{"dp_type": "Project", "free_text": "Horizontal Ice Core"}
[{"awards": "1744961 Olesik, John", "bounds_geometry": "POLYGON((161.711586 -77.75758,161.71322740000002 -77.75758,161.7148688 -77.75758,161.71651020000002 -77.75758,161.7181516 -77.75758,161.719793 -77.75758,161.72143440000002 -77.75758,161.7230758 -77.75758,161.72471720000001 -77.75758,161.7263586 -77.75758,161.728 -77.75758,161.728 -77.75784200000001,161.728 -77.758104,161.728 -77.758366,161.728 -77.758628,161.728 -77.75889000000001,161.728 -77.759152,161.728 -77.75941399999999,161.728 -77.759676,161.728 -77.759938,161.728 -77.7602,161.7263586 -77.7602,161.72471720000001 -77.7602,161.7230758 -77.7602,161.72143440000002 -77.7602,161.719793 -77.7602,161.7181516 -77.7602,161.71651020000002 -77.7602,161.7148688 -77.7602,161.71322740000002 -77.7602,161.711586 -77.7602,161.711586 -77.759938,161.711586 -77.759676,161.711586 -77.75941399999999,161.711586 -77.759152,161.711586 -77.75889000000001,161.711586 -77.758628,161.711586 -77.758366,161.711586 -77.758104,161.711586 -77.75784200000001,161.711586 -77.75758))", "dataset_titles": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP; Taylor Glacier Atmospheric Mineral Nanoparticles and Microparticles in Antarctic Ice during the last Climatic Cycle", "datasets": [{"dataset_uid": "601879", "doi": "10.15784/601879", "keywords": "Antarctica; Cryosphere; Particle Size; Taylor Glacier", "people": "Olesik, John; Kutuzov, Stanislav; Lomax-Vogt, Madeleine; Carter, Lucas; Sullivan, Ryan; Lowry, Greg; Gabrielli, Paolo", "repository": "USAP-DC", "science_program": null, "title": "Elemental composition of individual nanoparticles and fine particles in 28 Taylor Glacier ice core samples 9000 to 44000 yrs BP", "url": "https://www.usap-dc.org/view/dataset/601879"}, {"dataset_uid": "200426", "doi": "https://doi.org/10.25921/bd1k-mv46", "keywords": null, "people": null, "repository": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive", "science_program": null, "title": "Taylor Glacier Atmospheric Mineral Nanoparticles and Microparticles in Antarctic Ice during the last Climatic Cycle", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/40380"}], "date_created": "Mon, 06 Jan 2025 00:00:00 GMT", "description": "The main goal of this project is to identify and geochemically characterize atmospheric mineral nanoparticles and fine microparticles in pre-industrial Antarctic ice during the last climatic cycle. Recent technological and industrial development is introducing a large number of natural and engineered nanoparticles and fine microparticles into Earth\u0027s atmosphere. These constitute a concern for human health, mainly due to their high chemical reactivity. While many atmospheric nanoparticle studies have been performed in modern urban environments, there is essentially no information about their occurrence in a pristine pre-industrial atmosphere. This information is critical, as it constitutes an important benchmark for comparison to the modern atmosphere. Information on nanoparticles from the pre-industrial atmosphere can be obtained from atmospheric mineral nanoparticles that are entrapped in remote pre-industrial Antarctic ice covering the last climatic cycles. Mineral nanoparticles and fine microparticles can also affect several climatic processes. First, they directly influence the global energy balance by reflecting solar radiation and indirectly influence through changes in cloud formation (and clouds also reflect solar radiation). Second, atmospheric mineral nanoparticles such as iron oxides could have fertilized the oceans, causing blooms of marine phytoplankton that may have drawn part of the atmospheric carbon dioxide into the oceans during glacial ages (the \"biological pump\"). Third, a significant amount of extraterrestrial material entering the Earth atmosphere is thought to be transported to the poles as nanoparticles called \"meteoric smoke\" that form polar stratospheric clouds implicated in changes of the ozone hole.