{"dp_type": "Project", "free_text": "Ross Sea Embayment"}
[{"awards": "1443356 Conway, Howard; 1443552 Paul Winberry, J.", "bounds_geometry": "POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7))", "dataset_titles": "2015_Antarctica_Ground; Geophysical data from Crary Ice Rise, Ross Sea Embayment", "datasets": [{"dataset_uid": "200177", "doi": "", "keywords": null, "people": null, "repository": "CReSIS/ku.edu", "science_program": null, "title": "2015_Antarctica_Ground", "url": "https://data.cresis.ku.edu/data/accum/2015_Antarctica_Ground/"}, {"dataset_uid": "601181", "doi": "10.15784/601181", "keywords": "Antarctica; Bed Elevation; Crary Ice Rise; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Ice Sheet Elevation; Ice Shelf; Ice Thickness; Internal Stratigraphy; Radar; Ross Ice Shelf; Snow/ice; Snow/Ice; Surface Elevation", "people": "Winberry, Paul; Conway, Howard; Paden, John; Koutnik, Michelle", "repository": "USAP-DC", "science_program": null, "title": "Geophysical data from Crary Ice Rise, Ross Sea Embayment", "url": "https://www.usap-dc.org/view/dataset/601181"}], "date_created": "Mon, 06 May 2019 00:00:00 GMT", "description": "Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities.\u003cbr/\u003e\u003cbr/\u003eNew tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change?", "east": -164.0, "geometry": "POINT(-169.5 -83.05)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS", "is_usap_dc": true, "keywords": "Amd/Us; FIELD SURVEYS; Antarctica; USA/NSF; AMD; USAP-DC; Radar; GLACIERS/ICE SHEETS", "locations": "Antarctica", "north": -82.7, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Koutnik, Michelle; Winberry, Paul", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "CReSIS/ku.edu", "repositories": "CReSIS/ku.edu; USAP-DC", "science_programs": null, "south": -83.4, "title": "Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited", "uid": "p0010026", "west": -175.0}, {"awards": "1141916 Aster, Richard", "bounds_geometry": null, "dataset_titles": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "datasets": [{"dataset_uid": "002573", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Dynamic Response of the Ross Ice Shelf to Ocean Waves and Structure and Dynamics of the Ross Sea", "url": "http://www.iris.washington.edu/mda/XH?timewindow=2014-2017"}], "date_created": "Mon, 22 Oct 2018 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003e\u003cbr/\u003eThe PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region.\u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003e\u003cbr/\u003eData from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Earth Sciences", "paleo_time": null, "persons": "Aster, Richard", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "IRIS", "repositories": "IRIS", "science_programs": null, "south": null, "title": "Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf", "uid": "p0000761", "west": null}, {"awards": "1141866 Conway, Howard; 1141889 Winberry, J. Paul", "bounds_geometry": null, "dataset_titles": "Beardmore Glacier High-Frequency Impulse Radar Data; Geophysical measurements Beardmore Glacier, Antarctica; Project code ZF for passive seismic and 17-030 for active source", "datasets": [{"dataset_uid": "601713", "doi": "10.15784/601713", "keywords": "Antarctica; Beardmore Glacier; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Ice Penetrating Radar; Snow/ice; Snow/Ice", "people": "Hoffman, Andrew; Christianson, Knut; Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Beardmore Glacier High-Frequency Impulse Radar Data", "url": "https://www.usap-dc.org/view/dataset/601713"}, {"dataset_uid": "000210", "doi": "", "keywords": null, "people": null, "repository": "IRIS", "science_program": null, "title": "Project code ZF for passive seismic and 17-030 for active source", "url": "https://ds.iris.edu/mda/17-030"}, {"dataset_uid": "601121", "doi": "10.15784/601121", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Thickness; Radar", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Geophysical measurements Beardmore Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601121"}], "date_created": "Sun, 09 Sep 2018 00:00:00 GMT", "description": "Conway/1141866\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to conduct a suite of experiments to study spatial and temporal variations of basal conditions beneath Beardmore Glacier, an East Antarctic outlet glacier that discharges into the Ross Sea Embayment. The intellectual merit of the project is that it should help verify whether or not global warming will play a much larger role in the future mass balance of ice sheets than previously considered. Recent observations of rapid changes in discharge of fast-flowing outlet glaciers and ice streams suggest that dynamical responses to warming could affect that ice sheets of Greenland and Antarctica. Assessment of possible consequences of these responses is hampered by the lack of information about the basal boundary conditions. The leading hypothesis is that variations in basal conditions exert strong control on the discharge of outlet glaciers. Airborne and surface-based radar measurements of Beardmore Glacier will be made to map the ice thickness and geometry of the sub-glacial trough and active and passive seismic experiments, together with ground-based radar and GPS measurements will be made to map spatial and temporal variations of conditions at the ice-bed interface. The observational data will be used to constrain dynamic models of glacier flow. The models will be used to address the primary controls on the dynamics of Antarctic outlet glaciers, the conditions at the bed, their spatial and temporal variation, and how such variability might affect the sliding and flow of these glaciers. The work will also explore whether or not these outlet glaciers could draw down the interior of East Antarctica, and if so, how fast. The study will take three years including two field seasons to complete and results from the work will be disseminated through public and professional meetings and journal publications. All data and metadata will be made available through the NSIDC web portal. The broader impacts of the work are that it will help elucidate the fundamental physics of outlet glacier dynamics which is needed to improve predictions of the response of ice sheets to changing environmental conditions. The project will also provide support for early career investigators and will provide training and support for one graduate and two undergraduate students. All collaborators are currently involved in scientific outreach and graduate student education and they are committed to fostering diversity.