{"dp_type": "Project", "free_text": "Pacific Ocean"}
[{"awards": "1543511 Stephens, Britton; 1543457 Munro, David", "bounds_geometry": "POLYGON((-73 -53,-71.2 -53,-69.4 -53,-67.6 -53,-65.8 -53,-64 -53,-62.2 -53,-60.4 -53,-58.6 -53,-56.8 -53,-55 -53,-55 -54.4,-55 -55.8,-55 -57.2,-55 -58.6,-55 -60,-55 -61.4,-55 -62.8,-55 -64.2,-55 -65.6,-55 -67,-56.8 -67,-58.6 -67,-60.4 -67,-62.2 -67,-64 -67,-65.8 -67,-67.6 -67,-69.4 -67,-71.2 -67,-73 -67,-73 -65.6,-73 -64.2,-73 -62.8,-73 -61.4,-73 -60,-73 -58.6,-73 -57.2,-73 -55.8,-73 -54.4,-73 -53))", "dataset_titles": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838); Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445); Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "datasets": [{"dataset_uid": "200351", "doi": "https://doi.org/10.25921/z0pk-pv81", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean in 2020 (NCEI Accession 0225445)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200353", "doi": "https://doi.org/10.25921/fq0a-7y11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, Drake Passage, South Atlantic Ocean in 2022 (NCEI Accession 0276577)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200349", "doi": "https://doi.org/10.25921/b4jn-ef56", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the Southern Ocean, Drake Passage and South Atlantic Ocean in 2018, processed by NOAA (NCEI Accession 0184338)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200352", "doi": "https://doi.org/10.25921/f94g-zp40", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Atlantic Ocean in 2021 (NCEI Accession 0246983)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200350", "doi": "https://doi.org/10.25921/3ysc-pm11", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Surface underway measurements of partial pressure of carbon dioxide (pCO2) during the Antarctic Research and Supply Vessel (ARSV) Laurence M. Gould expeditions in the the Southern Ocean, South Pacific Ocean, Drake Passage and South Atlantic Ocean from 2019-02-16 to 2020-02-11 (NCEI Accession 0208838)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}, {"dataset_uid": "200348", "doi": "https://doi.org/10.7289/v5tq5zt1", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Underway measurements of pCO2 in the Surface Waters and the Atmosphere During the ARSV Laurence M. Gould 2017 Expeditions processed by NOAA (NCEI Accession 0170337)", "url": "https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/VOS_Program/LM_gould.html"}], "date_created": "Wed, 22 Feb 2023 00:00:00 GMT", "description": "The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the global ocean flux terms of the atmospheric burden of man-made CO2 are still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. This project is a continuation of collection of upper ocean measurements of the underway surface partial pressure of carbon dioxide (pCO2), using frequent ferry crossings of the Drake Passage by the RV/AS LMGould, the USAP supply ship. Overall, more than 200 transects over the past decade (since 2002) have now been accumulated of pCO2 profiles, along with discrete samples for other parameters of interest in studying the ocean carbonate system such as total CO2 (TCO2) values, isotopic (13C/12C and 14C/12C) ratios in surface TCO2. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models.", "east": -55.0, "geometry": "POINT(-64 -60)", "instruments": null, "is_usap_dc": true, "keywords": "Drake Passage; NUTRIENTS; BIOGEOCHEMICAL CYCLES; DISSOLVED GASES; TRACE GASES/TRACE SPECIES", "locations": "Drake Passage", "north": -53.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Organisms and Ecosystems; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Munro, David; Sweeney, Colm; Lovenduski, Nicole S; Stephens, Britton", "platforms": null, "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -67.0, "title": "Collaborative Research: Investigating Biogeochemical Fluxes and Linkages To Climate Change With Multi-Scale Observations In The Drake Passage", "uid": "p0010407", "west": -73.0}, {"awards": "1744856 Bromirski, Peter; 1744958 Wei, Yong; 1744759 Dunham, Eric; 1246151 Bromirski, Peter", "bounds_geometry": null, "dataset_titles": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves; Datasets for Model Simulations of Tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Thwaites); Datasets of bathymetric model grids for model simulations of tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves; Model simulation data of tsunami propagation in the Pacific Ocean; Model simulations of tsunami propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Ross Sea); Model Tsunami Propagation