\u003cbr/\u003e\u003cbr/\u003eThis project aims to establish the natural background of unknown classes of glacial particles whose size is below the detection limit of the conventional dust analyzers. The team will take advantage of ice samples from the \"horizontal ice core\", already extracted from the remote Taylor Glacier (coastal East Antarctica) covering the last ~44,000 years. These ancient samples are particularly suited to project scope because i) a large ice volume is available ii) the team expects to find a markedly different geochemistry between nanoparticles deposited during the last glacial age and during the current interglacial. A set of advanced techniques including Transmission Electron Microscopy, Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS), and spICP-Time of Flight MS will be employed to determine mineral nanoparticle and fine microparticle sizes, number/volume, and chemical composition. So far, the elemental composition of dust entrapped in polar ice has been mainly determined by Inductively Coupled Plasma Sector Field Mass Spectrometry and it is generally assumed to be descriptive of the coarse aeolian dust fraction. However, project will test whether or not the determined elemental composition is instead mainly linked to the previously unobserved smaller mineral nanoparticle content. Results on nanoparticles will be compared with a set of new experiments of total dust composition measured by Inductively Coupled Plasma Sector Field Mass Spectrometry, using the same ice samples from Taylor Glacier.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 161.728, "geometry": "POINT(161.719793 -77.75889000000001)", "instruments": null, "is_usap_dc": true, "keywords": "MICROPARTICLE CONCENTRATION; Taylor Glacier", "locations": "Taylor Glacier", "north": -77.75758, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Olesik, John", "platforms": null, "repo": "USAP-DC", "repositories": "NOAA\u0027s National Centers for Environmental Information World Data Service Paleo archive; USAP-DC", "science_programs": null, "south": -77.7602, "title": "Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle", "uid": "p0010492", "west": 161.711586}, {"awards": "0838936 Brook, Edward J.; 0839031 Severinghaus, Jeffrey", "bounds_geometry": "POINT(161.75 -77.75)", "dataset_titles": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica; Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica; Taylor Glacier chemistry data and Taylor Dome TD2015 time scale; Taylor Glacier CO2 record; Taylor Glacier Gas Isotope Data", "datasets": [{"dataset_uid": "601103", "doi": "10.15784/601103", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Horizontal Ice Core; Ice Core Records; Taylor Dome; Taylor Dome Ice Core", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier chemistry data and Taylor Dome TD2015 time scale", "url": "https://www.usap-dc.org/view/dataset/601103"}, {"dataset_uid": "600165", "doi": "10.15784/600165", "keywords": "Antarctica; Cosmogenic; Geochemistry; Ice Core Records; Paleoclimate; Radiocarbon; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of in situ cosmogenic 14C from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600165"}, {"dataset_uid": "601029", "doi": "10.15784/601029", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Critical Zone; Geochemistry; Methane; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Taylor Glacier; Transantarctic Mountains; Younger Dryas", "people": "Petrenko, Vasilii; Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Measurements of 14C-methane for the Younger Dryas - Preboreal Transition from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601029"}, {"dataset_uid": "601033", "doi": "10.15784/601033", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciology; Ice Core Records; Isotope; Solid Earth; Taylor Glacier; Transantarctic Mountains", "people": "Severinghaus, Jeffrey P.", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier Gas Isotope Data", "url": "https://www.usap-dc.org/view/dataset/601033"}, {"dataset_uid": "000158", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Taylor Glacier CO2 record", "url": "ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/taylor/taylor2016d13co2.txt"}], "date_created": "Tue, 29 Mar 2016 00:00:00 GMT", "description": "Severinghaus/0839031 \u003cbr/\u003e\u003cbr/\u003eThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the \"clathrate hypothesis\" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (\u003e1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a \"horizontal ice core\" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica.", "east": 161.75, "geometry": "POINT(161.75 -77.75)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Not