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC; Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Winberry, Paul", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "IRIS; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: East Antarctic Outlet Glacier Dynamics", "uid": "p0000437", "west": null}, {"awards": "0944307 Conway, Howard; 0943466 Hawley, Robert; 0944021 Brook, Edward J.", "bounds_geometry": "POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79))", "dataset_titles": "Roosevelt Island Borehole Firn temperatures; Roosevelt Island Borehole Optical Televiewer logs; Roosevelt Island Ice Core Time Scale and Associated Data; Roosevelt Island: Radar and GPS", "datasets": [{"dataset_uid": "601070", "doi": "10.15784/601070", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; GPS Data; Ice Velocity; Navigation; Radar; Roosevelt Island; Ross Sea", "people": "Conway, Howard", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island: Radar and GPS", "url": "https://www.usap-dc.org/view/dataset/601070"}, {"dataset_uid": "601085", "doi": "10.15784/601085", "keywords": "Antarctica; Borehole; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Records; Ice Fabric; Optical Images; Roosevelt Island; Snow/ice; Snow/Ice; Temperature", "people": "Giese, Alexandra; Hawley, Robert L.; Clemens-Sewall, David", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Firn temperatures", "url": "https://www.usap-dc.org/view/dataset/601085"}, {"dataset_uid": "601086", "doi": "10.15784/601086", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Roosevelt Island; Snow/ice; Snow/Ice", "people": "Hawley, Robert L.; Clemens-Sewall, David", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Borehole Optical Televiewer logs", "url": "https://www.usap-dc.org/view/dataset/601086"}, {"dataset_uid": "601359", "doi": "10.15784/601359", "keywords": "Antarctica; CO2; Ice Core; Roosevelt Island", "people": "Brook, Edward J.; Lee, James", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Ice Core Time Scale and Associated Data", "url": "https://www.usap-dc.org/view/dataset/601359"}], "date_created": "Fri, 16 Feb 2018 00:00:00 GMT", "description": "This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock \"dipsticks\" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices.", "east": -161.0, "geometry": "POINT(-162 -79.25)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "AMD; FIELD INVESTIGATION; Amd/Us; Deglaciation; USAP-DC; USA/NSF; NOT APPLICABLE; Ice Core; Not provided; Ross Sea Embayment", "locations": "Ross Sea Embayment", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Glaciology; Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Conway, Howard; Brook, Edward J.; Hawley, Robert L.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.5, "title": "Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island", "uid": "p0000272", "west": -163.0}, {"awards": "1042883 Mayewski, Paul", "bounds_geometry": null, "dataset_titles": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives; Roosevelt Island Climate Evolution Ice Core ICP-MS data", "datasets": [{"dataset_uid": "609621", "doi": "10.7265/N52J68SQ", "keywords": "Antarctica; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Roosevelt Island; Ross Ice Shelf", "people": "Mayewski, Paul A.; Beers, Thomas M.; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": null, "title": "Roosevelt Island Climate Evolution Ice Core ICP-MS data", "url": "https://www.usap-dc.org/view/dataset/609621"}, {"dataset_uid": "609636", "doi": "10.7265/N5WS8R6H", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; ICP-MS; Paleoclimate; Siple Dome; Siple Dome Ice Core", "people": "Mayewski, Paul A.; Haines, Skylar; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "LA-ICP-MS Results: 3 Siple Dome A Glacial Age Archives", "url": "https://www.usap-dc.org/view/dataset/609636"}], "date_created": "Tue, 27 Oct 2015 00:00:00 GMT", "description": "1042883/Mayewski\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e LA-ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS", "is_usap_dc": true, "keywords": "LABORATORY", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M.", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)", "uid": "p0000193", "west": null}, {"awards": "0229314 Stone, John", "bounds_geometry": null, "dataset_titles": "Reedy Glacier Exposure Ages, Antarctica", "datasets": [{"dataset_uid": "609601", "doi": "10.7265/N5MG7MF1", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Cosmogenic; Geochemistry; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Reedy Glacier; Sample/collection Description; Sample/Collection Description", "people": "Stone, John", "repository": "USAP-DC", "science_program": null, "title": "Reedy Glacier Exposure Ages, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609601"}], "date_created": "Mon, 30 Mar 2015 00:00:00 GMT", "description": "The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "Surface Exposure Dates; FIELD SURVEYS; Aluminum-26; Erosion; Rock Samples; Beryllium-10; Exposure Age", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Stone, John", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Late Quaternary History of Reedy Glacier", "uid": "p0000029", "west": null}, {"awards": "0087345 Conway, Howard", "bounds_geometry": "POINT(112 79)", "dataset_titles": null, "datasets": null, "date_created": "Fri, 15 Aug 2014 00:00:00 GMT", "description": "This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica.", "east": -112.0, "geometry": "POINT(-112 -79)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR", "is_usap_dc": false, "keywords": "FIELD SURVEYS; Internal Layering; Radar; Accumulation Rate; FIELD INVESTIGATION; LABORATORY; Not provided; Internal Layers; Antarctica; Ice Flow; Interferometry; Ice Thickness", "locations": "Antarctica", "north": -79.