{"dp_type": "Project", "free_text": "RADARSAT-1"}
[{"awards": "0126149 Liu, Hongxing", "bounds_geometry": null, "dataset_titles": "Access to Antarctic coastline coverage and reference documents; Access to Antarctic snow zone coverage and reference documents; Access to boundary file and reference documents; Access to ice velocity data and reference documents; Access to snow melt extent image files and reference documents", "datasets": [{"dataset_uid": "001352", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic snow zone coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001350", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to boundary file and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001779", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to ice velocity data and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001640", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to snow melt extent image files and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}, {"dataset_uid": "001351", "doi": "", "keywords": null, "people": null, "repository": "PI website", "science_program": null, "title": "Access to Antarctic coastline coverage and reference documents", "url": "http://geog.tamu.edu/~liu/research/download.htm"}], "date_created": "Tue, 15 Aug 2006 00:00:00 GMT", "description": "This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SMMR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e SSM/I; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e IFSAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "DEM; Not provided; RADARSAT-1", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Liu, Hongxing; Jezek, Kenneth", "platforms": "Not provided; OTHER \u003e MODELS \u003e DEM; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "PI website", "repositories": "PI website", "science_programs": null, "south": null, "title": "High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques", "uid": "p0000204", "west": null}, {"awards": "9909518 Raymond, Charles", "bounds_geometry": "POLYGON((-154 -80,-152 -80,-150 -80,-148 -80,-146 -80,-144 -80,-142 -80,-140 -80,-138 -80,-136 -80,-134 -80,-134 -80.5,-134 -81,-134 -81.5,-134 -82,-134 -82.5,-134 -83,-134 -83.5,-134 -84,-134 -84.5,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-152 -85,-154 -85,-154 -84.5,-154 -84,-154 -83.5,-154 -83,-154 -82.5,-154 -82,-154 -81.5,-154 -81,-154 -80.5,-154 -80))", "dataset_titles": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "datasets": [{"dataset_uid": "609274", "doi": "10.7265/N5736NTS", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Radar; Siple Coast", "people": "Catania, Ginny; Conway, Howard; Raymond, Charles", "repository": "USAP-DC", "science_program": null, "title": "Compilation of Antarctic Radar Data, Siple Coast, 2000-2002", "url": "https://www.usap-dc.org/view/dataset/609274"}], "date_created": "Fri, 03 Jun 2005 00:00:00 GMT", "description": "9909518\u003cbr/\u003eRaymond\u003cbr/\u003e\u003cbr/\u003eThis award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide \"shutdown\" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time.", "east": -134.0, "geometry": "POINT(-144 -82.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e SPECTROMETERS/RADIOMETERS \u003e IMAGING SPECTROMETERS/RADIOMETERS \u003e AVHRR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "Ice Stream; West Antarctic Ice Sheet; Radarsat; Siple Dome; Radar; Ice Floe; Not provided; AVHRR; Siple Coast; Ice Stratigraphy; Margin Scars; NOAA POES; RAMP; GROUND-BASED OBSERVATIONS; Ice Flow; Accumulation Rate; Antarctic Ice Sheet; RADARSAT-1", "locations": "Siple Coast; Antarctic Ice Sheet; Siple Dome; West Antarctic Ice Sheet", "north": -80.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Conway, Howard; Catania, Ginny", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e POLAR ORBITING ENVIRONMENTAL SATELLITES (POES) \u003e NOAA POES; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-1", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -85.0, "title": "Collaborative Research:History and Evolution of the Siple Coast Ice Stream Systems as Recorded by Former Shear-Margin Scars", "uid": "p0000275", "west": -154.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
High-Resolution Modeling of Surface Topography, Ice Motion, and Mass Balance in the Lambert Glacial Basin using Radar Remote Sensing and GIS Techniques
|
0126149 |
