{"dp_type": "Project", "free_text": "Seymour Island"}
[{"awards": "2026648 Tobin, Thomas; 2025724 Harwood, David; 2020728 Huber, Brian", "bounds_geometry": "POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 15 Sep 2022 00:00:00 GMT", "description": "Non-technical description: \u003cbr/\u003eThis 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students.\u003cbr/\u003eTechnical description:\u003cbr/\u003e The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf.", "east": -56.57, "geometry": "POINT(-56.75 -64.27000000000001)", "instruments": null, "is_usap_dc": true, "keywords": "Seymour Island; PALEOCLIMATE RECONSTRUCTIONS; SEDIMENTARY ROCKS; MICROFOSSILS; FIELD INVESTIGATION", "locations": "Seymour Island", "north": -64.2, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Organisms and Ecosystems; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Tobin, Thomas; Totten, Rebecca", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repositories": null, "science_programs": null, "south": -64.34, "title": "Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction", "uid": "p0010377", "west": -56.93}, {"awards": "1842049 Kim, Sora; 1842059 Huber, Matthew; 1842176 Bizimis, Michael; 1842115 Jahn, Alexandra", "bounds_geometry": "POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061))", "dataset_titles": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "datasets": [{"dataset_uid": "200183", "doi": "https://doi.org/10.6071/M34T1Z", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Probing the ecology and climate of the Eocene Southern Ocean with sand tiger sharks Striatolamia macrota", "url": "https://datadryad.org/stash/dataset/doi:10.6071/M34T1Z"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "The Earth\u0027s climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from \u0027greenhouse\u0027 to \u0027icehouse\u0027 conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty.\u003cbr/\u003e\u003cbr/\u003eThe research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -56.581808, "geometry": "POINT(-56.637662 -64.235428)", "instruments": null, "is_usap_dc": true, "keywords": "FISH; USA/NSF; OXYGEN ISOTOPE ANALYSIS; WATER MASSES; Amd/Us; AMD; USAP-DC; OXYGEN ISOTOPES; LABORATORY; Seymour Island; Sharks; Striatolamia Macrota", "locations": "Seymour Island", "north": -64.209061, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -64.261795, "title": "Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation", "uid": "p0010146", "west": -56.693516}, {"awards": "1543031 Ivany, Linda", "bounds_geometry": null, "dataset_titles": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ; Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ; Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "datasets": [{"dataset_uid": "601175", "doi": "10.15784/601175 ", "keywords": "Antarctica; Atmosphere; Climate Model; Computer Model; Eocene; Genesis; Global Circulation Model; Modeling; Model Output; Seasonality; Temperature", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "NetCDF outputs from middle Eocene climate simulation using the GENESIS global circulation model ", "url": "https://www.usap-dc.org/view/dataset/601175"}, {"dataset_uid": "601173", "doi": "10.15784/601173 ", "keywords": "Antarctica; Carbon Isotopes; Driftwood; Eocene; Geochemistry; Geochronology; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Organic Carbon Isotopes; Seasonality; Seymour Island; Wood", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Organic carbon isotope data from serially sampled Eocene driftwood from the La Meseta Fm., Seymour ", "url": "https://www.usap-dc.org/view/dataset/601173"}, {"dataset_uid": "601174", "doi": "10.15784/601174", "keywords": "Antarctica; Biota; Bivalves; Cucullaea; Eocene; Glaciers/ice Sheet; Glaciers/Ice Sheet; Isotope Data; La Meseta Formation; Mass Spectrometer; Mass Spectrometry; Oxygen Isotope; Paleotemperature; Retrotapes; Seasonality; Seymour Island", "people": "Judd, Emily", "repository": "USAP-DC", "science_program": null, "title": "Oxygen isotope data from serially sampled Eocene bivalves from the La Meseta Fm., Seymour Island, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601174"}], "date_created": "Tue, 23 Apr 2019 00:00:00 GMT", "description": "In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth\u0027s past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth\u0027s ancient climate and what we can learn from it.\u003cbr/\u003e\u003cbr/\u003eAntarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic.", "east": -56.0, "geometry": "POINT(-56.5 -64.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "PALEOCLIMATE RECONSTRUCTIONS; USAP-DC; ISOTOPES; NOT APPLICABLE; MACROFOSSILS; Antarctica", "locations": "Antarctica", "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.5, "title": "Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica", "uid": "p0010025", "west": -57.0}, {"awards": "1341729 Kirschvink, Joseph", "bounds_geometry": "POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5))", "dataset_titles": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica; Expedition data of NBP1601", "datasets": [{"dataset_uid": "601094", "doi": "10.15784/601094", "keywords": "Antarctica; Geochronology; Geology/Geophysics - Other; Glaciology; James Ross Basin; Marine Geoscience; Marine Sediments", "people": "Skinner, Steven; Kirschvink, Joseph", "repository": "USAP-DC", "science_program": null, "title": "2016 Paleomagnetic samples from the James Ross Basin, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601094"}, {"dataset_uid": "002665", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP1601", "url": "https://www.rvdata.us/search/cruise/NBP1601"}], "date_created": "Fri, 27 Apr 2018 00:00:00 GMT", "description": "Non-Technical Summary:\u003cbr/\u003e About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Ant\u00c3\u00a1rtico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. \u003cbr/\u003e A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists.\u003cbr/\u003e\u003cbr/\u003e\u003cbr/\u003eTechnical Description of Project \u003cbr/\u003eThe proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration).\u003cbr/\u003eThis research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results.", "east": -56.2, "geometry": "POINT(-57.55 -64.1)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ECHO SOUNDERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e THERMOSALINOGRAPHS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; R/V NBP; USAP-DC", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kirschvink, Joseph; Christensen, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -64.7, "title": "Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica", "uid": "p0000276", "west": -58.9}, {"awards": "1142129 Lamanna, Matthew", "bounds_geometry": "POLYGON((-60 -63.5,-59.6 -63.5,-59.2 -63.5,-58.8 -63.5,-58.4 -63.5,-58 -63.5,-57.6 -63.5,-57.2 -63.5,-56.8 -63.5,-56.4 -63.5,-56 -63.5,-56 -63.7,-56 -63.9,-56 -64.1,-56 -64.3,-56 -64.5,-56 -64.7,-56 -64.9,-56 -65.1,-56 -65.3,-56 -65.5,-56.4 -65.5,-56.8 -65.5,-57.2 -65.5,-57.6 -65.5,-58 -65.5,-58.4 -65.5,-58.8 -65.5,-59.2 -65.5,-59.6 -65.5,-60 -65.5,-60 -65.3,-60 -65.1,-60 -64.9,-60 -64.7,-60 -64.5,-60 -64.3,-60 -64.1,-60 -63.9,-60 -63.7,-60 -63.5))", "dataset_titles": "2008-2016 AMNH accessioned vertebrate fossils from Seymour Island; 3D digital reconstructions of vocal organs of Antarctic Cretaceous bird Vegavis and Paleogene bird Presbyornis", "datasets": [{"dataset_uid": "601035", "doi": "10.15784/601035", "keywords": "Antarctica; Biota; Birds", "people": "Lamanna, Matthew; Clarke, Julia; Salisbury, Steven", "repository": "USAP-DC", "science_program": null, "title": "3D digital reconstructions of vocal organs of Antarctic Cretaceous bird Vegavis and Paleogene bird Presbyornis", "url": "https://www.usap-dc.org/view/dataset/601035"}, {"dataset_uid": "601112", "doi": "10.15784/601112", "keywords": "Antarctica; Biota; Penguin; Seymour Island; Vertebrates", "people": "MacPhee, Ross", "repository": "USAP-DC", "science_program": null, "title": "2008-2016 AMNH accessioned vertebrate fossils from Seymour Island", "url": "https://www.usap-dc.org/view/dataset/601112"}], "date_created": "Wed, 12 Jul 2017 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThe role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the \"Scotia Portal\" permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThe PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas.", "east": -56.0, "geometry": "POINT(-58 -64.5)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; Not provided", "locations": null, "north": -63.5, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Lamanna, Matthew", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.5, "title": "Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana", "uid": "p0000380", "west": -60.0}, {"awards": "9908828 Aronson, Richard", "bounds_geometry": "POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166))", "dataset_titles": "Expedition Data; Expedition data of NBP0107", "datasets": [{"dataset_uid": "001962", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0011"}, {"dataset_uid": "002656", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0107", "url": "https://www.rvdata.us/search/cruise/NBP0107"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9908828\u003cbr/\u003eAronson\u003cbr/\u003e\u003cbr/\u003eThis award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.\u003cbr/\u003e\u003cbr/\u003eA series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). \u003cbr/\u003e\u003cbr/\u003eSeymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": -56.34, "geometry": "POINT(-63.623 -58.613498)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP; Hugo Island; R/V LMG; Palmer Deep", "locations": "Hugo Island", "north": -52.350166, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Aronson, Richard; Domack, Eugene Walter", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.87683, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene", "uid": "p0000617", "west": -70.906}, {"awards": "0125526 Wise, Sherwood", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "002616", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000828", "west": null}, {"awards": "0125480 Manley, Patricia", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "002618", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000830", "west": null}, {"awards": "0125562 Zachos, James", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of NBP0602A", "datasets": [{"dataset_uid": "002617", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0602A", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000829", "west": null}, {"awards": "9908856 Blake, Daniel", "bounds_geometry": null, "dataset_titles": "Expedition Data; Expedition data of LMG0309", "datasets": [{"dataset_uid": "001683", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0309"}, {"dataset_uid": "002675", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0309", "url": "https://www.rvdata.us/search/cruise/LMG0309"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.\u003cbr/\u003e\u003cbr/\u003eA series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). \u003cbr/\u003e\u003cbr/\u003eSeymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": false, "keywords": "R/V LMG", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Blake, Daniel", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.", "uid": "p0000857", "west": null}, {"awards": "0125922 Anderson, John", "bounds_geometry": "POLYGON((-69.84264 -52.35215,-68.086508 -52.35215,-66.330376 -52.35215,-64.574244 -52.35215,-62.818112 -52.35215,-61.06198 -52.35215,-59.305848 -52.35215,-57.549716 -52.35215,-55.793584 -52.35215,-54.037452 -52.35215,-52.28132 -52.35215,-52.28132 -53.546701,-52.28132 -54.741252,-52.28132 -55.935803,-52.28132 -57.130354,-52.28132 -58.324905,-52.28132 -59.519456,-52.28132 -60.714007,-52.28132 -61.908558,-52.28132 -63.103109,-52.28132 -64.29766,-54.037452 -64.29766,-55.793584 -64.29766,-57.549716 -64.29766,-59.305848 -64.29766,-61.06198 -64.29766,-62.818112 -64.29766,-64.574244 -64.29766,-66.330376 -64.29766,-68.086508 -64.29766,-69.84264 -64.29766,-69.84264 -63.103109,-69.84264 -61.908558,-69.84264 -60.714007,-69.84264 -59.519456,-69.84264 -58.324905,-69.84264 -57.130354,-69.84264 -55.935803,-69.84264 -54.741252,-69.84264 -53.546701,-69.84264 -52.35215))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001571", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0602A"}, {"dataset_uid": "001602", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0502"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this \"demonstration cruise\" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the \"Greenhouse-Icehouse\" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program\u0027s technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the \"no man\u0027s land\" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program\u0027s vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.", "east": -52.28132, "geometry": "POINT(-61.06198 -58.324905)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e SEDIMENT CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -52.35215, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, John; Wellner, Julia", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -64.29766, "title": "Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin", "uid": "p0000571", "west": -69.84264}, {"awards": "9980538 Lohmann, Kyger", "bounds_geometry": "POINT(-56 -64)", "dataset_titles": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "datasets": [{"dataset_uid": "600019", "doi": "", "keywords": null, "people": "Lohmann, Kyger", "repository": "USAP-DC", "science_program": null, "title": "Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600019"}], "date_created": "Mon, 11 Jun 2001 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research for construction of a long-term record of climate during the late Cretaceous and early Paleogene to assess the annual seasonality in temperature on the coastal margin of Antarctica. Stable isotope and element compositions of well-preserved bivalve shells collected on Seymour Island will be the primary source of data used to reconstruct paleoenvironmental conditions. Seasonal temperature records collected through high-resolution sampling along growth structures in bivalve shells will allow seasonality to be assessed during different climate states and during periods of rapid climate change. In addition, high stratigraphic resolution will enable this project to detect the presence and frequency of short-lived thermal excursions that may have extended to such high latitudes.\u003cbr/\u003e\u003cbr/\u003eTo compile a reliable temporal record of paleoclimate, two major avenues of investigation will be undertaken: 1) precise stratigraphic (and therefore, temporal) placement of fossils over a large geographic area will be employed through the use of a graphical technique employing geometric projections; 2) stable isotope and elemental analyses will be performed to derive paleotemperatures and to evaluate diagenetic alteration of shell materials. To provide realistic comparisons of paleotemperatures across stratigraphic horizons, this study will focus on a single taxon, thus avoiding complications due to the mixing of faunal assemblages that have been encountered in previous studies of this region.\u003cbr/\u003e\u003cbr/\u003eThe near-shore marine fossil record on Seymour Island provides a unique opportunity to address many questions about the Antarctic paleoenvironment, including the relation between seasonality and different climate states, the influence of climate on biogeographic distribution of specific taxa, the effect of ice-volume changes on the stable isotope record from the late Cretaceous through the Eocene, and the plausibility of high-latitude bottom water formation during this time interval. In particular, information that will be collected concerning patterns of seasonality and the presence (or absence) of short-lived thermal excursions will be extremely valuable to an understanding of the response of high latitude sites during climate transitions from globally cool to globally warm conditions.", "east": -56.0, "geometry": "POINT(-56 -64)", "instruments": null, "is_usap_dc": false, "keywords": "Not provided; Bivalves; Geochemical Composition; Carbon Isotopes; Climate", "locations": null, "north": -64.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e PALEOGENE \u003e EOCENE", "persons": "Lohmann, Kyger; Barrera, Enriqueta", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene", "uid": "p0000613", "west": -56.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction
|
2026648 2025724 2020728 |
2022-09-15 | Tobin, Thomas; Totten, Rebecca | No dataset link provided | Non-technical description: <br/>This 4-year project is evaluating evidence of extinction patterns and depositional conditions from a high southern latitude Cretaceous-Paleogene (K-Pg) outcrop section found on Seymore Island, in the Western Antarctic Peninsula. The team is using sediment samples collected below the weathering horizon to evaluate detailed sedimentary structures, geochemistry, and microfossils in targeted stratigraphic intervals. The study will help determine if the K-Pg mass extinction was a single or double phased event and whether Seymour Island region in the geological past was a restricted, suboxic marine environment or an open well-mixed shelf. The award includes an integrated plan for student training at all levels, enhanced by a highlighted partnership with a high school earth sciences teacher working in a school serving underrepresented students.