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Conway, Howard; Waddington, Edwin D.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": -79.0, "title": "Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection", "uid": "p0000557", "west": -112.0}, {"awards": "9815283 Cande, Steven; 9814579 Stock, Joann", "bounds_geometry": "POLYGON((-57.56218 -33.87102,-49.979095 -33.87102,-42.39601 -33.87102,-34.812925 -33.87102,-27.22984 -33.87102,-19.646755 -33.87102,-12.06367 -33.87102,-4.480585 -33.87102,3.1025 -33.87102,10.685585 -33.87102,18.26867 -33.87102,18.26867 -35.4505,18.26867 -37.02998,18.26867 -38.60946,18.26867 -40.18894,18.26867 -41.76842,18.26867 -43.3479,18.26867 -44.92738,18.26867 -46.50686,18.26867 -48.08634,18.26867 -49.66582,10.685585 -49.66582,3.1025 -49.66582,-4.480585 -49.66582,-12.06367 -49.66582,-19.646755 -49.66582,-27.22984 -49.66582,-34.812925 -49.66582,-42.39601 -49.66582,-49.979095 -49.66582,-57.56218 -49.66582,-57.56218 -48.08634,-57.56218 -46.50686,-57.56218 -44.92738,-57.56218 -43.3479,-57.56218 -41.76842,-57.56218 -40.18894,-57.56218 -38.60946,-57.56218 -37.02998,-57.56218 -35.4505,-57.56218 -33.87102))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "001873", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0102"}, {"dataset_uid": "001699", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304"}, {"dataset_uid": "001746", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0207"}, {"dataset_uid": "002042", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9908"}, {"dataset_uid": "001963", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0007B"}, {"dataset_uid": "001742", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0209"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. \u003cbr/\u003e\u003cbr/\u003eThe work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following:\u003cbr/\u003e\u003cbr/\u003e1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion,\u003cbr/\u003e2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions,\u003cbr/\u003e3) address the implications of new rotation models for the question of the fixity of global hotspots,\u003cbr/\u003e4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension.", "east": 18.26867, "geometry": "POINT(-19.646755 -41.76842)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -33.87102, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven; Stock, Joann", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -49.66582, "title": "Collaborative Research: Late Cretaceous and Cenozoic Reconstructions of the Southwest Pacific", "uid": "p0000590", "west": -57.56218}, {"awards": "9416989 Cande, Steven", "bounds_geometry": "POLYGON((-179.9998 -46.00095,-143.99984 -46.00095,-107.99988 -46.00095,-71.99992 -46.00095,-35.99996 -46.00095,0 -46.00095,35.99996 -46.00095,71.99992 -46.00095,107.99988 -46.00095,143.99984 -46.00095,179.9998 -46.00095,179.9998 -49.185793,179.9998 -52.370636,179.9998 -55.555479,179.9998 -58.740322,179.9998 -61.925165,179.9998 -65.110008,179.9998 -68.294851,179.9998 -71.479694,179.9998 -74.664537,179.9998 -77.84938,143.99984 -77.84938,107.99988 -77.84938,71.99992 -77.84938,35.99996 -77.84938,0 -77.84938,-35.99996 -77.84938,-71.99992 -77.84938,-107.99988 -77.84938,-143.99984 -77.84938,-179.9998 -77.84938,-179.9998 -74.664537,-179.9998 -71.479694,-179.9998 -68.294851,-179.9998 -65.110008,-179.9998 -61.925165,-179.9998 -58.740322,-179.9998 -55.555479,-179.9998 -52.370636,-179.9998 -49.185793,-179.9998 -46.00095))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002148", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9702"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. ***", "east": 179.9998, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -46.00095, "nsf_funding_programs": null, "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.84938, "title": "Collaborative Research: Early Tertiary Tectonic Evolution of the Pacific-Australia-Antarctic Plate Circuit", "uid": "p0000632", "west": -179.9998}, {"awards": "0440959 Cande, Steven", "bounds_geometry": null, "dataset_titles": "Expedition data of NBP0701", "datasets": [{"dataset_uid": "002644", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of NBP0701", "url": "https://www.rvdata.us/search/cruise/NBP0701"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Cande, Steven", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": null, "title": "Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment", "uid": "p0000835", "west": null}, {"awards": "0837988 Steig, Eric", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "West Antarctica Ice Core and Climate Model Data", "datasets": [{"dataset_uid": "609536", "doi": "10.7265/N5QJ7F8B", "keywords": "Antarctica; Chemistry:fluid; Chemistry:Fluid; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; WAIS Divide", "people": "Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "West Antarctica Ice Core and Climate Model Data", "url": "https://www.usap-dc.org/view/dataset/609536"}], "date_created": "Fri, 30 Apr 2010 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). \u003cbr/\u003e\u003cbr/\u003eThis award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using \u003e60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Deuterium Isotopes; Deuterium Excess; Not provided; GROUND-BASED OBSERVATIONS; Wais Divide-project", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)", "uid": "p0000180", "west": -180.0}, {"awards": "9814816 Blankenship, Donald", "bounds_geometry": "POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Feb 2007 00:00:00 GMT", "description": "9814816\u003cbr/\u003eBlankenship\u003cbr/\u003e\u003cbr/\u003eThis award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the \"onset-region\". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the \"purely-glaciologic\" to the \"purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C \u0026 D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community.", "east": -123.0, "geometry": "POINT(-126 -80.75)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": -80.5, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Blankenship, Donald D.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -81.0, "title": "Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program", "uid": "p0000603", "west": -129.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Grounding Line Dynamics: Crary Ice Rise Revisited