2006-08-15 | Liu, Hongxing; Jezek, Kenneth | This award supports a project to characterize the morphology, ice motion velocity and mass balance of Lambert Glacier, Antarctica using state-of-the-art remote sensing and GIS techniques. Lambert Glacier is the largest ice stream in the world. Because of its size, it plays a fundamental role in the study of glacial dynamics and mass budget in response to present and future climate changes. Along with the bedrock topography and ice thickness data derived from airborne radio echo soundings and snow accumulation data compiled from ground-based measurements, the dynamic behavior and mass balance of the Lambert glacial basin in a Geographic Information Systems (GIS) environment will be examined. Specific objectives are to: (1) Extract two-dimensional ice velocity field over the entire Lambert glacial basin using speckle matching and differential interferometric SAR (InSAR) techniques, and produce a full coverage of radar coherence map over the drainage basin. With the ice velocity data, calculate the strain rate field from the initiation areas of the ice stream onto the Amery Ice Shelf; (2) Derive high-resolution digital elevation model (DEM) over the Lambert glacial drainage basin using SAR stereo, differential interferometric SAR, and GLAS laser altimetry techniques. Based on the DEM, extract ice divides and ice flow directions, delineate the snow catchment basin, and calculate the balance deformation velocity and the basal shear stress; (3) Interpolate traverse ice thickness data collected by Australian and Russian airborne radio echo sounding surveys into a regular grid, and derive a regular grid of bedrock topography in combination with the DEM; (4) Integrate newly derived ice velocity and ice thickness data as well as snow accumulation rate data compiled from previous ground-based measurements into a geographic information system (GIS), and calculate the mass flux through the ice stream at the grounding lines and net mass balance throughout the drainage basin. With these new measurements and calculations derived from advanced remote sensing techniques, we will be able to improve our understanding of dynamic behavior and current mass balance status of the Lambert glacial basin, gain an insight on the relationship between ice mass change and the variation in regional and global climate at decadal scale, and provide an evaluation on the issue of whether the Lambert glacier basin is subject to surging in the context of future climate change. | None | None | false | false | ||||
Collaborative Research:History and Evolution of the Siple Coast Ice Stream Systems as Recorded by Former Shear-Margin Scars
|
9909518 |
2005-06-03 | Raymond, Charles; Conway, Howard; Catania, Ginny |
|
9909518<br/>Raymond<br/><br/>This award provides support for three years of funding to study the scar-like features that are well-known from the Siple Coast ice stream system in West Antarctica. The objective of the proposed field work is to identify the nature of several as yet unvisited scars, and to further characterize previously-identified margin scars that are poorly dated. Advanced Very High Resolution Radiometer (AVHRR) and Radarsat image data will be used to locate and map the features, and place them in a regional context. The study seeks to describe the recent history of the Siple Coast glaciers and investigate the causes of their changes in configuration. The main investigative tools will be low-frequency RES and high-frequency ground penetrating radar (GPR) profiles to image internal layers and measure depths to buried crevasses or disrupted layering. This, coupled with accumulation rates determined from shallow ice cores, will provide "shutdown" ages for the margin features. The field data will provide input parameters for simple models of ice flow for margins and inter-ice stream ridges during active shearing and after shutdown. This modeling will estimate the initial elevation of a scar at the time of shut down and the corresponding ice stream elevation at that time. | POLYGON((-154 -80,-152 -80,-150 -80,-148 -80,-146 -80,-144 -80,-142 -80,-140 -80,-138 -80,-136 -80,-134 -80,-134 -80.5,-134 -81,-134 -81.5,-134 -82,-134 -82.5,-134 -83,-134 -83.5,-134 -84,-134 -84.5,-134 -85,-136 -85,-138 -85,-140 -85,-142 -85,-144 -85,-146 -85,-148 -85,-150 -85,-152 -85,-154 -85,-154 -84.5,-154 -84,-154 -83.5,-154 -83,-154 -82.5,-154 -82,-154 -81.5,-154 -81,-154 -80.5,-154 -80)) | POINT(-144 -82.5) | false | false |