<br/>Technical description:<br/> The proposed research is applying multiple techniques to address an overarching research question for which recent studies are in disagreement: Is the fossil evidence from a unique outcropping on Seymour Island, Antarctica consistent with a single or double phased extinction? In a two-phased model, the first extinction would affect primarily benthic organisms and would have occurred ~150 kiloyears prior to a separate extinction at the K-Pg boundary. However, this early extinction could plausibly be explained by an unrecognized facies control that is obscured by surficial weathering. This team is using microfossil evidence with detailed sedimentary petrology and geochemistry data to evaluate if the fossil evidence from Seymour Island is consistent with a single or double phased extinction process. The team is using detailed sedimentary petrology and geochemistry methods to test for facies changes across the K-PG interval that would explain the apparent early extinction. Samples of core sedimentary foraminifera, siliceous microfossils, and calcareous nannofossils are being evaluated to provide a high-resolution stratigraphic resolution and to evaluate whether evidence for an early extinction is present. Additionally, the team is using multiple geochemical methods to evaluate whether there is evidence for intermittent anoxia or euxinia and/or physical restriction of the Seymore region basin. Data from this analysis will indicate if this region was a restricted, suboxic marine environment or an open well-mixed shelf. | POLYGON((-56.93 -64.2,-56.894 -64.2,-56.858 -64.2,-56.822 -64.2,-56.786 -64.2,-56.75 -64.2,-56.714 -64.2,-56.678 -64.2,-56.642 -64.2,-56.606 -64.2,-56.57 -64.2,-56.57 -64.214,-56.57 -64.22800000000001,-56.57 -64.242,-56.57 -64.256,-56.57 -64.27000000000001,-56.57 -64.284,-56.57 -64.298,-56.57 -64.312,-56.57 -64.32600000000001,-56.57 -64.34,-56.606 -64.34,-56.642 -64.34,-56.678 -64.34,-56.714 -64.34,-56.75 -64.34,-56.786 -64.34,-56.822 -64.34,-56.858 -64.34,-56.894 -64.34,-56.93 -64.34,-56.93 -64.32600000000001,-56.93 -64.312,-56.93 -64.298,-56.93 -64.284,-56.93 -64.27000000000001,-56.93 -64.256,-56.93 -64.242,-56.93 -64.22800000000001,-56.93 -64.214,-56.93 -64.2)) | POINT(-56.75 -64.27000000000001) | false | false | |||||
Collaborative Research: Integrating Eocene Shark Paleoecology and Climate Modeling to reveal Southern Ocean Circulation and Antarctic Glaciation
|
1842049 1842059 1842176 1842115 |
2020-12-15 | Kim, Sora; Scher, Howard; Huber, Matthew; Jahn, Alexandra |
|
The Earth's climate has changed through time and during the Eocene Epoch (56 to 34 million years ago) there was a transition from 'greenhouse' to 'icehouse' conditions. During the Eocene, a shift to cooler temperatures at high latitudes resulted in the inception of polar glaciation. This in turn affected the environment for living organisms. This project looks to uncover the interaction between biological, oceanographic, and climate systems for the Eocene in Antarctica using chemical analysis of fossil shark teeth collected during past expeditions. The combination of paleontological and geochemical analyses will provide insight to the past ecology and ocean conditions; climate models will be applied to test the role of tectonics, greenhouse gas concentration and ocean circulation on environmental change during this time period. The study contributes to understanding the interaction of increased atmospheric carbon dioxide and ocean circulation. This project also seeks to improve diversity, equity, and inclusion within the geosciences workforce with efforts targeted to undergraduate, graduate, postdoctoral, and early career faculty.<br/><br/>The research goal is to elucidate the processes leading from the Eocene greenhouse to Oligocene icehouse conditions. Previous explanations for this climate shift centers on Antarctica, where tectonic configurations influenced oceanic gateways, ocean circulation reduced heat transport, and/or greenhouse gas declines prompted glaciation. The team will reconstruct watermass, current, and climate fluctuations proximal to the Antarctic Peninsula using geochemical indicators (oxygen and neodymium isotope composition) from fossil shark teeth collected from Seymour Island. The approach builds on previous shark paleontological studies, incorporates geochemical analyses for environmental reconstruction (i.e., temperature gradients and ocean circulation), and tests hypotheses on Earth System dynamics using novel global climate model simulations with geochemical tracers. This project will advance global climate modeling capabilities with experiments that consider Eocene tectonic configuration within isotope-enabled climate model simulations. A comparison of geochemical results from Eocene climate simulations and empirical records of shark teeth will reveal processes and mechanisms central to the Eocene Antarctic climatic shift.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-56.693516 -64.209061,-56.6823452 -64.209061,-56.6711744 -64.209061,-56.6600036 -64.209061,-56.6488328 -64.209061,-56.637662 -64.209061,-56.6264912 -64.209061,-56.6153204 -64.209061,-56.6041496 -64.209061,-56.5929788 -64.209061,-56.581808 -64.209061,-56.581808 -64.2143344,-56.581808 -64.2196078,-56.581808 -64.2248812,-56.581808 -64.2301546,-56.581808 -64.235428,-56.581808 -64.2407014,-56.581808 -64.2459748,-56.581808 -64.2512482,-56.581808 -64.2565216,-56.581808 -64.261795,-56.5929788 -64.261795,-56.6041496 -64.261795,-56.6153204 -64.261795,-56.6264912 -64.261795,-56.637662 -64.261795,-56.6488328 -64.261795,-56.6600036 -64.261795,-56.6711744 -64.261795,-56.6823452 -64.261795,-56.693516 -64.261795,-56.693516 -64.2565216,-56.693516 -64.2512482,-56.693516 -64.2459748,-56.693516 -64.2407014,-56.693516 -64.235428,-56.693516 -64.2301546,-56.693516 -64.2248812,-56.693516 -64.2196078,-56.693516 -64.2143344,-56.693516 -64.209061)) | POINT(-56.637662 -64.235428) | false | false | |||||
Seasonality, Summer Cooling, and Calibrating the Approach of the Icehouse in Late Eocene Antarctica
|
1543031 |
2019-04-23 | Ivany, Linda; Lu, Zunli; Junium, Christopher; Samson, Scott | In order to understand what environmental conditions might look like for future generations, we need to turn to archives of past times when the world was indeed warmer, before anyone was around to commit them to collective memory. The geologic record of Earth's past offers a glimpse of what could be in store for the future. Research by Ivany and her team looks to Antarctica during a time of past global warmth to see how seasonality of temperature and rainfall in coastal settings are likely to change in the future. They will use the chemistry of fossils (a natural archive of these variables) to test a provocative hypothesis about near-monsoonal conditions in the high latitudes when the oceans are warm. If true, we can expect high-latitude shipping lanes to become more hazardous and fragile marine ecosystems adapted to constant cold temperatures to suffer. With growing information about how human activities are likely to affect the planet in the future, we will be able to make more informed decisions about policies today. This research involves an international team of scholars, including several women scientists, training of graduate students, and a public museum exhibit to educate children about how we study Earth's ancient climate and what we can learn from it.