|
1443356 1443552 |
2019-05-06 | Conway, Howard; Koutnik, Michelle; Winberry, Paul |
|
Recent observations and model results suggest that collapse of the Amundsen Sea sector of West Antarctica may already be underway. However, the timeline of collapse and the effects of ongoing climatic and oceanographic changes are key unanswered questions. Complete disintegration of the ice sheet would raise global sea level by more than 3 m, which would have significant societal impacts. Improved understanding of the controls on ice-sheet evolution is needed to make better predictions of ice-sheet behavior. Results from numerical models show that buttressing from surrounding ice shelves and/or from small-scale grounded ice rises should act to slow the retreat and discharge of ice from the interior ice sheet. However, there are very few field observations with which to develop and validate models. Field observations conducted in the early 1980s on Crary Ice Rise in the Ross Sea Embayment are a notable exception. This project will revisit Crary Ice Rise with new tools to make a suite of measurements designed to address questions about how the ice rise affects ice discharge from the Ross Sea sector of West Antarctica. The team will include a graduate and undergraduate student, and will participate in a range of outreach activities.<br/><br/>New tools including radar, seismic, and GPS instruments will be used to conduct targeted geophysical measurements both on Crary Ice Rise and across its grounding line. The project will use these new measurements, together with available ancillary data to inform a numerical model of grounding line dynamics. The model and measurements will be used to address the (1) How has the ice rise evolved over timescales ranging from: the past few decades; the past millennia after freeze-on; and through the deglaciation? (2) What history of ice dynamics is preserved in the radar-detected internal stratigraphy? (3) What dynamical effect does the presence/absence of the ice rise have on discharge of the Ross Ice Streams today? (4) How is it contributing to the slow-down of the proximal Whillans and Mercer ice streams? (5) What dynamical response will the ice rise have under future environmental change? | POLYGON((-175 -82.7,-173.9 -82.7,-172.8 -82.7,-171.7 -82.7,-170.6 -82.7,-169.5 -82.7,-168.4 -82.7,-167.3 -82.7,-166.2 -82.7,-165.1 -82.7,-164 -82.7,-164 -82.77,-164 -82.84,-164 -82.91,-164 -82.98,-164 -83.05,-164 -83.12,-164 -83.19,-164 -83.26,-164 -83.33,-164 -83.4,-165.1 -83.4,-166.2 -83.4,-167.3 -83.4,-168.4 -83.4,-169.5 -83.4,-170.6 -83.4,-171.7 -83.4,-172.8 -83.4,-173.9 -83.4,-175 -83.4,-175 -83.33,-175 -83.26,-175 -83.19,-175 -83.12,-175 -83.05,-175 -82.98,-175 -82.91,-175 -82.84,-175 -82.77,-175 -82.7)) | POINT(-169.5 -83.05) | false | false | |||||||||||||
Collaborative Research: Mantle Structure and Dynamics of the Ross Sea from a Passive Seismic Deployment on the Ross Ice Shelf
|
1141916 |
2018-10-22 | Aster, Richard |
|
Intellectual Merit: <br/><br/>The PIs propose to establish an ice shelf network of 18 broadband seismographs deployed for two years to obtain high-resolution, mantle-scale images of Earth structure underlying the Ross Sea Embayment. Prior marine geophysical work provides good crustal velocity models for the region seaward of the ice shelf but mantle structure is constrained by only low-resolution images due to the lack of prior seismic deployments. The proposed stations would be established between Ross Island and Marie Byrd Land. These stations would fill a major geological gap within this extensional continental province and would link data sets collected in the Transantarctic Mountain transition/Plateau region (TAMSEIS) and in West Antarctica (POLENET) to improve resolution of mantle features beneath Antarctica. The proposed deployment would allow the PIs to collect seismic data without the expense, logistical complexity, and iceberg hazards associated with ocean bottom seismograph deployments. Tomographic models developed from the proposed data will be used to choose between competing models for the dynamics of the Ross Sea. In particular, the PIs will investigate whether a broad region of hot mantle, including the Eastern Ross Sea, indicates distributed recent tectonic activity, which would call into question models proposing that Eastern Ross extension ceased during the Mesozoic. These data will also allow the PIs to investigate the deeper earth structure to evaluate the possible role of mantle plumes and/or small-scale convection in driving regional volcanism and tectonism across the region.<br/><br/>Broader impacts: <br/><br/>Data from this deployment will be of broad interdisciplinary use. This project will support three graduate and two undergraduate students. At least one student will be an underrepresented minority student. The PIs will interact with the media and include K-12 educators in their fieldwork. | None | None | false | false | |||||||||||||
Collaborative Research: East Antarctic Outlet Glacier Dynamics
|
1141866 1141889 |
2018-09-09 | Conway, Howard; Winberry, Paul |
|
