(-58 -62)"] | false | false |
Plocamium cartilagineum field chemotyping
|
1341339 |
2019-10-09 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Samples of the red alga Plocamium cartilagineum were collected from the area around Palmer Station, Antarctica, and characterized by gas chromatography for their secondary metabolite content. Patterns in secondary metabolite content were used to establish chemical phenotypes (chemotypes). | ["POLYGON((-64.03 -64.254,-64.0286 -64.254,-64.0272 -64.254,-64.0258 -64.254,-64.0244 -64.254,-64.023 -64.254,-64.0216 -64.254,-64.0202 -64.254,-64.0188 -64.254,-64.0174 -64.254,-64.016 -64.254,-64.016 -64.2543,-64.016 -64.2546,-64.016 -64.2549,-64.016 -64.2552,-64.016 -64.2555,-64.016 -64.2558,-64.016 -64.2561,-64.016 -64.2564,-64.016 -64.2567,-64.016 -64.257,-64.0174 -64.257,-64.0188 -64.257,-64.0202 -64.257,-64.0216 -64.257,-64.023 -64.257,-64.0244 -64.257,-64.0258 -64.257,-64.0272 -64.257,-64.0286 -64.257,-64.03 -64.257,-64.03 -64.2567,-64.03 -64.2564,-64.03 -64.2561,-64.03 -64.2558,-64.03 -64.2555,-64.03 -64.2552,-64.03 -64.2549,-64.03 -64.2546,-64.03 -64.2543,-64.03 -64.254))"] | ["POINT(-64.023 -64.2555)"] | false | false |
Data from Amsler et al. 2019 Antarctic Science, doi:10.1017/S0954102019000014
|
1341333 |
2019-03-04 | Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
These three spreadsheets contain all the data used in Amsler et al. 2019. Impacts of macroalgal-associated gastropods on epiphytic microalgae on the ecologically important Antarctic brown alga Himantothallus grandifolius. Antarctic Science 31: doi:10.1017/S0954102019000014 | ["POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))"] | ["POINT(-64 -64)"] | false | false |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica
|
1041022 |
2015-01-01 | McClintock, James; Amsler, Charles; Angus, Robert |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica |
The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838773 |
2011-01-01 | McClintock, James; Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0838776 |
2011-01-01 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
The near shore environments of the western Antarctic Peninsula (WAP) harbor extremely high densities of mesograzers (small invertebrate predators approximately 1-25 mm in length) such as benthic amphipods, as well as rich assemblages of macroalgae, endophytes, and macroinvertebrates. Unlike temperate and tropical shallow marine environments, where fish and sea urchins are key grazers structuring the community, mesograzers appear to be much more important in the WAP. Accordingly, the proposed research has two main objectives: (1) To further investigate the interactions between the ecologically dominant large macrophytes, filamentous epi/endophytes, and mesograzers and (2) To determine the nature of interactions between mesograzers and sessile invertebrates. Specifically, the research will examine the following hypotheses: 1: The effects of endophytes on macrophytes are often negative, and consequently macrophytes defend against endophytic infection. 2: Mesoherbivores prevent filamentous algal species, common in the intertidal, from dominating subtidal assemblages. 3: Mesograzer predation pressure on sessile benthic macroinvertebrates, primarily sponges and tunicates, is greatest in shallow habitats dominated by macrophytes, and this impacts depth distributions of macroinvertebrate species. 4: Benthic macroinvertebrates may defend against mesograzers with secondary metabolites which effect molting and/or deter feeding. Broader impacts include involvement of undergraduates, including minorities, in research; training of graduate students, and continuation of the highly successful UAB IN ANTARCTICA interactive web program (two time recipient of awards of excellence from the US Council for Advancement and Support of Education). The researchers also will share their scientific endeavors with teachers, K-12 students, and other members of the community at large while in residence in Antarctica. In addition, the investigators will request the participation of a PolarTREC teacher. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0528728 |
2011-01-01 | Vernet, Maria |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-69.08 -64.8,-68.632 -64.8,-68.184 -64.8,-67.736 -64.8,-67.288 -64.8,-66.84 -64.8,-66.392 -64.8,-65.944 -64.8,-65.496 -64.8,-65.048 -64.8,-64.6 -64.8,-64.6 -65.121,-64.6 -65.442,-64.6 -65.763,-64.6 -66.084,-64.6 -66.405,-64.6 -66.726,-64.6 -67.047,-64.6 -67.368,-64.6 -67.689,-64.6 -68.01,-65.048 -68.01,-65.496 -68.01,-65.944 -68.01,-66.392 -68.01,-66.84 -68.01,-67.288 -68.01,-67.736 -68.01,-68.184 -68.01,-68.632 -68.01,-69.08 -68.01,-69.08 -67.689,-69.08 -67.368,-69.08 -67.047,-69.08 -66.726,-69.08 -66.405,-69.08 -66.084,-69.08 -65.763,-69.08 -65.442,-69.08 -65.121,-69.08 -64.8))"] | ["POINT(-66.84 -66.405)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529087 |