<br/><br/>Antarctica is key to an understanding how Earth?s climate system works under conditions of elevated CO2. The poles are the most sensitive regions on the planet to climate change, and the equator-to-pole temperature gradient and the degree to which high-latitude warming is amplified are important components for climate models to capture. Accurate proxy data with good age control are therefore critical for testing numerical models and establishing global patterns. The La Meseta Formation on Seymour Island is the only documented marine section from the globally warm Eocene Epoch exposed in outcrop on the continent; hence its climate record is integral to studies of warming. Early data suggest the potential for strongly seasonal precipitation and runoff in coastal settings. This collaboration among paleontologists, geochemists, and climate modelers will test this using seasonally resolved del-18O data from fossil shallow marine bivalves to track the evolution of seasonality through the section, in combination with independent proxies for the composition of summer precipitation (leaf wax del-D) and local seawater (clumped isotopes). The impact of the anticipated salinity stratification on regional climate will be evaluated in the context of numerical climate model simulations. In addition to providing greater clarity on high-latitude conditions during this time of high CO2, the combination of proxy and model results will provide insights about how Eocene warmth may have been maintained and how subsequent cooling came about. As well, a new approach to the analysis of shell carbonates for 87Sr/86Sr will allow refinements in age control so as to allow correlation of this important section with other regions to clarify global climate gradients. The project outlined here will develop new and detailed paleoclimate records from existing samples using well-tuned as well as newer proxies applied here in novel ways. Seasonal extremes are climate parameters generally inaccessible to most studies but critical to an understanding of climate change; these are possible to resolve in this well-preserved, accretionary-macrofossil-bearing section. This is an integrated study that links marine and terrestrial climate records for a key region of the planet across the most significant climate transition in the Cenozoic. | None | POINT(-56.5 -64.25) | false | false | ||||||
Paleomagnetism and Magnetostratigraphy of the James Ross Basin, Antarctica
|
1341729 |
2018-04-27 | Kirschvink, Joseph; Christensen, John |
|
Non-Technical Summary:<br/> About 80 million years ago, the tip of the Antarctic Peninsula in the vicinity of what is now James Ross Island experienced an episode of rapid subsidence, creating a broad depositional basin that collected sediments eroding from the high mountains to the West. This depression accumulated a thick sequence of fossil-rich, organic-rich sediments of the sort that are known to preserve hydrocarbons, and for which Argentina, Chile, and the United Kingdom have overlapping territorial claims. The rocks preserve one of the highest resolution records of the biological and climatic events that led to the eventual death of the dinosaurs at the Cretaceous-Tertiary boundary (about 66 million years ago). A previous collaboration between scientists from the Instituto Antártico Argentino (IAA) and NSF-supported teams from Caltech and the University of Washington were able to show that this mass extinction event started nearly 50,000 years before the sudden impact of an asteroid. The asteroid obviously hit the biosphere hard, but something else knocked it off balance well before the asteroid hit. <br/> A critical component of the previous work was the use of reversals in the polarity of the Earth?s magnetic field as a dating tool ? magnetostratigraphy. This allowed the teams to correlate the pattern of magnetic reversals from Antarctica with elsewhere on the planet. This includes data from a major volcanic eruption (a flood basalt province) that covered much of India 65 million years ago. The magnetic patterns indicate that the Antarctic extinction started with the first pulse of this massive eruption, which was also coincident with a rapid spike in polar temperature. The Argentinian and US collaborative teams will extend this magnetic polarity record back another ~ 20 million years in time, and expand it laterally to provide magnetic reversal time lines across the depositional basin. They hope to recover the end of the Cretaceous Long Normal interval, which is one of the most distinctive events in the history of Earth?s magnetic field. The new data should refine depositional models of the basin, allow better estimates of potential hydrocarbon reserves, and allow biotic events in the Southern hemisphere to be compared more precisely with those elsewhere on Earth. Other potential benefits of this work include exposing several US students and postdoctoral fellows to field based research in Antarctica, expanding the international aspects of this collaborative work via joint IAA/US field deployments, and follow-up laboratory investigations and personnel exchange of the Junior scientists.