Conway/1141866<br/><br/>This award supports a project to conduct a suite of experiments to study spatial and temporal variations of basal conditions beneath Beardmore Glacier, an East Antarctic outlet glacier that discharges into the Ross Sea Embayment. The intellectual merit of the project is that it should help verify whether or not global warming will play a much larger role in the future mass balance of ice sheets than previously considered. Recent observations of rapid changes in discharge of fast-flowing outlet glaciers and ice streams suggest that dynamical responses to warming could affect that ice sheets of Greenland and Antarctica. Assessment of possible consequences of these responses is hampered by the lack of information about the basal boundary conditions. The leading hypothesis is that variations in basal conditions exert strong control on the discharge of outlet glaciers. Airborne and surface-based radar measurements of Beardmore Glacier will be made to map the ice thickness and geometry of the sub-glacial trough and active and passive seismic experiments, together with ground-based radar and GPS measurements will be made to map spatial and temporal variations of conditions at the ice-bed interface. The observational data will be used to constrain dynamic models of glacier flow. The models will be used to address the primary controls on the dynamics of Antarctic outlet glaciers, the conditions at the bed, their spatial and temporal variation, and how such variability might affect the sliding and flow of these glaciers. The work will also explore whether or not these outlet glaciers could draw down the interior of East Antarctica, and if so, how fast. The study will take three years including two field seasons to complete and results from the work will be disseminated through public and professional meetings and journal publications. All data and metadata will be made available through the NSIDC web portal. The broader impacts of the work are that it will help elucidate the fundamental physics of outlet glacier dynamics which is needed to improve predictions of the response of ice sheets to changing environmental conditions. The project will also provide support for early career investigators and will provide training and support for one graduate and two undergraduate students. All collaborators are currently involved in scientific outreach and graduate student education and they are committed to fostering diversity. | None | None | false | false | |||||||||||||
Collaborative Research: Deglaciation of the Ross Sea Embayment - constraints from Roosevelt Island
|
0944307 0943466 0944021 |
2018-02-16 | Conway, Howard; Brook, Edward J.; Hawley, Robert L. | This award supports a project to use the Roosevelt Island ice core as a glaciological dipstick for the eastern Ross Sea. Recent attention has focused on the eastern Ross Embayment, where there are no geological constraints on ice thickness changes, due to the lack of protruding rock "dipsticks" where the ice sheet can leave datable records of high stands. Recent work has shown how dated ice cores can be used as dipsticks to derive ice-thickness histories. Partners from New Zealand and Denmark will extract an ice core from Roosevelt Island during the 2010-2011 and 2011-12 austral summers. Their science objective is to contribute to understanding of climate variability over the past 40kyr. The science goal of this project is not the climate record, but rather the history of deglaciation in the Ross Sea. The new history from the eastern Ross Sea will be combined with the glacial histories from the central Ross Sea (Siple Dome and Byrd) and existing and emerging histories from geologic and marine records along the western Ross Sea margin and will allow investigators to establish an updated, self-consistent model of the configuration and thickness of ice in the Ross Embayment during the LGM, and the timing of deglaciation. Results from this work will provide ground truth for new-generation ice-sheet models that incorporate ice streams and fast-flow dynamics. Realistic ice-sheet models are needed not only for predicting the response to future possible environments, but also for investigating past behaviors of ice sheets. This research contributes to the primary goals of the West Antarctic Ice Sheet Initiative as well as the IPY focus on ice-sheet history and dynamics. It also contributes to understanding spatial and temporal patterns of climate change and climate dynamics over the past 40kyr, one of the primary goals of the International Partnerships in Ice Core Sciences (IPICS). The project will help to develop the next generation of scientists and will contribute to the education and training of two Ph.D. students. All participants will benefit from the international collaboration, which will expose them to different field and laboratory techniques and benefit future collaborative work. All participants are involved in scientific outreach and undergraduate education, and are committed to fostering diversity. Outreach will be accomplished through regularly scheduled community and K-12 outreach events, talks and popular writing by the PIs, as well as through University press offices. | POLYGON((-163 -79,-162.8 -79,-162.6 -79,-162.4 -79,-162.2 -79,-162 -79,-161.8 -79,-161.6 -79,-161.4 -79,-161.2 -79,-161 -79,-161 -79.05,-161 -79.1,-161 -79.15,-161 -79.2,-161 -79.25,-161 -79.3,-161 -79.35,-161 -79.4,-161 -79.45,-161 -79.5,-161.2 -79.5,-161.4 -79.5,-161.6 -79.5,-161.8 -79.5,-162 -79.5,-162.2 -79.5,-162.4 -79.5,-162.6 -79.5,-162.8 -79.5,-163 -79.5,-163 -79.45,-163 -79.4,-163 -79.35,-163 -79.3,-163 -79.25,-163 -79.2,-163 -79.15,-163 -79.1,-163 -79.05,-163 -79)) | POINT(-162 -79.25) | false | false | ||||||||||||||
Roosevelt Island Climate Evolution Project (RICE): US Deep Ice Core Glaciochemistry Contribution (2011- 2014)
|
1042883 |
2015-10-27 | Haines, Skylar; Kurbatov, Andrei V.; Mayewski, Paul A.; Beers, Thomas M. |
|