2011-01-01 | Quetin, Langdon B.; Ross, Robin Macurda |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. This collaborative project is concerned with the synthesis and modeling of lower trophic levels. | ["POLYGON((-71 -61,-70 -61,-69 -61,-68 -61,-67 -61,-66 -61,-65 -61,-64 -61,-63 -61,-62 -61,-61 -61,-61 -61.9,-61 -62.8,-61 -63.7,-61 -64.6,-61 -65.5,-61 -66.4,-61 -67.3,-61 -68.2,-61 -69.1,-61 -70,-62 -70,-63 -70,-64 -70,-65 -70,-66 -70,-67 -70,-68 -70,-69 -70,-70 -70,-71 -70,-71 -69.1,-71 -68.2,-71 -67.3,-71 -66.4,-71 -65.5,-71 -64.6,-71 -63.7,-71 -62.8,-71 -61.9,-71 -61))"] | ["POINT(-66 -65.5)"] | false | false |
The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK)
|
0529666 |
2011-01-01 | Fritsen, Christian |
Collaborative Research: U.S. SO GLOBEC Synthesis and Modeling: Timing is Everything: The Dynamic Coupling among Phytoplankton, Ice, Ice Algae and Krill (PIIAK) |
This collaborative study between the Desert Research Institute, the University of California, Santa Barbara (0529087; Robin Ross), and the University of California, San Diego (0528728; Maria Vernet) will examine the relationship between sea ice extent along the Antarctic Peninsula and the life history of krill (Euphausia superba), by developing, refining, and linking diagnostic datasets and models of phytoplankton decreases in the fall, phytoplankton biomass incorporation into sea ice, sea ice growth dynamics, sea ice algal production and biomass accumulation, and larval krill energetics, condition, and survival. Krill is a key species in the food web of the Southern Ocean ecosystem, and one that is intricately involved with seasonal sea ice dynamics. Results from the Southern Ocean experiment of the Global Ocean Ecosystems Dynamics program (SO-Globec) field work as well as historical information on sea ice dynamics and krill recruitment suggest a shift in the paradigm that all pack ice is equally good krill habitat. SO-Globec is a multidisciplinary effort focused on understanding the physical and biological factors that influence growth, reproduction, recruitment and survival of Antarctic krill (Euphausia superba). The program uses a multi-trophic level approach that includes the predators and competitors of Antarctic krill, represented by other zooplankton, fish, penguins, seals, and cetaceans. It is currently in a synthesis and modeling phase. This collaborative project is concerned with the lower trophic levels, and will be integrated with other synthesis and modeling studies that deal with grazers, predators, and other higher trophic levels. | ["POLYGON((-180 -39.23,-144 -39.23,-108 -39.23,-72 -39.23,-36 -39.23,0 -39.23,36 -39.23,72 -39.23,108 -39.23,144 -39.23,180 -39.23,180 -44.307,180 -49.384,180 -54.461,180 -59.538,180 -64.615,180 -69.692,180 -74.769,180 -79.846,180 -84.923,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.923,-180 -79.846,-180 -74.769,-180 -69.692,-180 -64.615,-180 -59.538,-180 -54.461,-180 -49.384,-180 -44.307,-180 -39.23))"] | ["POINT(0 -89.999)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836061 |
2011-01-01 | Dennett, Mark |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0442857 |
2010-01-01 | Baker, Bill |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups. | ["POLYGON((-65 -63,-64.8 -63,-64.6 -63,-64.4 -63,-64.2 -63,-64 -63,-63.8 -63,-63.6 -63,-63.4 -63,-63.2 -63,-63 -63,-63 -63.2,-63 -63.4,-63 -63.6,-63 -63.8,-63 -64,-63 -64.2,-63 -64.4,-63 -64.6,-63 -64.8,-63 -65,-63.2 -65,-63.4 -65,-63.6 -65,-63.8 -65,-64 -65,-64.2 -65,-64.4 -65,-64.6 -65,-64.8 -65,-65 -65,-65 -64.8,-65 -64.6,-65 -64.4,-65 -64.2,-65 -64,-65 -63.8,-65 -63.6,-65 -63.4,-65 -63.2,-65 -63))"] | ["POINT(-64 -64)"] | false | false |
The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula
|
0442769 |
2010-01-01 | McClintock, James; Amsler, Charles |
Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula Collaborative Research: The Chemical Ecology of Shallow-water Marine Macroalgae and Invertebrates on the Antarctic Peninsula - continuing |
Mesoherbivores, and specifically amphipods, are a conspicuous and dominant component of the macroalgal community in Antarctica. Despite their high abundance, the functional ecology, and particularly the trophic relationships of Antarctic amphipods are poorly understood. This project will evaluate the importance of mesograzers (small invertebrate predators approximately 1 to 25 mm in body length) in western Antarctic Peninsula marine communities. This will be accomplished by examining the role of mesoherbivores in structuring macroalgal communities and by elucidating the ecological interactions of mesograzers with a dominant group of benthic macroinvertebrates, the marine sponges. Moreover, chemical studies will be conducted to gain a more thorough understanding of the chemical defenses that Antarctic Peninsula sponges direct towards crustacean mesograzers. Three sets of questions will be addressed concerning the importance of mesograzers, and amphipods in particular, in nearshore habitats of the western Antarctic Peninsula. First, the hypothesis that mesoherbivory is particularly heavy in western Antarctic Peninsula marine communities and has an important influence on