Simulation From Circum-Pacific Subduction Zones to West Antarctic Ice Shelves; Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "datasets": [{"dataset_uid": "601561", "doi": "10.15784/601561", "keywords": "Amundsen Sea; Antarctica; Glaciology", "people": "Tazhimbetov, Nurbek; Almquist, Martin; Dunham, Eric", "repository": "USAP-DC", "science_program": null, "title": "Simulation of flexural-gravity wave response of Antarctic ice shelves to tsunami and infragravity waves", "url": "https://www.usap-dc.org/view/dataset/601561"}, {"dataset_uid": "200424", "doi": "N/A", "keywords": null, "people": null, "repository": "NOAA Center for Tsunami Research (NCTR)", "science_program": null, "title": "Model Tsunami Propagation Simulation From Circum-Pacific Subduction Zones to West Antarctic Ice Shelves", "url": " https://nctr.pmel.noaa.gov/antarctica/ "}, {"dataset_uid": "601922", "doi": "10.15784/601922", "keywords": "Antarctica; Cryosphere; Model Simulation; Ross Ice Shelf; Ross Sea Ice Shelf; Subduction Zone Earthquakes; Tsunami; Tsunami impact; West Antarctica Ice Shelf", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Model simulations of tsunami propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Ross Sea)", "url": "https://www.usap-dc.org/view/dataset/601922"}, {"dataset_uid": "601921", "doi": "10.15784/601921", "keywords": "Antarctica; Cryosphere; Model Output; Model Simulation; Pacific Ocean; Subduction Zone Earthquakes; Tsunami; Tsunami impact; West Antarctic Ice Sheet", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Model simulation data of tsunami propagation in the Pacific Ocean", "url": "https://www.usap-dc.org/view/dataset/601921"}, {"dataset_uid": "200323", "doi": "10.25740/qy001dt7463", "keywords": null, "people": null, "repository": "Stanford Digital Repository", "science_program": null, "title": "Data for: Ocean Surface Gravity Wave Excitation of Flexural Gravity and Extensional Lamb Waves in Ice Shelves", "url": "https://doi.org/10.25740/qy001dt7463"}, {"dataset_uid": "601924", "doi": "10.15784/601924", "keywords": "Antarctica; Cryosphere; Model Simulation; Pacific Ocean; Subduction Zone Earthquakes; Tsunami; Tsunami impact; West Antarctica Ice Shelf", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Datasets of bathymetric model grids for model simulations of tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves", "url": "https://www.usap-dc.org/view/dataset/601924"}, {"dataset_uid": "601923", "doi": "10.15784/601923", "keywords": "Antarctica; Cryosphere; Model Simulation; Ross Sea Ice Shelf; Thwaites Region; Tsunami; Tsunami impact; West Antarctica Ice Shelf", "people": "Wei, Yong", "repository": "USAP-DC", "science_program": null, "title": "Datasets for Model Simulations of Tsunami Propagation from Circum-Pacific Subduction Zone to West Antarctic Ice Shelves (Thwaites)", "url": "https://www.usap-dc.org/view/dataset/601923"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences. This project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "COMPUTERS; AMD; Amd/Us; SEA ICE; Amundsen Sea; USAP-DC; USA/NSF; Ross Ice Shelf; MODELS", "locations": "Amundsen Sea; Ross Ice Shelf", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science; Antarctic Glaciology; Antarctic Integrated System Science", "paleo_time": null, "persons": "Dunham, Eric; Bromirski, Peter; Wei, Yong", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS; OTHER \u003e MODELS \u003e MODELS", "repo": "USAP-DC", "repositories": "NOAA Center for Tsunami Research (NCTR); Stanford Digital Repository; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?", "uid": "p0010320", "west": null}, {"awards": "0739480 Grunow, Anne; 1141906 Grunow, Anne; 9910267 Grunow, Anne; 0440695 Grunow, Anne; 2137467 Grunow, Anne; 2436582 Grunow, Anne; 1643713 Grunow, Anne", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Marine Geoscience Data System - cruise links; Polar Rock Repository; SESAR sample registration", "datasets": [{"dataset_uid": "200359", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "http://research.bpcrc.osu.edu/rr/"}, {"dataset_uid": "200241", "doi": "", "keywords": null, "people": null, "repository": "SESAR", "science_program": null, "title": "SESAR sample registration", "url": "https://www.geosamples.org/about/services#igsnregistration"}, {"dataset_uid": "200242", "doi": "", "keywords": null, "people": null, "repository": "MGDS", "science_program": null, "title": "Marine Geoscience Data System - cruise links", "url": "https://www.marine-geo.org/"}, {"dataset_uid": "200243", "doi": "", "keywords": null, "people": null, "repository": "PRR", "science_program": null, "title": "Polar Rock Repository", "url": "https://prr.osu.edu/"}], "date_created": "Thu, 09 Sep 2021 00:00:00 GMT", "description": "Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a \"Polar Rock Box\" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet\u2019s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the \"Polar Rock Box\" program. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; FIELD SURVEYS; Pacific Ocean; ROCKS/MINERALS/CRYSTALS; GLACIATION; AMD; Weddell Sea; Scotia Sea; TECTONICS; Antarctica; Southern Ocean; Amd/Us; USA/NSF; Amundsen Sea", "locations": "Pacific Ocean; Amundsen Sea; Scotia Sea; Weddell Sea; Antarctica; Southern Ocean", "north": -60.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Grunow, Anne", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "PRR", "repositories": "MGDS; PRR; SESAR", "science_programs": null, "south": -90.0, "title": "Continuing Operations Proposal: \r\nThe Polar Rock Repository as a Resource for Earth Systems Science\r\n", "uid": "p0010259", "west": -180.0}, {"awards": "1542962 Anderson, Robert", "bounds_geometry": "POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57))", "dataset_titles": "Expedition Data of NBP1702; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ; Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "datasets": [{"dataset_uid": "200165", "doi": "", "keywords": null, "people": null, "repository": "BCO-DMO", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean (SNOWBIRDS)", "url": "https://www.bco-dmo.org/dataset/813379/data"}, {"dataset_uid": "200166", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean ", "url": "https://www.ncdc.noaa.gov/paleo/study/31312"}, {"dataset_uid": "200126", "doi": "10.7284/907211", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data of NBP1702", "url": "https://www.rvdata.us/search/cruise/NBP1702"}], "date_created": "Fri, 25 Sep 2020 00:00:00 GMT", "description": "Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth\u0027s ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. Work proposed here will test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement will be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work will contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. The proposed work will add a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that will collect sediment cores at three to five locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170\u00b0W. The goal is to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. In the proposed work the radiocarbon age of foraminifera that inhabited the surface ocean will be compared with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms will be used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it is expected that surface and deep-dwelling foraminifera will exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters return to the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work is to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean?s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarcitca.", "east": -169.0, "geometry": "POINT(-170 -60.6)", "instruments": null, "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; SEDIMENT CHEMISTRY; South Pacific Ocean; SHIPS", "locations": "South Pacific Ocean", "north": -57.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Anderson, Robert; Fleisher, Martin; Pavia, Frank", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e SHIPS", "repo": "BCO-DMO", "repositories": "BCO-DMO; NCEI; R2R", "science_programs": null, "south": -64.2, "title": "Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean", "uid": "p0010130", "west": -171.0}, {"awards": "1401489 Sigman, Daniel", "bounds_geometry": "POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45))", "dataset_titles": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age; Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.; Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.; GOSHIP section IO8S and P18S", "datasets": [{"dataset_uid": "200048", "doi": "doi.pangaea.de/10.1594/PANGAEA.891436.", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound nitrogen isotope and opal flux records over the Holocene period in Southern Ocean sediment cores MD12-3396, MD11-3353 and PS75/072-4.", "url": "https://doi.pangaea.de/10.1594/PANGAEA.891436"}, {"dataset_uid": "200050", "doi": "", "keywords": null, "people": null, "repository": "CLIVAR", "science_program": null, "title": "GOSHIP section IO8S and P18S", "url": "https://cchdo.ucsd.edu/"}, {"dataset_uid": "200049", "doi": "doi.org/10.1594/PANGAEA.848271", "keywords": null, "people": null, "repository": "PANGAEA", "science_program": null, "title": "Diatom-bound