1042883/Mayewski<br/><br/>This award supports a project to analyze a deep ice core which will be drilled by a New Zealand research team at Roosevelt Island. The objectives are to process the ice core at very high resolution to (a) better understand phasing sequences in Arctic/Antarctic abrupt climate change, even at the level of individual storm events; (b) determine the impact of changes in the Westerlies and the Amundsen Sea Low on past/present/future climate change; (c) determine how sea ice extent has varied in the area; (d) compare the response of West Antarctica climate to other regions during glacial/interglacial cycles; and (e) determine how climate of the Ross Sea Embayment changed during the transition from Ross Ice Sheet to Ross Ice Shelf. The intellectual merit of the RICE deep ice core project is that it is expected to provide a 30kyr long (and possibly 150kyr long) extremely high-resolution view of climate change in the Ross Sea Embayment Region and data essential to test and understand critical questions that have emerged as a consequence of the recent synthesis of Antarctic and Southern Ocean climate change presented in the Scientific Commission for Antarctic Research document: Antarctic Climate Change and the Environment (ACCE, 2009). Ice core processing and analysis will be performed jointly by University of Maine and the collaborators from New Zealand. Co-registered sampling for all chemical analyses will be accomplished by a joint laboratory effort at the IGNS NZ ice core facility using a continuous melter system developed by the University of Maine. The RICE deep ice core record will provide information necessary in unraveling the significance of multi-millennial underpinning for climate change and in the understanding of observed and projected climate change in light of current dramatic human impact on Antarctica and the Southern Ocean. The broader impacts of the project include the fact that two CCI graduate students will be funded through the project, and will be involved in all aspects of field research, core sampling, sample processing, analytical and numerical analyses, data interpretation, writing of manuscripts, and presentation of results at national and international conferences. Data and ideas developed in this project and associated work will be used in several courses taught at the University of Maine. Innovative cyberinfrastructure will be incorporated into this work and ground breaking analytical technologies, and data access/storage tools will be used. | None | None | false | false | |||||||||||||
Collaborative Research: Late Quaternary History of Reedy Glacier
|
0229314 |
2015-03-30 | Stone, John |
|
The stability of the marine West Antarctic Ice Sheet (WAIS) remains an important, unresolved problem for predicting future sea level change. Recent studies indicate that the mass balance of the ice sheet today may be negative or positive. The apparent differences may stem in part from short-term fluctuations in flow. By comparison, geologic observations provide evidence of behavior over much longer time scales. Recent work involving glacial-geologic mapping, dating and ice-penetrating radar surveys suggests that deglaciation of both the Ross Sea Embayment and coastal Marie Byrd Land continued into the late Holocene, and leaves open the possibility of ongoing deglaciation and grounding-line retreat. However, previous work in the Ross Sea Embayment was based on data from just three locations that are all far to the north of the present grounding line. Additional data from farther south in the Ross Sea Embayment are needed to investigate whether recession has ended, or if the rate and pattern of deglaciation inferred from our previous study still apply to the present grounding line. This award provides support to reconstruct the evolution of Reedy Glacier, in the southern Transantarctic Mountains, since the Last Glacial Maximum (LGM). Because Reedy Glacier emerges from the mountains above the grounding line, its surface slope and elevation should record changes in thickness of grounded ice in the Ross Sea up to the present day. The deglaciation chronology of Reedy Glacier therefore can indicate whether Holocene retreat of the WAIS ended thousands of years ago, or is still continuing at present. This integrated glaciologic, glacial-geologic, and cosmogenic-isotope exposure- dating project will reconstruct past levels of Reedy Glacier. Over two field seasons, moraines will be mapped, dated and correlated at sites along the length of the glacier. Radar and GPS measurements will be made to supplement existing ice thickness and velocity data, which are needed as input for a model of glacier dynamics. The model will be used to relate geologic measurements to the grounding-line position downstream. Ultimately, the mapping, dating and ice-modeling components of the study will be integrated into a reconstruction that defines changes in ice thickness in the southern Ross Sea since the LGM, and relates these changes to the history of grounding-line retreat. This work directly addresses key goals of the West Antarctic Ice Sheet Initiative, which are to understand the dynamics, recent history and possible future behavior of the West Antarctic Ice Sheet. | None | None | false | false | |||||||||||||
Collaborative Research: Western Divide West Antarctic Ice Cores (WAISCORES) Site Selection
|
0087345 |
2014-08-15 | Conway, Howard; Waddington, Edwin D. | No dataset link provided | This award supports a program of ground-based geophysical measurements to map in detail the spatial variations of ice flow, accumulation rate, internal layering and ice thickness at the sites which have been identified as promising locations to drill the next deep ice core in West Antarctica. The main investigative tools are a high- and low-frequency ice penetrating radar to image the topography of internal layers and the bed, repeat GPS surveys to calculate the present day surface velocity field, synthetic aperture radar (SAR) interferometry to calculate the regional velocity field, and short firn cores to calculate present day accumulation rates. The data which will be collected will be used to as input to time-dependent ice flow and temperature models that will predict depth variation of age, layer thickness, and temperature. As well as yielding an estimate of expected conditions before drilling, the mismatch between the model prediction and data eventually recovered from the core will help infer thinning and climate (accumulation and temperature) histories for the region. The Western Divide, between the Ross Sea Embayment and the Amundsen Sea, has been identified as the region which best satisfies the criteria which have been established for a deep drilling site. Preliminary site selection using airborne geophysical methods has identified several potential drill sites on the Western Divide where the climate record should be best preserved. This work will contribute in a major way to the final site selection for the next deep ice core in West Antarctica. | POINT(112 79) | POINT(-112 -79) | false | false | |||||||||||||