<br/><br/><br/>Technical Description of Project <br/>The proposed research will extend the stratigraphic record in the late Cretaceous and early Tertiary sediments (~ 83 to 65 Ma before present) of the James Ross Basin, Antarctica, using paleo-magnetic methods. Recent efforts provided new methods to analyze these rocks, yielding their primary magnetization, and producing both magnetic polarity patterns and paleomagnetic pole positions. This provided the first reliable age constraints for the younger sediments on Seymour Island, and quantified the sedimentation rate in this part of the basin. The new data will allow resolution of the stable, remnant magnetization of the sediments from the high deposition rate James Ross basin (Tobin et al., 2012), yielding precise chronology/stratigraphy. This approach will be extended to the re-maining portions of this sedimentary basin, and will allow quantitative estimates for tectonic and sedimentary processes between Cretaceous and Early Tertiary time. The proposed field work will refine the position of several geomagnetic reversals that occurred be-tween the end of the Cretaceous long normal period (Chron 34N, ~ 83 Ma), and the lower portion of Chron 31R (~ 71 Ma). Brandy Bay provides the best locality for calibrating the stratigraphic position of the top of the Cretaceous Long Normal Chron, C34N. Although the top of the Cretaceous long normal Chron is one of the most important correlation horizons in the entire geological timescale, it is not properly correlated to the southern hemisphere biostratigraphy. Locating this event, as well as the other reversals, will be a major addition to understanding of the geological history of the Antarctic Peninsula. These data will also help refine tectonic models for the evolution of the Southern continents, which will be of use across the board for workers in Cretaceous stratigraphy (including those involved in oil exploration).<br/>This research is a collaborative effort with Dr. Edward Olivero of the Centro Austral de Investigaciones Cientificas (CADIC/CONICET) and Prof. Augusto Rapalini of the University of Buenos Aires. The collaboration will include collection of samples on their future field excursions to important targets on and around James Ross Island, supported by the Argentinian Antarctic Program (IAA). Argentinian scientists and students will also be involved in the US Antarctic program deployments, proposed here for the R/V Laurence Gould, and will continue the pattern of joint international publication of the results. | POLYGON((-58.9 -63.5,-58.63 -63.5,-58.36 -63.5,-58.09 -63.5,-57.82 -63.5,-57.55 -63.5,-57.28 -63.5,-57.01 -63.5,-56.74 -63.5,-56.47 -63.5,-56.2 -63.5,-56.2 -63.62,-56.2 -63.74,-56.2 -63.86,-56.2 -63.98,-56.2 -64.1,-56.2 -64.22,-56.2 -64.34,-56.2 -64.46,-56.2 -64.58,-56.2 -64.7,-56.47 -64.7,-56.74 -64.7,-57.01 -64.7,-57.28 -64.7,-57.55 -64.7,-57.82 -64.7,-58.09 -64.7,-58.36 -64.7,-58.63 -64.7,-58.9 -64.7,-58.9 -64.58,-58.9 -64.46,-58.9 -64.34,-58.9 -64.22,-58.9 -64.1,-58.9 -63.98,-58.9 -63.86,-58.9 -63.74,-58.9 -63.62,-58.9 -63.5)) | POINT(-57.55 -64.1) | false | false | |||||
Collaborative Research: Late Cretaceous-Paleogene Vertebrates from Antarctica: Implications for Paleobiogeography, Paleoenvironment, and Extinction in Polar Gondwana
|
1142129 |
2017-07-12 | Lamanna, Matthew |
|
Intellectual Merit: <br/>The role that Antarctica has played in vertebrate evolution and paleobiogeography during the Late Cretaceous and early Paleogene is largely unknown. Evidence indicates that Antarctica was home to a diverse flora during the Late Cretaceous and Paleogene, yet the vertebrates that must have existed on the continent remain virtually unknown. To fill this gap, the PIs have formed the Antarctic Vertebrate Paleontology Initiative (AVPI), whose goal is to search for and collect Late Cretaceous-Paleogene vertebrate fossils in Antarctica at localities that have never been properly surveyed, as well as in areas of proven potential. Two field seasons are proposed for the James Ross Island Group on the northeastern margin of the Antarctic Peninsula. Expected finds include chondrichthyan and osteichthyan fishes, marine reptiles, ornithischian and non-avian theropod dinosaurs, ornithurine birds, and therian and non-therian mammals. Hypotheses to be tested include: 1) multiple extant bird and/or therian mammal lineages originated during the Cretaceous and survived the K-Pg boundary extinction event; 2) the "Scotia Portal" permitted the dispersal of continental vertebrates between Antarctica and South America prior to the latest Cretaceous and through to the late Paleocene or early Eocene; 3) Late Cretaceous non-avian dinosaurs from Antarctica are closely related to coeval taxa from other Gondwanan landmasses; 4) terminal Cretaceous marine reptile faunas from southern Gondwana differed from contemporaneous but more northerly assemblages; and 5) the collapse of Antarctic ichthyofaunal diversity during the K-Pg transition was triggered by a catastrophic extinction.<br/><br/>Broader impacts: <br/>The PIs will communicate discoveries to audiences through a variety of channels, such as the Dinosaurs in Their Time exhibition at Carnegie Museum of Natural History and the outreach programs of the Environmental Science Institute of the University of Texas at Austin. In addition, Carnegie Museum will launch a student-oriented programming initiative using AVPI research as a primary focus. This array of activities will help some 2,000 Pittsburgh-area undergraduates to explore the relevance of deep-time discoveries to critical modern issues. The AVPI will provide research opportunities for eight undergraduate and three graduate students, several of whom will receive field training in Antarctica. Fossils will be accessioned into the Carnegie Museum collection, and made accessible virtually through the NSF-funded Digital Morphology library at University of Texas. | POLYGON((-60 -63.5,-59.6 -63.5,-59.2 -63.5,-58.8 -63.5,-58.4 -63.5,-58 -63.5,-57.6 -63.5,-57.2 -63.5,-56.8 -63.5,-56.4 -63.5,-56 -63.5,-56 -63.7,-56 -63.9,-56 -64.1,-56 -64.3,-56 -64.5,-56 -64.7,-56 -64.9,-56 -65.1,-56 -65.3,-56 -65.5,-56.4 -65.5,-56.8 -65.5,-57.2 -65.5,-57.6 -65.5,-58 -65.5,-58.4 -65.5,-58.8 -65.5,-59.2 -65.5,-59.6 -65.5,-60 -65.5,-60 -65.3,-60 -65.1,-60 -64.9,-60 -64.7,-60 -64.5,-60 -64.3,-60 -64.1,-60 -63.9,-60 -63.7,-60 -63.5)) | POINT(-58 -64.5) | false | false | |||||
Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene
|
9908828 |
2010-05-04 | Aronson, Richard; Domack, Eugene Walter |
|
