{"dp_type": "Project", "free_text": "Mantle Melting"}
[{"awards": "1443522 Wannamaker, Philip", "bounds_geometry": "POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15))", "dataset_titles": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "datasets": [{"dataset_uid": "601493", "doi": "10.15784/601493", "keywords": "Antarctica; Mantle Melting; Mount Erebus", "people": "Wannamaker, Philip; Hill, Graham", "repository": "USAP-DC", "science_program": null, "title": "Erebus volcano/Ross Island Magnetotelluric (MT) data", "url": "https://www.usap-dc.org/view/dataset/601493"}], "date_created": "Mon, 05 Feb 2024 00:00:00 GMT", "description": "General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth\u0027s interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms.", "east": 169.4, "geometry": "POINT(167.7 -77.525)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS", "is_usap_dc": true, "keywords": "MAGNETIC FIELD; FIELD SURVEYS; Ross Island; Magnetotelluric; Mount Erebus", "locations": "Ross Island; Mount Erebus", "north": -77.15, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Wannamaker, Philip", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure", "uid": "p0010444", "west": 166.0}, {"awards": "1643494 Saal, Alberto", "bounds_geometry": "POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345))", "dataset_titles": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "datasets": [{"dataset_uid": "601519", "doi": "10.15784/601519", "keywords": "Antarctica; Antarctic Peninsula; Chemical Composition; Chemistry:rock; Chemistry:Rock; Geochemistry; Isotope Data; Trace Elements", "people": "Saal, Alberto", "repository": "USAP-DC", "science_program": null, "title": "Major, trace elements contents and radiogenic isotopes of erupted lavas Antarctic Peninsula and Phoenix Ridge", "url": "https://www.usap-dc.org/view/dataset/601519"}], "date_created": "Tue, 22 Jun 2021 00:00:00 GMT", "description": "The Earth\u0027s mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth\u0027s mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth\u0027s interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth\u0027s atmosphere and oceans. Establishing the cycles of volatiles between the Earth\u0027s interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge.", "east": -53.367, "geometry": "POINT(-60.7205 -61.24585)", "instruments": null, "is_usap_dc": true, "keywords": "Antarctic Peninsula; USA/NSF; USAP-DC; TRACE ELEMENTS; MAJOR ELEMENTS; Amd/Us; LABORATORY; ROCKS/MINERALS/CRYSTALS; Magmatic Volatiles; AMD", "locations": "Antarctic Peninsula", "north": -57.345, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Saal, Alberto", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.1467, "title": "Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula", "uid": "p0010196", "west": -68.074}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": "POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))", "dataset_titles": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "datasets": [{"dataset_uid": "601331", "doi": "10.15784/601331", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "people": "Panter, Kurt", "repository": "USAP-DC", "science_program": null, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "url": "https://www.usap-dc.org/view/dataset/601331"}], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent.", "east": -153.4, "geometry": "POINT(-153.75 -87)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD INVESTIGATION; Mantle Melting; Magma Differentiation; Geochronology; Glacial Volcanism; GEOCHEMISTRY; Major Elements; ISOTOPES; Trace Elements; Transantarctic Mountains; LABORATORY; LAVA COMPOSITION/TEXTURE; USAP-DC; LAND RECORDS", "locations": "Transantarctic Mountains", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "uid": "p0010105", "west": -154.1}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Magma Sources, Residence and Pathways of Mount Erebus Phonolitic Volcano, Antarctica, from Magnetotelluric Resistivity Structure
|
1443522 |
2024-02-05 | Wannamaker, Philip |
|
General Description: This project is intended to reveal the magma source regions, staging areas, and eruptive pathways within the active volcano Mount Erebus. This volcano is an end-member type known as phonolitic, which refers to the lava composition, and is almost purely carbon-dioxide-bearing and occurs in continental rift settings. It is in contrast to the better known water-bearing volcanoes which occur at plate boundary settings (such as Mount St Helens or Mount Fuji). Phonolitic volcanic eruptions elsewhere such as Tamboro or Vesuvius have caused more than 50,000 eruption related fatalities. Phonolites are also associated with rare earth element deposits, giving them economic interest. To illuminate the inner workings of Mount Erebus, we will cover the volcano with a dense network of geophysical probes based on magnetotelluric (MT) measurements. MT makes use of naturally occurring electromagnetic (EM) waves generated mainly by the sun as sources to provide images of the electrical conductivity structure of the Earth's interior. Conductivity is sensitive to the presence of fluids and melts in the Earth and so is well suited to understanding volcanic processes. The project is a cooperative effort between scientists from the United States, New Zealand, Japan and Canada. It implements new technology developed by the lead investigator and associates that allows such measurements to be taken on snow-covered terrains. This has applicability for frozen environments generally, such as resource exploration in the Arctic. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. Technical Description: The investigators propose to test magmatic evolution models for Mount Erebus volcano, Antarctica, using the magnetotelluric (MT) method. The phonolite lava flow compositions on Mount Erebus are uncommon, but provide a window into the range of upper mantle source compositions and melt differentiation paths. Explosive phonolite eruptions have been known worldwide for devastating eruptions such as Tambora and Vesuvius, and commonly host rare earth element deposits. In the MT method, temporal variations in the Earth's natural electromagnetic (EM) field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 100 kilometers. This effort will consist of approximately 100 MT sites, with some concentration in the summit area. Field acquisition will take place over two field seasons. The main goals are to 1) confirm the existence and the geometry of the uppermost magma chamber thought to reside at 5-10 kilometer depths; 2) attempt to identify, in the deeper resistivity structure, the magma staging area near the crust-mantle boundary; 3) image the steep, crustal-scale, near-vertical conduit carrying magma from the mantle; 4) infer the physical and chemical state from geophysical properties of a CO2-dominated mafic shield volcano; and 5) constrain the relationships between structural and magmatic/ hydrothermal activity related to the Terror Rift. Tomographic imaging of the interior resistivity will be performed using a new inversion platform developed at Utah, based on the deformable edge finite element method, that is the best available for accommodating the steep topography of the study area. The project is an international cooperation between University of Utah, GNS Science Wellington New Zealand (G. Hill, Co-I), and Tokyo Institute of Technology Japan (Y. Ogawa, Co-I), plus participation by University of Alberta (M. Unsworth) and Missouri State University (K. Mickus). Instrument deployments will be made exclusively by helicopter. The project implements new technology that allows MT measurements to be taken on snow-covered terrains. The project supports a new post-doctoral researcher, and leverages imaging and measurement methods developed through support by other agencies and interfaced with commercial platforms. | POLYGON((166 -77.15,166.34 -77.15,166.68 -77.15,167.02 -77.15,167.36 -77.15,167.7 -77.15,168.04 -77.15,168.38 -77.15,168.72 -77.15,169.06 -77.15,169.4 -77.15,169.4 -77.22500000000001,169.4 -77.30000000000001,169.4 -77.375,169.4 -77.45,169.4 -77.525,169.4 -77.60000000000001,169.4 -77.67500000000001,169.4 -77.75,169.4 -77.825,169.4 -77.9,169.06 -77.9,168.72 -77.9,168.38 -77.9,168.04 -77.9,167.7 -77.9,167.36 -77.9,167.02 -77.9,166.68 -77.9,166.34 -77.9,166 -77.9,166 -77.825,166 -77.75,166 -77.67500000000001,166 -77.60000000000001,166 -77.525,166 -77.45,166 -77.375,166 -77.30000000000001,166 -77.22500000000001,166 -77.15)) | POINT(167.7 -77.525) | false | false | |||
Magmatic Volatiles, Unraveling the Reservoirs and Processes of the Volcanism in the Antarctic Peninsula
|
1643494 |
2021-06-22 | Saal, Alberto |
|
The Earth's mantle influences the movement of tectonic plates and volcanism on the surface. One way to understand the composition and nature of the Earth's mantle is by studying the chemistry of basalts, which originate by volcanic eruptions of partially melting mantle rocks. This study will establish the budget and distribution of volatile elements (hydrogen, carbon, fluorine, chlorine, sulfur) in volcanic basalts to better understand the composition of the Earth's interior. Volatiles influence mantle melting, magma crystallization, magma migration and volcanic eruptions. Their abundances and spatial distribution provide important constraints on models of mantle flow and temperature. Moreover, volatiles are key constituents of the Earth's atmosphere and oceans. Establishing the cycles of volatiles between the Earth's interior and surface is of fundamental importance to understand the long-term evolution of our planet. This project supports a graduate student and research scientist at Brown University. It promotes the collaboration with geochemists from eleven institutions representing six different countries: USA, Germany, United Kingdom, Argentina, South Korea and Japan, and utilizes several NSF-funded USA analytical facilities. Communication of results will occur through: 1) peer-reviewed journals, presentations at conferences and invited university lectures, 2) hands-on science learning activities for local elementary and high school classes, and 3) outreach to the general audience through public lectures. Over the last 60 years of funded research, the Antarctic Peninsula and nearby ocean ridges have been extensively investigated providing information on the origin of the magmatism, and the composition, structure, temperature and evolution of the lithospheric and asthenospheric mantle. Diverse hypotheses have been proposed for the origin of the magmatism in the Antarctic Peninsula, from flux melting of the mantle wedge during devolatilization of the subducted Phoenix plate, to adiabatic decompression melting of a carbonated and hydrous asthenosphere, to melting of a volatile-rich metasomatized subcontinental lithospheric mantle. All