{"dp_type": "Project", "free_text": "Simple Dome"}
[{"awards": "2218402 Fegyveresi, John", "bounds_geometry": "POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5))", "dataset_titles": "Multi-Site Brittle Ice Data and Measurements", "datasets": [{"dataset_uid": "601786", "doi": "10.15784/601786", "keywords": "Antarctica; Brittle Ice; Cryosphere; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Glaciology; Ice Core; Ice Core Records; Ice Core Records; Physical Properties; Simple Dome; Siple Dome; South Pole; SPICEcore; Subgrain Boundaries; WAIS Divide", "people": "Barnett, Samantha; Fegyveresi, John", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Multi-Site Brittle Ice Data and Measurements", "url": "https://www.usap-dc.org/view/dataset/601786"}], "date_created": "Mon, 19 Sep 2022 00:00:00 GMT", "description": "Brittle ice has been a long-standing and consistent challenge for ice-coring projects, complicating sampling, and introducing the possibility of contamination. Several procedures have been tested to reduce brittle damage to recovered cores, but many come with high monetary and time costs. Our background research suggests that bubble size and c-axis fabric are primary drivers for brittleness and are predictable from site characteristics, enabling prediction of brittleness before coring. We propose to improve understanding of the mechanisms involved in brittle ice onset and behavior, through targeted investigations of various ice physical properties, in carefully selected samples across multiple ice-core sites, in order to guide the upcoming Hercules Dome ice-core drilling and science communities. This project will involve collaboration between Northern Arizona University, the National Science Foundation Ice Core Facility, and Pennsylvania State University, and will utilize new and existing ice-core physical properties data from several previously drilled sites. This is a high-risk, low-cost project that could yield important results, and thus is well-suited for EAGER funding. This proposal utilizes existing ice cores and does not require Antarctic fieldwork. ", "east": -100.0, "geometry": "POINT(-107.5 -86.25)", "instruments": null, "is_usap_dc": true, "keywords": "Hercules Dome Ice Core; West Antarctica; Grain Statistics; LABORATORY; Ice Core; ICE SHEETS; Physical Properties; Brittle Ice; C-Axis Fabric; Bubble; ICE CORE RECORDS", "locations": "West Antarctica", "north": -85.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fegyveresi, John", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Hercules Dome Ice Core", "south": -87.0, "title": "EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.", "uid": "p0010378", "west": -115.0}, {"awards": "9615420 Kamb, Barclay", "bounds_geometry": "POINT(-136.404633 -82.39955)", "dataset_titles": "Temperature of the West Antarctic Ice Sheet; Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "datasets": [{"dataset_uid": "609528", "doi": "10.7265/N5028PFH", "keywords": "Antarctica; Borehole Video; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Kamb Ice Stream; Photo/video; Photo/Video", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Videos of Basal Ice in Boreholes on the Kamb Ice Stream in West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609528"}, {"dataset_uid": "609537", "doi": "10.7265/N5PN93J8", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Temperature", "people": "Engelhardt, Hermann", "repository": "USAP-DC", "science_program": null, "title": "Temperature of the West Antarctic Ice Sheet", "url": "https://www.usap-dc.org/view/dataset/609537"}], "date_created": "Thu, 14 Feb 2013 00:00:00 GMT", "description": "This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others.", "east": -136.404633, "geometry": "POINT(-136.404633 -82.39955)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMISTORS \u003e THERMISTORS", "is_usap_dc": true, "keywords": "Raymond Ridge; Kamb Ice Stream; Engelhardt Ridge; Basal Ice; Unicorn; Alley Ice Stream; Borehole Video; Basal Freeze-on; Ice Stream Flow; Basal Freezing; West Antarctic Ice Sheet Instability; GROUND-BASED OBSERVATIONS; Whillans Ice Stream; Basal Debris; Simple Dome; Basal Water; Bindschadler Ice Stream; West Antarctic Ice Sheet", "locations": "Kamb Ice Stream; Alley Ice Stream; Bindschadler Ice Stream; Engelhardt Ridge; Raymond Ridge; Simple Dome; Unicorn; West Antarctic Ice Sheet; Whillans Ice Stream", "north": -82.39955, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Kamb, Barclay; Engelhardt, Hermann", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -82.39955, "title": "Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics", "uid": "p0000181", "west": -136.404633}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EAGER: Constraining the Expected Brittle-ice Behavior for the Hercules Dome Ice-core Site.
|
2218402 |
2022-09-19 | Fegyveresi, John |
|
Brittle ice has been a long-standing and consistent challenge for ice-coring projects, complicating sampling, and introducing the possibility of contamination. Several procedures have been tested to reduce brittle damage to recovered cores, but many come with high monetary and time costs. Our background research suggests that bubble size and c-axis fabric are primary drivers for brittleness and are predictable from site characteristics, enabling prediction of brittleness before coring. We propose to improve understanding of the mechanisms involved in brittle ice onset and behavior, through targeted investigations of various ice physical properties, in carefully selected samples across multiple ice-core sites, in order to guide the upcoming Hercules Dome ice-core drilling and science communities. This project will involve collaboration between Northern Arizona University, the National Science Foundation Ice Core Facility, and Pennsylvania State University, and will utilize new and existing ice-core physical properties data from several previously drilled sites. This is a high-risk, low-cost project that could yield important results, and thus is well-suited for EAGER funding. This proposal utilizes existing ice cores and does not require Antarctic fieldwork. | POLYGON((-115 -85.5,-113.5 -85.5,-112 -85.5,-110.5 -85.5,-109 -85.5,-107.5 -85.5,-106 -85.5,-104.5 -85.5,-103 -85.5,-101.5 -85.5,-100 -85.5,-100 -85.65,-100 -85.8,-100 -85.95,-100 -86.1,-100 -86.25,-100 -86.4,-100 -86.55,-100 -86.7,-100 -86.85,-100 -87,-101.5 -87,-103 -87,-104.5 -87,-106 -87,-107.5 -87,-109 -87,-110.5 -87,-112 -87,-113.5 -87,-115 -87,-115 -86.85,-115 -86.7,-115 -86.55,-115 -86.4,-115 -86.25,-115 -86.1,-115 -85.95,-115 -85.8,-115 -85.65,-115 -85.5)) | POINT(-107.5 -86.25) | false | false | |||||
Basal Conditions of Ice Stream D and Related Borehole Studies of Antarctic Ice Stream Mechanics
|
9615420 |
2013-02-14 | Kamb, Barclay; Engelhardt, Hermann |
|
This award is for support for a four year program to study the basal conditions of ice stream D using techniques previously applied to ice stream B. The objective is to determine whether the physical conditions and processes to be observed by borehole geophysics at the base of this large ice stream are consistent with what has been observed at ice stream B and to point to a common basal mechanism of ice streaming. This project includes a comparison between two parts of ice stream D, an upstream reach where flow velocities are modest (about 80 meters/year) and a downstream reach of high velocity (about 400 meters/year). The comparison will help to reveal what physical variable or combination of variables is mainly responsible for the streaming flow. The variables to be monitmred by borehole observation include basal water pressure, basal sliding velocity, flow properties and sedimentological characteristics of subglacial till if present, ice temperature profile including basal water transport velocity, connection time to the basal water system, basal melting rate and others. | POINT(-136.404633 -82.39955) | POINT(-136.404633 -82.39955) | false | false |