N isotope records over the last two glacial cycles in sediment core PS75/072-4.", "url": "https://doi.org/10.1594/PANGAEA.848271"}, {"dataset_uid": "200051", "doi": "", "keywords": null, "people": null, "repository": "Publication", "science_program": null, "title": "Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age", "url": "https://www.pnas.org/content/suppl/2017/03/14/1615718114.DCSupplemental"}], "date_created": "Thu, 08 Aug 2019 00:00:00 GMT", "description": "ABSTRACT Intellectual Merit: The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (\u0026#948;15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2. Broader impacts: This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "BIOGEOCHEMICAL CYCLES; South Pacific Ocean; USAP-DC; NOT APPLICABLE", "locations": "South Pacific Ocean", "north": -45.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Sigman, Daniel", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "PANGAEA", "repositories": "CLIVAR; PANGAEA; Publication", "science_programs": null, "south": -70.0, "title": "High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean", "uid": "p0010046", "west": -180.0}, {"awards": "0127022 Jeffrey, Wade", "bounds_geometry": "POLYGON((-177.639 -43.5676,-143.1091 -43.5676,-108.5792 -43.5676,-74.0493 -43.5676,-39.5194 -43.5676,-4.9895 -43.5676,29.5404 -43.5676,64.0703 -43.5676,98.6002 -43.5676,133.1301 -43.5676,167.66 -43.5676,167.66 -46.99877,167.66 -50.42994,167.66 -53.86111,167.66 -57.29228,167.66 -60.72345,167.66 -64.15462,167.66 -67.58579,167.66 -71.01696,167.66 -74.44813,167.66 -77.8793,133.1301 -77.8793,98.6002 -77.8793,64.0703 -77.8793,29.5404 -77.8793,-4.9895 -77.8793,-39.5194 -77.8793,-74.0493 -77.8793,-108.5792 -77.8793,-143.1091 -77.8793,-177.639 -77.8793,-177.639 -74.44813,-177.639 -71.01696,-177.639 -67.58579,-177.639 -64.15462,-177.639 -60.72345,-177.639 -57.29228,-177.639 -53.86111,-177.639 -50.42994,-177.639 -46.99877,-177.639 -43.5676))", "dataset_titles": "Expedition Data; Ross Sea microbial biomass and production", "datasets": [{"dataset_uid": "600029", "doi": "10.15784/600029", "keywords": "Biota; Chemistry:fluid; Chemistry:Fluid; CTD Data; Microbiology; Oceans; Phytoplankton; Ross Sea; Southern Ocean", "people": "Jeffrey, Wade H.", "repository": "USAP-DC", "science_program": null, "title": "Ross Sea microbial biomass and production", "url": "https://www.usap-dc.org/view/dataset/600029"}, {"dataset_uid": "001584", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0508"}, {"dataset_uid": "001690", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0304B"}], "date_created": "Thu, 12 Jun 2008 00:00:00 GMT", "description": "Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea.", "east": 167.66, "geometry": "POINT(-4.9895 -60.72345)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e WATER BOTTLES; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e MSBS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUORESCENCE MICROSCOPY; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e MICROSCOPES; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e FLUOROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e SAMPLERS \u003e BOTTLES/FLASKS/JARS \u003e GO-FLO BOTTLES", "is_usap_dc": true, "keywords": "R/V NBP; B-15J", "locations": "B-15J", "north": -43.5676, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Jeffrey, Wade H.; Neale, Patrick", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "USAP-DC", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -77.8793, "title": "Collaborative Proposal: Interactive Effects of UV Radiation and Vertical Mixing on Phytoplankton and Bacterial Productivity of Ross See Phaeocystis Blooms", "uid": "p0000578", "west": -177.639}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Investigating Biogeochemical Fluxes and Linkages To Climate Change With Multi-Scale Observations In The Drake Passage
|
1543511 1543457 |
2023-02-22 | Munro, David; Sweeney, Colm; Lovenduski, Nicole S; Stephens, Britton | The Southern Ocean plays a key role in modulating the global carbon cycle, but the size and even the sign of the global ocean flux terms of the atmospheric burden of man-made CO2 are still uncertain. This is in part due to the lack of measurements in this remote region of the world ocean. This project continues a multi-year time series of shipboard chemical measurements in the Drake Passage to detect changes in the ocean carbon cycle and to improve the understanding of mechanisms driving natural variability and long-term change in the Southern Ocean. This project is a continuation of collection of upper ocean measurements of the underway surface partial pressure