9908828<br/>Aronson<br/><br/>This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.<br/><br/>A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). <br/><br/>Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities. | POLYGON((-70.906 -52.350166,-69.4494 -52.350166,-67.9928 -52.350166,-66.5362 -52.350166,-65.0796 -52.350166,-63.623 -52.350166,-62.1664 -52.350166,-60.7098 -52.350166,-59.2532 -52.350166,-57.7966 -52.350166,-56.34 -52.350166,-56.34 -53.6028324,-56.34 -54.8554988,-56.34 -56.1081652,-56.34 -57.3608316,-56.34 -58.613498,-56.34 -59.8661644,-56.34 -61.1188308,-56.34 -62.3714972,-56.34 -63.6241636,-56.34 -64.87683,-57.7966 -64.87683,-59.2532 -64.87683,-60.7098 -64.87683,-62.1664 -64.87683,-63.623 -64.87683,-65.0796 -64.87683,-66.5362 -64.87683,-67.9928 -64.87683,-69.4494 -64.87683,-70.906 -64.87683,-70.906 -63.6241636,-70.906 -62.3714972,-70.906 -61.1188308,-70.906 -59.8661644,-70.906 -58.613498,-70.906 -57.3608316,-70.906 -56.1081652,-70.906 -54.8554988,-70.906 -53.6028324,-70.906 -52.350166)) | POINT(-63.623 -58.613498) | false | false | |||||
Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin
|
0125526 |
2010-05-04 | Anderson, John |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM.This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM. | None | None | false | false | |||||
Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin
|
0125480 |
2010-05-04 | Anderson, John |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM. | None | None | false | false | |||||
Collaborative Proposal: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin
|
0125562 |
2010-05-04 | Anderson, John |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM. | None | None | false | false | |||||
Global Climate Change and the Evolutionary Ecology of Antarctic Mollusks in the Late Eocene.
|
9908856 |
2010-05-04 | Blake, Daniel |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a paleoecological and paleoenvironmental study of Seymour Island. Global climate change late in the Eocene epoch had an important influence in Antarctica. This was the beginning of the transition from a cool-temperate climate in Antarctica to the polar climate that exists there today. The cooling trend strongly influenced the structure of shallow-water, Antarctic marine communities, and these effects are still evident in the peculiar ecological relationships among species living in modern Antarctic communities. Cooling late in the Eocene reduced the abundance of fish and crabs, which in turn reduced skeleton-crushing predation on invertebrates. Reduced predation allowed dense populations of ophiuroids (brittlestars) and crinoids (sea lilies) to appear in shallow-water settings at the end of the Eocene. These low-predation communities appear as dense fossil echinoderm assemblages in the upper portion of the late Eocene La Meseta Formation on Seymour Island, off the Antarctic Peninsula. Today, dense ophiuroid and crinoid populations are common in shallow-water habitats in Antarctica but generally have been eliminated by predators from similar habitats at temperate and tropical latitudes; their persistence in Antarctica to this day is an important ecological legacy of climatic cooling in the Eocene. Although the influence of declining predation on Antarctic ophiuroids and crinoids is now well documented, the effects of cooling on the more abundant mollusks have not been investigated. This study will examine the evolutionary ecology of gastropods (snails) and bivalves (clams) in the late Eocene.<br/><br/>A series of hypotheses will be tested in the La Meseta Formation, based on the predicted responses of mollusks to declining temperature and changing levels of predation. The shapes of gastropod shells, the activities of gastropods that prey on other mollusks by drilling holes in their shells, and the effects of predation on the thickness of mollusk shells should have changed significantly through late Eocene time. First, defensive features of gastropod shells, such as spines and ribbing, should decline as temperature and, therefore, the activity of skeleton-crushing predators declined. Second, drilling of bivalve prey by predatory gastropods should increase with time since the drillers should themselves have been subject to lower predation pressure as temperature declined. Drilled shells, therefore, should become more common through time. Third, patterns in the thickness of shells through time will make it possible to separate the direct, physiological effects of declining temperature (shells are more difficult to produce at cooler temperatures, and so should be thinner) from the indirect effects of temperature on evolving biological interactions (increased drilling predation should result in thicker shells). <br/><br/>Seymour Island contains the only fossil outcrops readily accessible in Antarctica from this crucial period in Earth history. The La Meseta Formation on Seymour Island thus provides a unique opportunity to learn how climate change affected Antarctic marine communities. In practical terms, global climate change will probably increase upwelling over the next few decades to centuries in some temperate coastal regions. Recent ecological evidence suggests that the resultant lowering of sea temperatures could lower predation in those areas. Understanding the response of the La Meseta faunas to global cooling in the late Eocene will provide direct insight into the rapidly changing structure of modern benthic communities. | None | None | false | false | |||||
Collaborative Research: SHALDRIL - A Demonstration Drilling Cruise to the James Ross Basin
|
0125922 |
