{"dp_type": "Project", "free_text": "Movement Patterns"}
[{"awards": "1643575 Kanatous, Shane; 1644256 Costa, Daniel; 1644004 Trumble, Stephen", "bounds_geometry": "POLYGON((-66.534369 -52.962091,-65.3857434 -52.962091,-64.2371178 -52.962091,-63.0884922 -52.962091,-61.9398666 -52.962091,-60.791241 -52.962091,-59.6426154 -52.962091,-58.4939898 -52.962091,-57.3453642 -52.962091,-56.1967386 -52.962091,-55.048113 -52.962091,-55.048113 -54.530129,-55.048113 -56.098167000000004,-55.048113 -57.666205000000005,-55.048113 -59.234243,-55.048113 -60.802281,-55.048113 -62.370319,-55.048113 -63.938357,-55.048113 -65.506395,-55.048113 -67.074433,-55.048113 -68.642471,-56.1967386 -68.642471,-57.3453642 -68.642471,-58.4939898 -68.642471,-59.6426154 -68.642471,-60.791241 -68.642471,-61.9398666 -68.642471,-63.0884922 -68.642471,-64.2371178 -68.642471,-65.3857434 -68.642471,-66.534369 -68.642471,-66.534369 -67.074433,-66.534369 -65.506395,-66.534369 -63.938356999999996,-66.534369 -62.370319,-66.534369 -60.802281,-66.534369 -59.234243,-66.534369 -57.666205,-66.534369 -56.098167000000004,-66.534369 -54.530129,-66.534369 -52.962091))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal; Leopard Seal Diving behavior data; Leopard Seal movement data", "datasets": [{"dataset_uid": "601689", "doi": "10.15784/601689", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Movement Data; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal movement data", "url": "https://www.usap-dc.org/view/dataset/601689"}, {"dataset_uid": "200361", "doi": "https://doi.org/10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/dataset/doi:10.5061%2Fdryad.ksn02v75b"}, {"dataset_uid": "601690", "doi": "10.15784/601690", "keywords": "Antarctica; Antarctic Peninsula; Biota; Body Mass; Diving Behavior; Leopard Seal; Seals", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Leopard Seal Diving behavior data", "url": "https://www.usap-dc.org/view/dataset/601690"}], "date_created": "Fri, 12 May 2023 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": -55.048113, "geometry": "POINT(-60.791241 -60.802281)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; Diving Behavior; MAMMALS; MARINE ECOSYSTEMS; Movement Patterns; Leopard Seal", "locations": "Antarctic Peninsula", "north": -52.962091, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Trumble, Stephen J; Kanatous, Shane", "platforms": null, "repo": "USAP-DC", "repositories": "Dryad; USAP-DC", "science_programs": null, "south": -68.642471, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010419", "west": -66.534369}, {"awards": "1644004 Trumble, Stephen", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "datasets": [{"dataset_uid": "200338", "doi": "doi:10.5061/dryad.ksn02v75b", "keywords": null, "people": null, "repository": "Dryad", "science_program": null, "title": "Data from: Whiskers provide time-series of toxic and essential trace elements, Se:Hg molar ratios, and stable isotope values of an apex Antarctic predator, the leopard seal", "url": "https://datadryad.org/stash/share/h6UwXvfhZG26jtPTtDqyXNMnx2UWknOqmv05EBz6A10"}], "date_created": "Tue, 06 Dec 2022 00:00:00 GMT", "description": "This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "MAMMALS; Stable Isotopes; Livingston Island", "locations": "Livingston Island", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Trumble, Stephen J", "platforms": null, "repo": "Dryad", "repositories": "Dryad", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal", "uid": "p0010394", "west": -180.0}, {"awards": "2146068 Kienle, Sarah", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Mon, 12 Sep 2022 00:00:00 GMT", "description": "The leopard seal (Hydrurga leptonyx) is an enigmatic apex predator in the rapidly changing Southern Ocean. As top predators, leopard seals play a disproportionately large role in ecosystem functioning and act as sentinel species that can track habitat changes. How leopard seals respond to a warming environment depends on their adaptive capacity, that is a species\u2019 ability to cope with environmental change. However, leopard seals are one of the least studied apex predators on Earth, hindering our ability to predict how the species is responding to polar environmental changes. Investigating the adaptability of Antarctic biota in a changing system aligns with NSF\u2019s Strategic Vision for Investments in Antarctic and Southern Ocean Research. This research, which is tightly integrated with educational and outreach activities, will increase diversity in STEM and Antarctic science by recruiting students from historically underrepresented groups in STEM and providing training, mentoring, and educational opportunities at an emerging Hispanic Serving Institution and a Historically Black Colleges and Universities campus. This project will improve STEM education and science literacy