of carbon dioxide (pCO2), using frequent ferry crossings of the Drake Passage by the RV/AS LMGould, the USAP supply ship. Overall, more than 200 transects over the past decade (since 2002) have now been accumulated of pCO2 profiles, along with discrete samples for other parameters of interest in studying the ocean carbonate system such as total CO2 (TCO2) values, isotopic (13C/12C and 14C/12C) ratios in surface TCO2. The Drake Passage data are made readily available to the international science community and serve as both validation and constraints of remotely sensed observations and numerical coupled earth systems models. | POLYGON((-73 -53,-71.2 -53,-69.4 -53,-67.6 -53,-65.8 -53,-64 -53,-62.2 -53,-60.4 -53,-58.6 -53,-56.8 -53,-55 -53,-55 -54.4,-55 -55.8,-55 -57.2,-55 -58.6,-55 -60,-55 -61.4,-55 -62.8,-55 -64.2,-55 -65.6,-55 -67,-56.8 -67,-58.6 -67,-60.4 -67,-62.2 -67,-64 -67,-65.8 -67,-67.6 -67,-69.4 -67,-71.2 -67,-73 -67,-73 -65.6,-73 -64.2,-73 -62.8,-73 -61.4,-73 -60,-73 -58.6,-73 -57.2,-73 -55.8,-73 -54.4,-73 -53)) | POINT(-64 -60) | false | false | ||||||||||
Collaborative Research: Do Ocean Wave Impacts Pose a Hazard to the Stability of West Antarctic Ice Shelves?
|
1744856 1744958 1744759 1246151 |
2022-05-16 | Dunham, Eric; Bromirski, Peter; Wei, Yong | Understanding and being able to more reliably forecast ice mass loss from Antarctica is a critical research priority for Antarctic Science. Massive ice shelves buttress marine terminating glaciers, slowing the rate that land ice reaches the sea and, in turn, restraining the rate of sea level rise. To date, most work has focused on the destabilizing impacts of warmer air and water temperatures, resulting in melting that thins and weakens ice shelves. However, recent findings indicate that sea ice does not protect ice shelves from wave impacts as much as previously thought, which has raised the possibility that tsunamis and other ocean waves could affect shelf stability. This project will assess the potential for increased shelf fracturing from the impact of tsunamis and from heightened wave activity due to climate-driven changes in storm patterns and reduced sea-ice extent by developing models to investigate how wave impacts damage ice shelves. The modeling effort will allow for regional comparisons between large and small ice shelves, and provide an evaluation of the impacts of changing climate and storm patterns on ice shelves, ice sheets, glaciers, and, ultimately, sea level rise. This project will train graduate students in mathematical modeling and interdisciplinary approaches to Earth and ocean sciences. This project takes a four-pronged approach to estimating the impact of vibrations on ice shelves at the grounding zone due to tsunamis, very long period, infragravity, and storm-driven waves. First, the team will use high-resolution tsunami modeling to investigate the response of ice shelves along the West Antarctic coast to waves originating in different regions of the Pacific Ocean. Second, it will compare the response to wave impacts on grounding zones of narrow and wide ice shelves. Third, it will assess the exposure risk due to storm forcing through a reanalysis of weather and wave model data; and, finally, the team will model the propagation of ocean-wave-induced vibrations in the ice from the shelf front to and across the grounding zone. In combination, this project aims to identify locations along the Antarctic coast that are subject to enhanced, bathymetrically-focused, long-period ocean-wave impacts. Linkages between wave impacts and climate arise from potential changes in sea-ice extent in front of shelves, and changes in the magnitude, frequency, and tracks of storms. Understanding the effects of ocean waves and climate on ice-shelf integrity is critical to anticipate their contribution to the amplitude and timing of sea-level rise. Wave-driven reductions in ice-shelf stability may enhance shelf fragmentation and iceberg calving, reducing ice shelf buttressing and eventually accelerating sea-level rise. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | ||||||||||
Continuing Operations Proposal:
The Polar Rock Repository as a Resource for Earth Systems Science
|
0739480 1141906 9910267 0440695 2137467 2436582 1643713 |
2021-09-09 | Grunow, Anne |
|