provided; USAP-DC", "locations": null, "north": -77.75, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e PLEISTOCENE", "persons": "Brook, Edward J.; Severinghaus, Jeffrey P.", "platforms": "Not provided; OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "NCEI; USAP-DC", "science_programs": null, "south": -77.75, "title": "Collaborative Research: A \"Horizontal Ice Core\" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica", "uid": "p0000099", "west": 161.75}, {"awards": "1245821 Brook, Edward J.; 1245659 Petrenko, Vasilii; 1246148 Severinghaus, Jeffrey", "bounds_geometry": "POINT(162.167 -77.733)", "dataset_titles": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores; Last Interglacial Mean Ocean Temperature; Mean Ocean Temperature in Marine Isotope Stage 4; Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation; N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica; Taylor Glacier CO2 Isotope Data 74-59 kyr; Taylor Glacier Noble Gases - Younger Dryas; The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "datasets": [{"dataset_uid": "600163", "doi": "10.15784/600163", "keywords": "Antarctica; Atmosphere; Geochemistry; Ice Core Records; Isotope; Paleoclimate; Taylor Glacier; Transantarctic Mountains", "people": "Brook, Edward J.", "repository": "USAP-DC", "science_program": null, "title": "The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "url": "https://www.usap-dc.org/view/dataset/600163"}, {"dataset_uid": "601415", "doi": "10.15784/601415", "keywords": "Antarctica; Glaciology; Ice Core Data; Ice Core Records; Paleoclimate; Paleotemperature; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": null, "title": "Mean Ocean Temperature in Marine Isotope Stage 4", "url": "https://www.usap-dc.org/view/dataset/601415"}, {"dataset_uid": "601600", "doi": "10.15784/601600", "keywords": "Antarctica; Taylor Glacier", "people": "Menking, Andy; Menking, James; Shackleton, Sarah; Bauska, Thomas; Buffen, Aron; Brook, Edward J.; Barker, Stephen; Severinghaus, Jeffrey P.; Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Taylor Glacier CO2 Isotope Data 74-59 kyr", "url": "https://www.usap-dc.org/view/dataset/601600"}, {"dataset_uid": "601176", "doi": "10.15784/601176", "keywords": "Antarctica; CO2; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Methane; Noble Gas; Noble Gas Isotopes; Snow/ice; Snow/Ice; Taylor Glacier; Younger Dryas", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Taylor Glacier Noble Gases - Younger Dryas", "url": "https://www.usap-dc.org/view/dataset/601176"}, {"dataset_uid": "601198", "doi": "10.15784/601198", "keywords": "Antarctica; Blue Ice; Chemistry:ice; Chemistry:Ice; CO2; Dust; Gas; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core; Ice Core Records; Mass Spectrometer; Methane; Nitrogen Isotopes; Oxygen Isotope; Paleoclimate; Snow/ice; Snow/Ice; Taylor Dome; Taylor Dome Ice Core", "people": "Rhodes, Rachel; Bauska, Thomas; Baggenstos, Daniel; McConnell, Joseph; Severinghaus, Jeffrey P.; Menking, James; Brook, Edward J.; Marcott, Shaun; Barker, Stephen; Shackleton, Sarah; Dyonisius, Michael; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": null, "title": "Gas and Dust Measurements for Taylor Glacier and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/601198"}, {"dataset_uid": "601398", "doi": "10.15784/601398", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Data; Ice Core Gas Records; Ice Core Records; Marine Isotope Stage 4; MIS 4; Nitrous Oxide; Pleistocene; Taylor Dome Ice Core; Taylor Glacier", "people": "Dyonisius, Michael; Menking, James; Shackleton, Sarah; Schilt, Adrian; Brook, Edward J.; Severinghaus, Jeffrey P.; Petrenko, Vasilii", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "N2O Concentration and Isotope Data for 74-59 ka from Taylor Glacier, Antarctica", "url": "https://www.usap-dc.org/view/dataset/601398"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Dome C Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601218", "doi": "10.15784/601218", "keywords": "Antarctica; Carbon-14; Carbon Dioxide; Chemistry:ice; Chemistry:Ice; CO2; Dome C Ice Core; Epica; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice; Ice Core Chemistry; Ice Core Data; Ice Core Gas Records; Ice Core Records; Isotope Data; Last Interglacial; Mass Spectrometer; Mass Spectrometry; Methane; Oxygen; Oxygen Isotope; Paleotemperature; Pleistocene; Snow/ice; Snow/Ice; Taylor