via museum collaborations, creation of informational videos and original artwork depicting the research. The proposal supports data and sample reuse in polar research and long-term reuse of scientific data, thereby maximizing NSF\u2019s investment in previous field research and reducing operational costs. The researchers will investigate leopard seals adaptive capacity to the warming Southern Ocean by quantifying their ability to move (dispersal ability), adapt (genetic diversity), and change (plasticity). Aim 1 of the research will determine leopard seals\u2019 dispersal ability by assessing their distribution and movement patterns. Aim 2 will quantify genetic diversity by analyzing genetic variability and population structure and Aim 3 will examine phenotypic plasticity by evaluating changes in their ecological niche and physiological responses. The international, multidisciplinary team will analyze existing data (e.g., photographs, census data, life history data, tissue samples, body morphometrics) collected from leopard seals across the Southern Ocean over the last decade. Additionally, land- and ship-based field efforts will generate comparable data from unsampled regions in the Southern Ocean. The research project will analyze these historical and contemporary datasets to evaluate the adaptive capacity of leopard seals against the rapidly warming Southern Ocean. This research is significant because changes in the distribution, genetic diversity, and ecophysiology of leopard seals can dramatically restructure polar and subpolar communities. Further, the research will expand understanding of leopard seals\u2019 ecological role, likely characterizing the species as flexible polar and subpolar predators throughout the Southern Hemisphere. The findings of this research will be relevant for use in ecosystem-based management decisions\u2014including the design of Marine Protected Areas\u2014 across three continents. This study will highlight intrinsic traits that determine species\u2019 adaptive capacity, as well as showcase the dynamic links between polar and subpolar ecosystems. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; SPECIES/POPULATION INTERACTIONS; MARINE ECOSYSTEMS; MAMMALS; Southern Ocean", "locations": "Southern Ocean", "north": null, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Kienle, Sarah; Trumble, Stephen J; Bonin, Carolina", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "Move, Adapt, or Change: Examining the Adaptive Capacity of a Southern Ocean Apex Predator, the Leopard Seal", "uid": "p0010375", "west": null}, {"awards": "1321782 Costa, Daniel", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "datasets": [{"dataset_uid": "600137", "doi": "10.15784/600137", "keywords": "Animal Tracking; Antarctica; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Seals; Southern Ocean", "people": "Costa, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "url": "https://www.usap-dc.org/view/dataset/600137"}], "date_created": "Wed, 03 Jun 2015 00:00:00 GMT", "description": "Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their \"hot-spots\" and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets", "uid": "p0000346", "west": -180.0}, {"awards": "1250208 Friedlaender, Ari", "bounds_geometry": "POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63))", "dataset_titles": "Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "datasets": [{"dataset_uid": "600151", "doi": "10.15784/600151", "keywords": "Antarctica; Antarctic Peninsula; Biota; Oceans; Sample/collection Description; Sample/Collection Description; Southern Ocean; Whales", "people": "Friedlaender, Ari; Nowacek, Douglas; Johnston, David", "repository": "USAP-DC", "science_program": null, "title": "Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "url": "https://www.usap-dc.org/view/dataset/600151"}], "date_created": "Mon, 10 Mar 2014 00:00:00 GMT", "description": "Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities.", "east": -60.0, "geometry": "POINT(-70 -66.5)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -63.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Friedlaender, Ari; Nowacek, Douglas; Johnston, David", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "LTER", "south": -70.0, "title": "RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region", "uid": "p0000666", "west": -80.0}, {"awards": "0440687 Costa, Daniel", "bounds_geometry": "POLYGON((-68.2775 -52.7602,-67.59761 -52.7602,-66.91772 -52.7602,-66.23783 -52.7602,-65.55794 -52.7602,-64.87805 -52.7602,-64.19816 -52.7602,-63.51827 -52.7602,-62.83838 -52.7602,-62.15849 -52.7602,-61.4786 -52.7602,-61.4786 -54.24701,-61.4786 -55.73382,-61.4786 -57.22063,-61.4786 -58.70744,-61.4786 -60.19425,-61.4786 -61.68106,-61.4786 -63.16787,-61.4786 -64.65468,-61.4786 -66.14149,-61.4786 -67.6283,-62.15849 -67.6283,-62.83838 -67.6283,-63.51827 -67.6283,-64.19816 -67.6283,-64.87805 -67.6283,-65.55794 -67.6283,-66.23783 -67.6283,-66.91772 -67.6283,-67.59761 -67.6283,-68.2775 -67.6283,-68.2775 -66.14149,-68.2775 -64.65468,-68.2775 -63.16787,-68.2775 -61.68106,-68.2775 -60.19425,-68.2775 -58.70744,-68.2775 -57.22063,-68.2775 -55.73382,-68.2775 -54.24701,-68.2775 -52.7602))", "dataset_titles": "Expedition Data; Expedition data of LMG0706; Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "datasets": [{"dataset_uid": "001534", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0705"}, {"dataset_uid": "002713", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "002714", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0706", "url": "https://www.rvdata.us/search/cruise/LMG0706"}, {"dataset_uid": "600044", "doi": "10.15784/600044", "keywords": "Bellingshausen Sea; Biota; Oceans; Seals; Southern Ocean", "people": "Klinck, John M.; Goebel, Michael; Hofmann, Eileen; Costa, Daniel; Crocker, Daniel", "repository": "USAP-DC", "science_program": null, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "url": "https://www.usap-dc.org/view/dataset/600044"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. \u003cbr/\u003e\u003cbr/\u003eRecent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute.", "east": -61.4786, "geometry": "POINT(-64.87805 -60.19425)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e CTD; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e TURBIDITY METERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROFILERS/SOUNDERS \u003e ACOUSTIC SOUNDERS \u003e ADCP", "is_usap_dc": true, "keywords": "Not provided; R/V LMG", "locations": null, "north": -52.7602, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Costa, Daniel; Hofmann, Eileen; Goebel, Michael; Crocker, Daniel; Sidell, Bruce; Klinck, John M.", "platforms": "Not provided; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG", "repo": "R2R", "repositories": "R2R; USAP-DC", "science_programs": null, "south": -67.6283, "title": "Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection", "uid": "p0000082", "west": -68.2775}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal
|
1643575 1644256 1644004 |
2023-05-12 | Costa, Daniel; Trumble, Stephen J; Kanatous, Shane | This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging. | POLYGON((-66.534369 -52.962091,-65.3857434 -52.962091,-64.2371178 -52.962091,-63.0884922 -52.962091,-61.9398666 -52.962091,-60.791241 -52.962091,-59.6426154 -52.962091,-58.4939898 -52.962091,-57.3453642 -52.962091,-56.1967386 -52.962091,-55.048113 -52.962091,-55.048113 -54.530129,-55.048113 -56.098167000000004,-55.048113 -57.666205000000005,-55.048113 -59.234243,-55.048113 -60.802281,-55.048113 -62.370319,-55.048113 -63.938357,-55.048113 -65.506395,-55.048113 -67.074433,-55.048113 -68.642471,-56.1967386 -68.642471,-57.3453642 -68.642471,-58.4939898 -68.642471,-59.6426154 -68.642471,-60.791241 -68.642471,-61.9398666 -68.642471,-63.0884922 -68.642471,-64.2371178 -68.642471,-65.3857434 -68.642471,-66.534369 -68.642471,-66.534369 -67.074433,-66.534369 -65.506395,-66.534369 -63.938356999999996,-66.534369 -62.370319,-66.534369 -60.802281,-66.534369 -59.234243,-66.534369 -57.666205,-66.534369 -56.098167000000004,-66.534369 -54.530129,-66.534369 -52.962091)) | POINT(-60.791241 -60.802281) | false | false | ||||
Collaborative Research: Foraging Ecology and Physiology of the Leopard Seal
|
1644004 |
2022-12-06 | Trumble, Stephen J |
|
This research project is a multidisciplinary effort that brings together a diverse team of scientists from multiple institutions together to understand the foraging behavior and physiology of leopard seals and their role in the Southern Ocean food web. The project will examine the physiology and behavior of leopard seals to in an effort to determine their ability to respond to potential changes in their habitat and foraging areas. Using satellite tracking devices the team will examine the movement and diving behavior of leopard seals and couple this information with measurements of their physiological capacity. The project will determine whether leopard seals- who feed on diverse range of prey- are built differently than their deep diving relatives the Weddell and elephant seal who feed on fish and squid. The team will also determine whether leopard seals are operating at or near their physiological capability to determine how much, if any, ?reserve capacity? they might have to forage and live in changing environments. A better understanding of their home ranges, movement patterns, and general behavior will also be informative to help in managing human-leopard seal interactions. The highly visual nature of the data and analysis for this project lends itself to public and educational display and outreach, particularly as they relate to the