Non-Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University provides a unique resource for researchers studying the polar regions by offering free access to geological samples and data. This project seeks support to continue expanding and managing the collection, which is vital for scientific studies and planning fieldwork in Antarctica. Over the next five years, the repository plans to add tens of thousands of new samples and images, making it easier for researchers to study polar geology without the high cost and environmental impact of traveling to remote Antarctic locations. The PRR also supports education and outreach by providing hands-on resources for schools, colleges, and the public, including a "Polar Rock Box" program that brings real Antarctic samples into classrooms. This work ensures the preservation of important scientific materials and makes them accessible to a broad community, advancing understanding of our planet’s polar regions. Technical Abstract: The Polar Rock Repository (PRR) at The Ohio State University serves as a critical resource for polar earth science research, offering no-cost loans of geological samples and comprehensive metadata to the scientific community. This proposal seeks funding to support the continued curation, expansion, and management of the PRR, alongside its educational and outreach initiatives. Over the next five years, the PRR anticipates acquiring approximately 15,000 new samples, including those from major drilling operations (RAID, Winkie drill cores) and polar cruises. The repository also aims to significantly grow its archives of images, petrographic thin sections, and mineral separates. By preserving these physical and digital assets in a discoverable online database, the PRR fosters transparency, reproducibility, and accessibility in polar research, fulfilling Antarctic data management mandates. The intellectual merit lies in enabling cutting-edge scientific analyses through freely available samples and metadata. Broader impacts include reduced environmental costs of Antarctic research, enhanced educational opportunities, and outreach to a diverse audience through initiatives like the "Polar Rock Box" program. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||||||
Water Mass Structure and Bottom Water Formation in the Ice-age Southern Ocean
|
1542962 |
2020-09-25 | Anderson, Robert; Fleisher, Martin; Pavia, Frank | Scientists established more than 30 years ago that the climate-related variability of carbon dioxide levels in the atmosphere over Earth's ice-age cycles was regulated by the ocean. Hypotheses to explain how the ocean regulates atmospheric carbon dioxide have long been debated, but they have proven to be difficult to test. Work proposed here will test one leading hypothesis, specifically that the ocean experienced greater density stratification during the ice ages. That is, with greater stratification during the ice ages and slower replacement of deep water by cold dense water formed near the poles, the deep ocean would have held more carbon dioxide, which is produced by biological respiration of the organic carbon that constantly rains to the abyss in the form of dead organisms and organic debris that sink from the sunlit surface ocean. To test this hypothesis, the degree of ocean stratification during the last ice age and the rate of deep-water replacement will be constrained by comparing the radiocarbon ages of organisms that grew in the surface ocean and at the sea floor within a critical region around Antarctica, where most of the replacement of deep waters occurs. Completing this work will contribute toward improved models of future climate change. Climate scientists rely on models to estimate the amount of fossil fuel carbon dioxide that will be absorbed by the ocean in the future. Currently the ocean absorbs about 25% of the carbon dioxide produced by burning fossil fuels. Most of this carbon is absorbed in the Southern Ocean (the region around Antarctica). How this will change in the future is poorly known. Models have difficulty representing physical conditions in the Southern Ocean accurately, thereby adding substantial uncertainty to projections of future ocean uptake of carbon dioxide. Results of the proposed study will provide a benchmark to test the ability of models to simulate ocean processes under climate conditions distinctly different from those that occur today, ultimately leading to improvement of the models and to more reliable projections of future absorption of carbon dioxide by the ocean. The proposed work will add a research component to an existing scientific expedition to the Southern Ocean, in the region between the Ross Sea and New Zealand, that will collect sediment cores at three to five locations down the northern flank of the Pacific-Antarctic Ridge at approximately 170°W. The goal is to collect sediments at each location deposited since early in the peak of the last ice age. This region is unusual in the Southern Ocean in that sediments deposited during