Collaborative Research: Late Cretaceous and Cenozoic Reconstructions of the Southwest Pacific
|
9815283 9814579 |
2010-05-04 | Cande, Steven; Stock, Joann |
|
This award, provided jointly by the Antarctic Geology and Geophysics Program of the Office of Polar Programs and the Marine Geology and Geophysics Program of the Division of Ocean Sciences, supports research to develop improved plate rotation models for the Southwest Pacific region (between the Pacific, Antarctic, and Australian plates, and the continental fragments of New Zealand, West Antarctica, Iselin Bank, East Antarctica, and Australia). The improved rotation parameters will be used to address tectonic problems related to motion between East and West Antarctica, and in particular, the questions of relative drift between major hotspot groups and the controversy regarding a possible missing plate boundary in this region. Previous work has documented NNW-striking mid-Tertiary seafloor spreading magnetic anomalies between East and West Antarctica, representing about 150 km of opening of the Adare Trough, north of the Ross Sea. This is not enough motion to resolve the apparent discrepancy between the plate motions and motions inferred from assuming hotspot fixity. Because this motion between East and West Antarctica corresponds to a very small rotation, it points to the need for determination of finite rotations describing motions of the various plates here with a high degree of accuracy, particularly for older times. This is now possible with the datasets that will be used in this project. <br/><br/>The work will be accomplished by integrating existing data with analysis and interpretation of other data sets recently made available by Japanese and Italian scientists from their cruises in the region. It will be further augmented by acquisition of new marine geophysical data on selected transits of the R/VIB Nathaniel B. Palmer. Specific objectives of the project include the following:<br/><br/>1) improve the rotation model for mid-Tertiary extension between East and West Antarctica by including the plate boundary between the Pacific and Australia plates directly when calculating Australia-West Antarctica motion,<br/>2) improve the reconstructions for the Late Cretaceous and Early Tertiary times by including new constraints on several boundaries not previously used in the reconstructions,<br/>3) address the implications of new rotation models for the question of the fixity of global hotspots,<br/>4) re-examine the geophysical data from the Western Ross Sea embayment in light of a model for substantial mid-Cenozoic extension. | POLYGON((-57.56218 -33.87102,-49.979095 -33.87102,-42.39601 -33.87102,-34.812925 -33.87102,-27.22984 -33.87102,-19.646755 -33.87102,-12.06367 -33.87102,-4.480585 -33.87102,3.1025 -33.87102,10.685585 -33.87102,18.26867 -33.87102,18.26867 -35.4505,18.26867 -37.02998,18.26867 -38.60946,18.26867 -40.18894,18.26867 -41.76842,18.26867 -43.3479,18.26867 -44.92738,18.26867 -46.50686,18.26867 -48.08634,18.26867 -49.66582,10.685585 -49.66582,3.1025 -49.66582,-4.480585 -49.66582,-12.06367 -49.66582,-19.646755 -49.66582,-27.22984 -49.66582,-34.812925 -49.66582,-42.39601 -49.66582,-49.979095 -49.66582,-57.56218 -49.66582,-57.56218 -48.08634,-57.56218 -46.50686,-57.56218 -44.92738,-57.56218 -43.3479,-57.56218 -41.76842,-57.56218 -40.18894,-57.56218 -38.60946,-57.56218 -37.02998,-57.56218 -35.4505,-57.56218 -33.87102)) | POINT(-19.646755 -41.76842) | false | false | |||||||||||||
Collaborative Research: Early Tertiary Tectonic Evolution of the Pacific-Australia-Antarctic Plate Circuit
|
9416989 |
2010-05-04 | Cande, Steven |
|
9416989 Cande There is a significant misfit, ranging from 50 to 250 kms, of magnetic anomalies 13, 18, and 20 along the section of the Southeast Indian Ridge east of the Balleny fracture zone. This project will survey the critical plate boundaries and relevant magnetic anomalies in the South Tasman Sea, Emerald Basin and north of the Ross Sea embayment that will better constrain the history of the this plate motion. Data collected will be used to test the hypothesis that the Antarctic side of the ridge acted as a separate plate, attached to Marie Byrd Land, and that these anomalies indirectly indicate motion between East and West Antarctica between anomalies 24 and 13 time. Surveys will be conducted on the R/V W M Ewing in the Tasman Sea, and on the R/V N B Palmer north of the Ross Sea embayment. *** | POLYGON((-179.9998 -46.00095,-143.99984 -46.00095,-107.99988 -46.00095,-71.99992 -46.00095,-35.99996 -46.00095,0 -46.00095,35.99996 -46.00095,71.99992 -46.00095,107.99988 -46.00095,143.99984 -46.00095,179.9998 -46.00095,179.9998 -49.185793,179.9998 -52.370636,179.9998 -55.555479,179.9998 -58.740322,179.9998 -61.925165,179.9998 -65.110008,179.9998 -68.294851,179.9998 -71.479694,179.9998 -74.664537,179.9998 -77.84938,143.99984 -77.84938,107.99988 -77.84938,71.99992 -77.84938,35.99996 -77.84938,0 -77.84938,-35.99996 -77.84938,-71.99992 -77.84938,-107.99988 -77.84938,-143.99984 -77.84938,-179.9998 -77.84938,-179.9998 -74.664537,-179.9998 -71.479694,-179.9998 -68.294851,-179.9998 -65.110008,-179.9998 -61.925165,-179.9998 -58.740322,-179.9998 -55.555479,-179.9998 -52.370636,-179.9998 -49.185793,-179.9998 -46.00095)) | POINT(0 -89.999) | false | false | |||||||||||||
Collaborative Research: The Connection Between Mid-Cenozoic Seafloor Spreading and the Western Ross Sea Embayment
|
0440959 |
2010-05-04 | Cande, Steven |
|