changing Antarctic habitats. The project will use the research results to educate the public on the unique physiological and ecological adaptations to extreme environments seen in diving marine mammals, including adaptations to exercise under low oxygen conditions and energy utilization, which affect and dictate the lifestyle of these exceptional organisms. The results of the project will also contribute to the broader understanding that may enhance the aims of managing marine living resources. The leopard seal is an apex predator in the Antarctic ecosystem. This project seeks to better understand the ability of the leopard seal to cope with a changing environment. The project will first examine the foraging behavior and habitat utilization of leopard seals using satellite telemetry. Specifically, satellite telemetry tags will be used to obtain dive profiles and movement data for individuals across multiple years. Diet and trophic level positions across multiple temporal scales will then be determined from physiological samples (e.g., blood, vibrissae, blubber fatty acids, stable isotopes, fecal matter). Oceanographic data will be integrated with these measures to develop habitat models that will be used to assess habitat type, habitat utilization, habitat preference, and home range areas for individual animals. Diet composition for individual seals will be evaluated to determine whether specific animals are generalists or specialists. Second, the team will investigate the physiological adaptations that allow leopard seals to be apex predators and determine to what extent leopard seals are working at or near their physiological limit. Diving behavior and physiology of leopard seals will be evaluated (for instance the aerobic dive limit for individual animals and skeletal muscle adaptations will be determined for diving under hypoxic conditions). Data from time-depth recorders will be used to determine foraging strategies for individual seals, and these diving characteristics will be related to physiological variables (e.g., blood volume, muscle oxygen stores) to better understand the link between foraging behavior and physiology. The team will compare myoglobin storage in swimming muscles associated with both forelimb and hind limb propulsion and the use of anaerobic versus aerobic metabolic systems while foraging. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||
Move, Adapt, or Change: Examining the Adaptive Capacity of a Southern Ocean Apex Predator, the Leopard Seal
|
2146068 |
2022-09-12 | Kienle, Sarah; Trumble, Stephen J; Bonin, Carolina | No dataset link provided | The leopard seal (Hydrurga leptonyx) is an enigmatic apex predator in the rapidly changing Southern Ocean. As top predators, leopard seals play a disproportionately large role in ecosystem functioning and act as sentinel species that can track habitat changes. How leopard seals respond to a warming environment depends on their adaptive capacity, that is a species’ ability to cope with environmental change. However, leopard seals are one of the least studied apex predators on Earth, hindering our ability to predict how the species is responding to polar environmental changes. Investigating the adaptability of Antarctic biota in a changing system aligns with NSF’s Strategic Vision for Investments in Antarctic and Southern Ocean Research. This research, which is tightly integrated with educational and outreach activities, will increase diversity in STEM and Antarctic science by recruiting students from historically underrepresented groups in STEM and providing training, mentoring, and educational opportunities at an emerging Hispanic Serving Institution and a Historically Black Colleges and Universities campus. This project will improve STEM education and science literacy via museum collaborations, creation of informational videos and original artwork depicting the research. The proposal supports data and sample reuse in polar research and long-term reuse of scientific data, thereby maximizing NSF’s investment in previous field research and reducing operational costs. The researchers will investigate leopard seals adaptive capacity to the warming Southern Ocean by quantifying their ability to move (dispersal ability), adapt (genetic diversity), and change (plasticity). Aim 1 of the research will determine leopard seals’ dispersal ability by assessing their distribution and movement patterns. Aim 2 will quantify genetic diversity by analyzing genetic variability and population structure and Aim 3 will examine phenotypic plasticity by evaluating changes in their ecological niche and physiological responses. The international, multidisciplinary team will analyze existing data (e.g., photographs, census data, life history data, tissue samples, body morphometrics) collected from leopard seals across the Southern