the last ice age contain foraminifera, tiny organisms with calcium carbonate shells, in much greater abundance than in other regions of the Southern Ocean. Foraminifera are widely used as an archive of several geochemical tracers of past ocean conditions. In the proposed work the radiocarbon age of foraminifera that inhabited the surface ocean will be compared with the age of contemporary specimens that grew on the seabed. The difference in age between surface and deep-swelling organisms will be used to discriminate between two proposed mechanisms of deep water renewal during the ice age: formation in coastal polynyas around the edge of Antarctica, much as occurs today, versus formation by open-ocean convection in deep-water regions far from the continent. If the latter mechanism prevails, then it is expected that surface and deep-dwelling foraminifera will exhibit similar radiocarbon ages. In the case of dominance of deep-water formation in coastal polynyas, one expects to find very different radiocarbon ages in the two populations of foraminifera. In the extreme case of greater ocean stratification during the last ice age, one even expects the surface dwellers to appear to be older than contemporary bottom dwellers because the targeted core sites lie directly under the region where the oldest deep waters return to the surface following their long circuitous transit through the deep ocean. The primary objective of the proposed work is to reconstruct the water mass age structure of the Southern Ocean during the last ice age, which, in turn, is a primary factor that controls the amount of carbon dioxide stored in the deep sea. In addition, the presence of foraminifera in the cores to be recovered provides a valuable resource for many other paleoceanographic applications, such as: 1) the application of nitrogen isotopes to constrain the level of nutrient utilization in the Southern Ocean and, thus, the efficiency of the ocean?s biological pump, 2) the application of neodymium isotopes to constrain the transport history of deep water masses, 3) the application of boron isotopes and boron/calcium ratios to constrain the pH and inorganic carbon system parameters of ice-age seawater, and 4) the exploitation of metal/calcium ratios in foraminifera to reconstruct the temperature (Mg/Ca) and nutrient content (Cd/Ca) of deep waters during the last ice age at a location near their source near Antarcitca. | POLYGON((-171 -57,-170.8 -57,-170.6 -57,-170.4 -57,-170.2 -57,-170 -57,-169.8 -57,-169.6 -57,-169.4 -57,-169.2 -57,-169 -57,-169 -57.72,-169 -58.44,-169 -59.16,-169 -59.88,-169 -60.6,-169 -61.32,-169 -62.04,-169 -62.76,-169 -63.48,-169 -64.2,-169.2 -64.2,-169.4 -64.2,-169.6 -64.2,-169.8 -64.2,-170 -64.2,-170.2 -64.2,-170.4 -64.2,-170.6 -64.2,-170.8 -64.2,-171 -64.2,-171 -63.48,-171 -62.76,-171 -62.04,-171 -61.32,-171 -60.6,-171 -59.88,-171 -59.16,-171 -58.44,-171 -57.72,-171 -57)) | POINT(-170 -60.6) | false | false | ||||||||||
High-resolution, Assemblage-specific Records of Diatom-bound N Isotopes from the Indian Sector of the Antarctic Ocean
|
1401489 |
2019-08-08 | Sigman, Daniel | ABSTRACT Intellectual Merit: The high concentration of the major nutrients nitrate and phosphate is a fundamental characteristic of the Antarctic Zone in the Southern Ocean and is central to its role in global ocean fertility and the global carbon cycle. The isotopic composition of diatom-bound organic nitrogen is one of the best hopes for reconstructing the nutrient status of polar surface waters over glacial cycles, which in turn may hold the explanation for the decline in atmospheric carbon dioxide during ice ages. The PIs propose to generate detailed diatom-bound nitrogen isotope (δ15Ndb) records from high sedimentation rate cores from the Kerguelen Plateau. Because the cores were collected at relatively shallow seafloor depths, they have adequate planktonic and benthic foraminifera to develop accurate age models. The resulting data could be compared with climate records from Antarctic ice cores and other archives to investigate climate-related changes, including the major steps into and out of ice ages and the millennial-scale events that occur during ice ages and at their ends. The records generated in this project will provide a critical test of hypotheses for the cause of lower ice age CO2. Broader impacts: This study will contribute to the goal of understanding ice ages and past CO2 changes, which both have broad implications for future climate. Undergraduates will undertake summer internships, with the possibility of extending their work into junior year projects and senior theses. In addition, the PI will lead modules for two Princeton programs for middle school teachers and will host a teacher for a six-week summer research project. | POLYGON((-180 -45,-144 -45,-108 -45,-72 -45,-36 -45,0 -45,36 -45,72 -45,108 -45,144 -45,180 -45,180 -47.5,180 -50,180 -52.5,180 -55,180 -57.5,180 -60,180 -62.5,180 -65,180 -67.5,180 -70,144 -70,108 -70,72 -70,36 -70,0 -70,-36 -70,-72 -70,-108 -70,-144 -70,-180 -70,-180 -67.5,-180 -65,-180 -62.5,-180 -60,-180 -57.5,-180 -55,-180 -52.5,-180 -50,-180 -47.5,-180 -45)) | POINT(0 -89.999) | false | false | ||||||||||