proposed hypotheses invoke the role of volatiles. Surprisingly, data on the volatile contents of basalts and mantle from this region are non-existent. This is a significant omission from the geochemical data set, given the important role volatile elements play in the generation and composition of magmas and their sources. The focus of our research is to examine the regional variations in volatile contents (C, H, F, S, Cl) in geochemically well-characterized Pliocene-recent basalts from the Antarctic Peninsula and Phoenix ridge. Our goal is to establish the budget and distribution of volatiles in the mantle to understand 1) the processes responsible for the generation of chemically diverse basalts in close spatial and temporal proximity and 2) the nature (lithology, composition and temperature) of the heterogeneous mantle source beneath the Antarctic Peninsula and Phoenix ridge. | POLYGON((-68.074 -57.345,-66.6033 -57.345,-65.1326 -57.345,-63.6619 -57.345,-62.1912 -57.345,-60.7205 -57.345,-59.2498 -57.345,-57.7791 -57.345,-56.3084 -57.345,-54.8377 -57.345,-53.367 -57.345,-53.367 -58.12517,-53.367 -58.90534,-53.367 -59.68551,-53.367 -60.46568,-53.367 -61.24585,-53.367 -62.02602,-53.367 -62.80619,-53.367 -63.58636,-53.367 -64.36653,-53.367 -65.1467,-54.8377 -65.1467,-56.3084 -65.1467,-57.7791 -65.1467,-59.2498 -65.1467,-60.7205 -65.1467,-62.1912 -65.1467,-63.6619 -65.1467,-65.1326 -65.1467,-66.6033 -65.1467,-68.074 -65.1467,-68.074 -64.36653,-68.074 -63.58636,-68.074 -62.80619,-68.074 -62.02602,-68.074 -61.24585,-68.074 -60.46568,-68.074 -59.68551,-68.074 -58.90534,-68.074 -58.12517,-68.074 -57.345)) | POINT(-60.7205 -61.24585) | false | false | |||
Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province
|
1443576 |
2020-06-05 | Panter, Kurt |
|
Predictions of future sea level rise require better understanding of the changing dynamics of the Greenland and Antarctic ice sheets. One way to better understand the past history of the ice sheets is to obtain records from inland ice for past geological periods, particularly in Antarctica, the world?s largest remaining ice sheet. Such records are exceedingly rare, and can be acquired at volcanic outcrops in the La Gorce Mountains of the central Transantarctic Mountains. Volcanoes now exposed within the La Gorce Mountains erupted beneath the East Antarctic ice sheet and the data collected will record how thick the ice sheet was in the past. In addition, information will be used to determine the thermal conditions at the base of the ice sheet, which impacts ice sheet stability. The project will also investigate the origin of volcanic activity in Antarctica and links to the West Antarctic Rift System (WARS). The WARS is a broad area of extended (i.e. stretched) continental crust, similar to that found in East Africa, and volcanism is wide spread and long-lived (65 million years to currently active) and despite more than 50 years of research, the fundamental cause of volcanism and rifting in Antarctica is still vigorously debated. The results of this award therefore also potentially impact the study of oceanic volcanism in the entire southwestern Pacific region (e.g., New Zealand and Australia), where volcanic fields of similar composition and age have been linked by common magma sources and processes. The field program includes a graduate student who will work on the collection, analysis, and interpretation of petrological data as part of his/her Masters project. The experience and specialized analytical training being offered will improve the quality of the student?s research and optimize their opportunities for their future. The proposed work fosters faculty and student national and international collaboration, including working with multi-user facilities that provide advanced technological mentoring of science students. Results will be broadly disseminated in peer-reviewed journals, public presentations at science meetings, and in outreach activities. Petrologic and geochemical data will be disseminated to be the community through the Polar Rock Repository. The study of subglacially erupted volcanic rocks has been developed to the extent that it is now the most powerful proxy methodology for establishing precise ?snapshots? of ice sheets, including multiple critical ice parameters. Such data should include measurements of ice thickness, surface elevation and stability, which will be used to verify, or reject, published semi-empirical models relating ice dynamics to sea level changes. In addition to establishing whether East Antarctic ice was present during the formation of the volcanoes, data will be used to derive the coeval ice thicknesses, surface elevations and basal thermal regime(s) in concert with a precise new geochronology using the 40Ar/39Ar dating method. Inferences from measurement of standard geochemical characteristics (major, trace elements and Sr, Nd, Pb, O isotopes) will be used to investigate a possible relationship between the volcanoes and the recently discovered subglacial ridge under the East Antarctic ice, which may be a rift flank uplift. The ridge has never been sampled, is undated and its significance is uncertain. The data will provide important new information about the deep Earth and geodynamic processes beneath this mostly ice covered and poorly understood sector of the Antarctic continent. | POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9)) | POINT(-153.75 -87) | false | false |