Ocean over the last decade. Additionally, land- and ship-based field efforts will generate comparable data from unsampled regions in the Southern Ocean. The research project will analyze these historical and contemporary datasets to evaluate the adaptive capacity of leopard seals against the rapidly warming Southern Ocean. This research is significant because changes in the distribution, genetic diversity, and ecophysiology of leopard seals can dramatically restructure polar and subpolar communities. Further, the research will expand understanding of leopard seals’ ecological role, likely characterizing the species as flexible polar and subpolar predators throughout the Southern Hemisphere. The findings of this research will be relevant for use in ecosystem-based management decisions—including the design of Marine Protected Areas— across three continents. This study will highlight intrinsic traits that determine species’ adaptive capacity, as well as showcase the dynamic links between polar and subpolar ecosystems. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | None | None | false | false | |||
Retrospective Analysis of Antarctic Tracking data (RAATD): International Crabeater and Weddell Seal Tracking Data Sets
|
1321782 |
2015-06-03 | Costa, Daniel |
|
Identifying the basic habitat requirements of Antarctic predators is fundamental to understanding how they will respond to the human-induced challenges of commercial fisheries and climate change. This understanding can only be achieved if the underlying linkages to physical processes are related to animal movements. As part of the international Retrospective Analysis of Antarctic Tracking Data (RAATD) organized by the SCAR Expert Group of Birds and Marine Mammals, this research will collate and synthesize tracking data from crabeater seals, Lobodon carcinophagus, and Weddell seals, Leptonychotes weddelli. These data will be combined with all available data from the Southern Ocean that has been collected by researchers from Norway, United Kingdom, Germany, Australia and the USA. These data will be analyzed using a common analytical approach and synthesized into a synoptic view of these two species across the Southern Ocean. The diving and movement patterns will be examined for each species. As well, the total home range and core habitat utilization patterns for each species and region will be determined. This study will develop global habitat maps for each species based on physical and biological attributes of their "hot-spots" and then overlay all the species specific maps to identify multi-species areas of ecological significance. Broader impacts include support and training for a postdoctoral scholar, the production of a publicly available database and the participation in an international data synthesis effort. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||
RAPID: Linking the Movement Patterns and Foraging Behavior of Humpback Whales to their Prey across Multiple Spatial Scales within the LTER Study Region
|
1250208 |
2014-03-10 | Friedlaender, Ari; Nowacek, Douglas; Johnston, David |
|
Whales play a central role in the ecology and biogeochemistry of the Southern Ocean. However, little is known regarding their distribution and behavior, in part because of challenges associated with studying these organisms from large research vessels. This research will take advantage of the unique opportunity presented by the 2012-2013 test run of the smaller, more mobile R/V Point Sur. This work will use the Point Sur to investigate humpback whales in the waters studied by the Palmer Long Term Ecological Research (LTER) Station off the Western Antarctic Peninsula (WAP). Employing a combination of long-term satellite-linked tags and short-term suction cup tags, researchers will investigate the distribution, abundance and foraging behaviors of whales in this region. Whale biogeography will then be related to quantitative surveys of krill, their primary food source. Hypotheses regarding whale distribution and foraging strategies as well as physical oceanographic features will be tested. The WAP is undergoing some of the most dramatic warming on the planet, and a better understanding of the ecology of top predators is central to developing an understanding of the impacts of this change. Results will be widely disseminated through publications as well as through presentations at national and international meetings. In addition, raw data will be made available through open-access databases. Finally, this work will be coordinated with the extensive infrastructure of the Palmer LTER site, enabling outreach and educational activities. | POLYGON((-80 -63,-78 -63,-76 -63,-74 -63,-72 -63,-70 -63,-68 -63,-66 -63,-64 -63,-62 -63,-60 -63,-60 -63.7,-60 -64.4,-60 -65.1,-60 -65.8,-60 -66.5,-60 -67.2,-60 -67.9,-60 -68.6,-60 -69.3,-60 -70,-62 -70,-64 -70,-66 -70,-68 -70,-70 -70,-72 -70,-74 -70,-76 -70,-78 -70,-80 -70,-80 -69.3,-80 -68.6,-80 -67.9,-80 -67.2,-80 -66.5,-80 -65.8,-80 -65.1,-80 -64.4,-80 -63.7,-80 -63)) | POINT(-70 -66.5) | false | false | |||