This work will perform a marine geophysical survey of sea floor spreading off Cape Adare, Antarctica. Magnetic, gravity, swath bathymetry and multi-channel seismic data will be acquired from the southern end of the Adare Basin to the northern parts of the Northern Basin and Central Trough in the Ross Embayment. Previous surveys documented 170 km of regional extension between forty-three and twenty-six million years ago, which resulted in some seafloor spreading in the Adare Basin. However, the relationship of Adare Basin spreading to the overall extension and the southward continental basins of the Ross Embayment has not been established. This relationship is critical to understanding the tectonic evolution of East and West Antarctica and linking Pacific plate motions to the rest of the world. The study will also offer unique insight into rifting processes by studying the transition of rifting between oceanic and continental lithosphere. In terms of broader impacts, this project will support two graduate students and field research experience for undergraduates. The project also involves cooperation between scientists from the US, Australia, New Zealand and Japan. | None | None | false | false | |||||||||||||
Collaborative Research: Antarctic Climate Reconstruction Utilizing the US ITASE Ice Core Array (2009- 2012)
|
0837988 |
2010-04-30 | Steig, Eric J. |
|
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). <br/><br/>This award supports a project to reconstruct the past physical and chemical climate of Antarctica, with an emphasis on the region surrounding the Ross Sea Embayment, using >60 ice cores collected in this region by US ITASE and by Australian, Brazilian, Chilean, and New Zealand ITASE teams. The ice core records are annually resolved and exceptionally well dated, and will provide, through the analyses of stable isotopes, major soluble ions and for some trace elements, instrumentally calibrated proxies for past temperature, precipitation, atmospheric circulation, chemistry of the atmosphere, sea ice extent, and volcanic activity. These records will be used to understand the role of solar, volcanic, and human forcing on Antarctic climate and to investigate the character of recent abrupt climate change over Antarctica in the context of broader Southern Hemisphere and global climate variability. The intellectual merit of the project is that ITASE has resulted in an array of ice core records, increasing the spatial resolution of observations of recent Antarctic climate variability by more than an order of magnitude and provides the basis for assessment of past and current change and establishes a framework for monitoring of future climate change in the Southern Hemisphere. This comes at a critical time as global record warming and other impacts are noted in the Southern Ocean, the Antarctic Peninsula, and on the Antarctic ice sheet. The broader impacts of the project are that Post-doctoral and graduate students involved in the project will benefit from exposure to observational and modeling approaches to climate change research and working meetings to be held at the two collaborating institutions plus other prominent climate change institutions. The results are of prime interest to the public and the media Websites hosted by the two collaborating institutions contain climate change position papers, scientific exchanges concerning current climate change issues, and scientific contribution series. | POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65)) | POINT(0 -89.999) | false | false | |||||||||||||
Collaborative Research: Characterizing the Onset of Ice Stream Flow: A Ground Geophysical Field Program
|
9814816 |
2007-02-13 | Blankenship, Donald D. | No dataset link provided | 9814816<br/>Blankenship<br/><br/>This award supports a four year project to develop of better understanding the ice streams of the Ross Sea Embayment (A--F) which drain the interior West Antarctic Ice Sheet (WAIS) by rapidly moving vast quantities of ice to the calving front of the Ross Ice Shelf. The project will examine the role of these ice streams as buffers between the interior ice and the floating ice shelves. The reasons for their fast flow, the factors controlling their current grounding-line-, margin-, and head-positions are crucial to any attempt at modeling the WAIS system and predicting the future of the ice sheet. For the Antarctic ice streams of the Siple Coast, the transition from no-sliding (or all internal deformation) to motion dominated by sliding is defined as the "onset-region". To fully understand (and adequately model) the WAIS, this onset region must be better understood. The lateral margins of the ice streams are also a transition that need better explanation. Hypotheses on controls of the location of the onset region range from the "purely-glaciologic" to the "purely-geologic. Thus, to model the ice sheet accurately, the basal boundary conditions (roughness, wetness, till properties) and a good subglacial geologic map, showing the distribution, thickness, and properties of the sedimentary basins, are required. These parameters can be estimated from seismic, radar, and other geophysical methods. The transition region of ice stream D will be studied in detail with this coupled geophysical experiment. In addition, selected other locations on ice streams C & D will be made, to compare and contrast conditions with the main site on ice stream D. Site-selection for the main camp will be based on existing radar, GPS, and satellite data as well as input from the modeling community. | POLYGON((-129 -80.5,-128.4 -80.5,-127.8 -80.5,-127.2 -80.5,-126.6 -80.5,-126 -80.5,-125.4 -80.5,-124.8 -80.5,-124.2 -80.5,-123.6 -80.5,-123 -80.5,-123 -80.55,-123 -80.6,-123 -80.65,-123 -80.7,-123 -80.75,-123 -80.8,-123 -80.85,-123 -80.9,-123 -80.95,-123 -81,-123.6 -81,-124.2 -81,-124.8 -81,-125.4 -81,-126 -81,-126.6 -81,-127.2 -81,-127.8 -81,-128.4 -81,-129 -81,-129 -80.95,-129 -80.9,-129 -80.85,-129 -80.8,-129 -80.75,-129 -80.7,-129 -80.65,-129 -80.6,-129 -80.55,-129 -80.5)) | POINT(-126 -80.75) | false | false |