Collaborative Proposal: Interactive Effects of UV Radiation and Vertical Mixing on Phytoplankton and Bacterial Productivity of Ross See Phaeocystis Blooms
|
0127022 |
2008-06-12 | Jeffrey, Wade H.; Neale, Patrick |
|
Ultraviolet radiation influences the dynamics of plankton processes in the near-surface waters of most aquatic ecosystems. In particular, the Southern Ocean is affected in the austral spring period when biologically damaging ultraviolet radiation is enhanced by ozone depletion. While progress has been made in estimating the quantitative impact of ultraviolet radiation on bacteria and phytoplankton in the Southern Ocean, some important issues remain to be resolved. Little is known about responses in systems dominated by the colonial haptophyte Phaeocystis antarctica, which dominates spring blooms in a polyna that develops in the southern Ross Sea. The Ross Sea is also of interest because of the occurrence of open water at a far southerly location in the spring, well within the ozone hole, and continuous daylight, with implications for the regulation of DNA repair. A number of studies suggest that vertical mixing can significant modify the impact of ultraviolet radiation in the Southern Ocean and elsewhere. However, there are limited measurements of turbulence intensity in the surface layer and measurements have not been integrated with parallel studies of ultraviolet radiation effects on phytoplankton and bacterioplankton. To address these issues, this collaborative study will focus on vertical mixing and the impact of ultraviolet radiation in the Ross Sea. The spectral and temporal responses of phytoplankton and bacterioplankton to ultraviolet radiation will be characterized in both laboratory and solar incubations. These will lead to the definition of biological weighting functions and response models capable of predicting the depth and time distribution of ultraviolet radiation impacts on photosynthesis, bacterial incorporation and DNA damage in the surface layer. Diel sampling will measure depth-dependent profiles of DNA damage, bacterial incorporation, photosynthesis and fluorescence parameters over a 24 h cycle. Sampling will include stations with contrasting wind-driven mixing and stratification as the polyna develops. The program of vertical mixing measurements is optimized for the typical springtime Ross Sea situation in which turbulence of intermediate intensity is insufficient to mix the upper layer thoroughly in the presence of stabilizing influences like solar heating and/or surface freshwater input from melting ice. Fine-scale vertical density profiles will be measured with a free-fall CTD unit and the profiles will be used to directly estimate large-eddy scales by determining Thorpe scales. Eddy scales and estimated turbulent diffusivities will be directly related to surface layer effects, and used to generate lagrangian depth-time trajectories in models of ultraviolet radiation responses in the surface mixed layer. The proposed research will be the first in-depth study of ultraviolet radiation effects in the Ross Sea and provide a valuable comparison with previous work in the Weddell-Scotia Confluence and Palmer Station regions. It will also enhance the understanding of vertical mixing processes, trophic interactions and biogeochemical cycling in the Ross Sea. | POLYGON((-177.639 -43.5676,-143.1091 -43.5676,-108.5792 -43.5676,-74.0493 -43.5676,-39.5194 -43.5676,-4.9895 -43.5676,29.5404 -43.5676,64.0703 -43.5676,98.6002 -43.5676,133.1301 -43.5676,167.66 -43.5676,167.66 -46.99877,167.66 -50.42994,167.66 -53.86111,167.66 -57.29228,167.66 -60.72345,167.66 -64.15462,167.66 -67.58579,167.66 -71.01696,167.66 -74.44813,167.66 -77.8793,133.1301 -77.8793,98.6002 -77.8793,64.0703 -77.8793,29.5404 -77.8793,-4.9895 -77.8793,-39.5194 -77.8793,-74.0493 -77.8793,-108.5792 -77.8793,-143.1091 -77.8793,-177.639 -77.8793,-177.639 -74.44813,-177.639 -71.01696,-177.639 -67.58579,-177.639 -64.15462,-177.639 -60.72345,-177.639 -57.29228,-177.639 -53.86111,-177.639 -50.42994,-177.639 -46.99877,-177.639 -43.5676)) | POINT(-4.9895 -60.72345) | false | false |