Habitat Utilization of Southern Ocean Seals: Foraging Behavior of Crabeater and Elephant Seals Using Novel Methods of Oceanographic Data Collection
|
0440687 |
2010-05-04 | Costa, Daniel; Hofmann, Eileen; Goebel, Michael; Crocker, Daniel; Sidell, Bruce; Klinck, John M. | As long-lived animals, marine mammals must be capable of accommodating broad variations in food resources over large spatial and temporal scales. While this is true of all marine mammals, variation in the physical and biological environmental is particularly profound in the Southern Ocean. A basic understanding of the foraging behavior and habitat utilization of pelagic predators requires knowledge of this spatial and temporal variation, coupled with information of how they respond to these changes. Current understanding of these associations is primarily limited to population level studies where animal abundance has been correlated with oceanography. Although these studies are informative, they cannot provide insights into the strategies employed by individual animals nor can they provide insights into the spatial or temporal course of these interactions. <br/><br/>Recent technological advances in instrumentation make it possible to extend an understanding beyond the simple linkage of prey and predator distributions with environmental features. The key to understanding the processes that lead to high predator abundance is the identification of the specific foraging behaviors associated with different features of the water column. This study will accomplish these objectives by combining accurate positional data, measures of diving and foraging behavior, animal-derived water-column temperature and salinity data, and available oceanographic data. This project will examine the foraging behavior and habitat utilization of two species of contrasting foraging ecology, the southern elephant seal, Mirounga leonina, and the crabeater seal, Lobodon carcinophagus in the Western Antarctic Peninsula, a region of strong environmental gradients. Although these two species are phylogenetically related, they utilize substantially different but adjacent habitat types. Southern elephant seals are predominantly pelagic, moving throughout the southern ocean, venturing occasionally into the seasonal pack ice whereas crabeater seals range throughout the seasonal pack ice, venturing occasionally into open water. The relationship of specific foraging behaviors and animal movement patterns to oceanographic and bathymetric features develop and test models of the importance of these features in defining habitat use will be determined along with a comparison of how individuals of each species respond to annual variability in the marine environment. The physical oceanography of the Southern Ocean is inherently complex as are the biological processes that are intrinsically linked to oceanographic processes. Significant resources are currently being directed toward developing mathematical models of physical oceanographic processes with the goals of better understanding the role that the Southern Ocean plays in global climate processes, predicting the responses of ocean and global scale processes to climate change, and understanding the linkages between physical and biological oceanographic processes. These efforts have been limited by the scarcity of oceanographic data in the region, especially at high latitudes in the winter months. This study will provide new and significant oceanographic data on temperature and salinity profiles in to further the understanding of the dynamics of the upper water column of west Antarctic Peninsula continental shelf waters. Outreach activities include website development and an association with a marine education program at the Monterrey Bay Aquarium Research Institute. | POLYGON((-68.2775 -52.7602,-67.59761 -52.7602,-66.91772 -52.7602,-66.23783 -52.7602,-65.55794 -52.7602,-64.87805 -52.7602,-64.19816 -52.7602,-63.51827 -52.7602,-62.83838 -52.7602,-62.15849 -52.7602,-61.4786 -52.7602,-61.4786 -54.24701,-61.4786 -55.73382,-61.4786 -57.22063,-61.4786 -58.70744,-61.4786 -60.19425,-61.4786 -61.68106,-61.4786 -63.16787,-61.4786 -64.65468,-61.4786 -66.14149,-61.4786 -67.6283,-62.15849 -67.6283,-62.83838 -67.6283,-63.51827 -67.6283,-64.19816 -67.6283,-64.87805 -67.6283,-65.55794 -67.6283,-66.23783 -67.6283,-66.91772 -67.6283,-67.59761 -67.6283,-68.2775 -67.6283,-68.2775 -66.14149,-68.2775 -64.65468,-68.2775 -63.16787,-68.2775 -61.68106,-68.2775 -60.19425,-68.2775 -58.70744,-68.2775 -57.22063,-68.2775 -55.73382,-68.2775 -54.24701,-68.2775 -52.7602)) | POINT(-64.87805 -60.19425) | false | false |