algal community structure will be addressed. Initial studies will document which species of amphipods feed in whole or part on microalgae and macroalgae, the incidence and distribution of filamentous endophytes in dominant macroalgae, comparative night time patterns of amphipod abundances on macrophytes, and the role of chemical mediation in these relationships. Second, the broad hypothesis that mesograzers in general, and amphipods in particular, interact with and prey upon sponges to a greater extent than heretofore recognized in Antarctic communities will be tested. The functional basis of these associations will be considered by examining whether the sponges are used as prey, and if so, whether there is evidence that some sponges produce secondary metabolites that show efficacy against mesograzers such as amphipods. Third, the researchers will test the hypotheses that: 1) Antarctic algae and invertebrates biosynthesize secondary metabolites that deter feeding by amphipod predators; and 2) pigments found in three Antarctic sponges are tryptophan catabolites produced as defenses against crustacean predators that impact molting. Evaluation of these hypotheses will be based on isolation and characterization of the specific anti-feeding metabolites, on biosynthetic studies to establish the metabolic origin of the pigments, and on bioassays to establish the chemical defense roles of both groups of compounds. A variety of educational activities will be a major component of this project. Opportunities will be made to support graduate and undergraduate research, both through NSF programs as well as home university-based programs including a number of funded programs that enhance the representation of minorities in the sciences. Through their proven and highly successful interactive web program, the investigators will continue to involve a large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. Moreover, they will actively participate in outreach efforts by presenting numerous talks on their research to school and community groups. | ["POLYGON((-64.15 -64.78,-64.132 -64.78,-64.114 -64.78,-64.096 -64.78,-64.078 -64.78,-64.06 -64.78,-64.042 -64.78,-64.024 -64.78,-64.006 -64.78,-63.988 -64.78,-63.97 -64.78,-63.97 -64.784,-63.97 -64.788,-63.97 -64.792,-63.97 -64.796,-63.97 -64.8,-63.97 -64.804,-63.97 -64.808,-63.97 -64.812,-63.97 -64.816,-63.97 -64.82,-63.988 -64.82,-64.006 -64.82,-64.024 -64.82,-64.042 -64.82,-64.06 -64.82,-64.078 -64.82,-64.096 -64.82,-64.114 -64.82,-64.132 -64.82,-64.15 -64.82,-64.15 -64.816,-64.15 -64.812,-64.15 -64.808,-64.15 -64.804,-64.15 -64.8,-64.15 -64.796,-64.15 -64.792,-64.15 -64.788,-64.15 -64.784,-64.15 -64.78))"] | ["POINT(-64.06 -64.8)"] | false | false |
Controls on Climate-Active Gases by Amundsen Sea Ice Biota
|
0836112 |
2010-01-01 | Smith, Walker |
Collaborative Research: Controls on climate-active gases by Amundsen Sea ice biota |
Convincing evidence now confirms that polar regions are changing rapidly in response to human activities. Changes in sea ice extent and thickness will have profound implications for productivity, food webs and carbon fluxes at high latitudes, since sea ice biota are a significant source of biogenic matter for the ecosystem. While sea ice is often thought to be a barrier to gas exchange between the ocean and the atmosphere, it more likely functions as a source or sink for climate-active gases such as carbon dioxide and ozone-depleting organohalogens, due in part to activities of microbes embedded in the sea ice matrix. This project brings together experienced US and Swedish investigators to examine the controls by sea-ice biota on the production and degradation of key climate-active gases in the Pacific sector of the Southern Ocean. We hypothesize that 1) the physical properties of the sea-ice environment will determine the community structure and activities of the sea ice biota; 2) the productivity, biomass, physiological state and species composition of ice algae will determine the production of specific classes of organic carbon, including organohalogens; 3) heterotrophic co-metabolism within the ice will break down these compounds to some extent, depending on the microbial community structure and productivity, and 4) the sea ice to atmosphere fluxes of CO2 and organohalogens will be inversely related. This project will build close scientific collaborations between US and Swedish researchers and also train young scientists, including members of underrepresented groups. Dissemination of results will include the scientific literature, and public outreach venues including interactions with a PolarTrec teacher. | ["POLYGON((-170 -69,-163 -69,-156 -69,-149 -69,-142 -69,-135 -69,-128 -69,-121 -69,-114 -69,-107 -69,-100 -69,-100 -70,-100 -71,-100 -72,-100 -73,-100 -74,-100 -75,-100 -76,-100 -77,-100 -78,-100 -79,-107 -79,-114 -79,-121 -79,-128 -79,-135 -79,-142 -79,-149 -79,-156 -79,-163 -79,-170 -79,-170 -78,-170 -77,-170 -76,-170 -75,-170 -74,-170 -73,-170 -72,-170 -71,-170 -70,-170 -69))"] | ["POINT(-135 -74)"] | false | false |