2010-05-04 | Anderson, John; Wellner, Julia |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a demonstration project to prove the viability of shallow ship-based geological drilling while simultaneously collecting useful cores for assessing the early history of the Antarctic ice sheets. For over three decades, U.S. scientists and their international colleagues exploring the shallow shelves and seas along the margins of Antarctic have been consistently frustrated by their inability to penetrate through the over-compacted glacial diamictons encountered at shallow sub bottom depths (within the upper 10 m) over these terrains. This is particularly frustrating because advanced high resolution seismic reflection techniques clearly show in many areas the presence of older successions of Neogene and even Paleogene sequences lying just beneath this thin veneer of diamictons. Until the means are developed to recover these sequences, a detailed history of the Antarctic ice sheets, which is an essential prerequisite to understanding Cenozoic paleoclimate and future climate change on a global scale, will remain an elusive and unobtainable goal. After four years of study and evaluation with the aid of a professional engineer (and over the course of two workshops), the SHALDRIL Committee, an interested group of U.S. scientists, has identified at least two diamond-coring systems deemed suitable for use on existing ice-breaking U.S. Antarctic Research Program vessels. The goal of this project is to employ diamond-coring technology on the RV/IB Nathaniel B. Palmer in order to test out and demonstrate the feasibility of both ship-based diamond coring and down-hole logging. For this "demonstration cruise" coring will be attempted along a high-resolution seismic reflection profile on the continental shelf adjacent to Seymour Island, Antarctic Peninsula, an area of high scientific interest in its own right. Here the well-defined geologic section is estimated to range from Eocene to Quaternary in age, effectively spanning the "Greenhouse-Icehouse" transition in the evolution of Antarctic/global climate. A complete record of this transition has yet to be obtained anywhere along the Antarctic margin. Following core recovery, this project will result in correlation of the paleoclimate records from the new cores with detailed fluctuations of the ice margin recorded at higher latitudes in the eastern Ross Sea by the recently concluded, fast-ice-based Cape Roberts Project. If successful, this mobile and flexible drilling system will then be available to the broader scientific community for further research in paleoenvironmental conditions and other areas of science that are currently hindered by the present gap that exists in the US Antarctic Program's technical capability to explore the Antarctic shelves between the shore-line/fast-ice margin and the continental slope. SHALDRIL will be able to operate effectively in the "no man's land" that presently exists between the near shore (where the fast-ice-based Cape Roberts Project was successful) and the upper slope (where the Ocean Drilling Program's vessel JOIDES Resolution becomes most efficient). This technological breakthrough will not only allow major outstanding scientific problems of the last three decades to be addressed, but will also favorably impact many current U.S. and SCAR (ICSU Scientific Committee on Antarctic Research) Antarctic or drilling-related initiatives, such as WAIS, ANTIME, ANDRILL, ANTEC, IMAGES, PAGES, GLOCHANT (including PICE), MARGINS, ODP, and STRATAFORM. | POLYGON((-69.84264 -52.35215,-68.086508 -52.35215,-66.330376 -52.35215,-64.574244 -52.35215,-62.818112 -52.35215,-61.06198 -52.35215,-59.305848 -52.35215,-57.549716 -52.35215,-55.793584 -52.35215,-54.037452 -52.35215,-52.28132 -52.35215,-52.28132 -53.546701,-52.28132 -54.741252,-52.28132 -55.935803,-52.28132 -57.130354,-52.28132 -58.324905,-52.28132 -59.519456,-52.28132 -60.714007,-52.28132 -61.908558,-52.28132 -63.103109,-52.28132 -64.29766,-54.037452 -64.29766,-55.793584 -64.29766,-57.549716 -64.29766,-59.305848 -64.29766,-61.06198 -64.29766,-62.818112 -64.29766,-64.574244 -64.29766,-66.330376 -64.29766,-68.086508 -64.29766,-69.84264 -64.29766,-69.84264 -63.103109,-69.84264 -61.908558,-69.84264 -60.714007,-69.84264 -59.519456,-69.84264 -58.324905,-69.84264 -57.130354,-69.84264 -55.935803,-69.84264 -54.741252,-69.84264 -53.546701,-69.84264 -52.35215)) | POINT(-61.06198 -58.324905) | false | false | |||||
Evolution of Sea Surface Temperatures in the Coastal Antarctic Paleoenvironment During the Late Cretaceous and Paleogene
|
9980538 |
2001-06-11 | Lohmann, Kyger; Barrera, Enriqueta |
|
This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports research for construction of a long-term record of climate during the late Cretaceous and early Paleogene to assess the annual seasonality in temperature on the coastal margin of Antarctica. Stable isotope and element compositions of well-preserved bivalve shells collected on Seymour Island will be the primary source of data used to reconstruct paleoenvironmental conditions. Seasonal temperature records collected through high-resolution sampling along growth structures in bivalve shells will allow seasonality to be assessed during different climate states and during periods of rapid climate change. In addition, high stratigraphic resolution will enable this project to detect the presence and frequency of short-lived thermal excursions that may have extended to such high latitudes.<br/><br/>To compile a reliable temporal record of paleoclimate, two major avenues of investigation will be undertaken: 1) precise stratigraphic (and therefore, temporal) placement of fossils over a large geographic area will be employed through the use of a graphical technique employing geometric projections; 2) stable isotope and elemental analyses will be performed to derive paleotemperatures and to evaluate diagenetic alteration of shell materials. To provide realistic comparisons of paleotemperatures across stratigraphic horizons, this study will focus on a single taxon, thus avoiding complications due to the mixing of faunal assemblages that have been encountered in previous studies of this region.<br/><br/>The near-shore marine fossil record on Seymour Island provides a unique opportunity to address many questions about the Antarctic paleoenvironment, including the relation between seasonality and different climate states, the influence of climate on biogeographic distribution of specific taxa, the effect of ice-volume changes on the stable isotope record from the late Cretaceous through the Eocene, and the plausibility of high-latitude bottom water formation during this time interval. In particular, information that will be collected concerning patterns of seasonality and the presence (or absence) of short-lived thermal excursions will be extremely valuable to an understanding of the response of high latitude sites during climate transitions from globally cool to globally warm conditions. | POINT(-56 -64) | POINT(-56 -64) | false | false |