Dome Ice Core; Taylor Glacier", "people": "Shackleton, Sarah", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Last Interglacial Mean Ocean Temperature", "url": "https://www.usap-dc.org/view/dataset/601218"}, {"dataset_uid": "601260", "doi": "10.15784/601260", "keywords": "Antarctica; Carbon-14; Cosmogenic; Ice Core; Methane", "people": "Petrenko, Vasilii; Dyonisius, Michael", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Measurements of 14CH4 and 14CO in ice from Taylor Glacier: Last Deglaciation", "url": "https://www.usap-dc.org/view/dataset/601260"}], "date_created": "Mon, 13 Jul 2015 00:00:00 GMT", "description": "This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, \u0026#948;18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, \u0026#948;13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of \u0026#948;13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica.", "east": 162.167, "geometry": "POINT(162.167 -77.733)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "Not provided; USAP-DC; FIELD INVESTIGATION; Stratigraphy; FIELD SURVEYS; Antarctica; Paleoenvironment; Methane; Ice Core; Carbon Dioxide; FIXED OBSERVATION STATIONS; Stable Isotopes; Ablation Zone; Taylor Glacier; Nitrous Oxide; USA/NSF; LABORATORY; AMD; Cosmogenic; Amd/Us", "locations": "Taylor Glacier; Antarctica", "north": -77.733, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": -77.733, "title": "Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive", "uid": "p0000283", "west": 162.167}, {"awards": "0636506 Mayewski, Paul", "bounds_geometry": "POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7))", "dataset_titles": "Ion Concentrations from SPRESSO Ice Core, Antarctica; Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "datasets": [{"dataset_uid": "609471", "doi": "10.7265/N508638J", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; ITASE; Paleoclimate; South Pole; SPRESSO Ice Core", "people": "Korotkikh, Elena; Mayewski, Paul A.", "repository": "USAP-DC", "science_program": null, "title": "Ion Concentrations from SPRESSO Ice Core, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609471"}, {"dataset_uid": "609472", "doi": "10.7265/N5VH5KSV", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mt Moulton; Paleoclimate", "people": "Mayewski, Paul A.; Korotkikh, Elena", "repository": "USAP-DC", "science_program": null, "title": "Mt. Moulton Ice Trench Mass Spectrometry Data, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609472"}], "date_created": "Thu, 29 Jul 2010 00:00:00 GMT", "description": "This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research.", "east": -134.7, "geometry": "POINT(-136.2 -76.065)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e ICP-MS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e ION CHROMATOGRAPHS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS", "is_usap_dc": true, "keywords": "Ice Core Interpretation; Ions; US ITASE; Explorations; LABORATORY; Ice Core Data; Ice Core; Ice Analysis; Ice; Not provided; Antarctic Ice Sheet; Laboratory Investigation; Field Investigations; Ice Core Chemistry; Horizontal Ice Core; Ice Chemistry; Ice Sheet", "locations": "Antarctic Ice Sheet", "north": -75.7, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A.", "platforms": "Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.43, "title": "Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context", "uid": "p0000209", "west": -137.7}, {"awards": "0230348 Dunbar, Nelia; 0230021 Sowers, Todd; 0230316 White, James", "bounds_geometry": "POINT(135.1333 -76.05)", "dataset_titles": "Mount Moulton Isotopes and Other Ice Core Data", "datasets": [{"dataset_uid": "609640", "doi": "10.7265/N5FT8J0N", "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Epica Dome C; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Isotope; Lake Vostok; Mount Moulton; Paleoclimate; Talos Dome; Taylor Dome", "people": "White, James; Popp, Trevor; Steig, Eric J.", "repository": "USAP-DC", "science_program": null, "title": "Mount Moulton Isotopes and Other Ice Core Data", "url": "https://www.usap-dc.org/view/dataset/609640"}], "date_created": "Tue, 01 Aug 2006 00:00:00 GMT", "description": "The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation.", "east": 135.1333, "geometry": "POINT(135.1333 -76.05)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e MASS SPECTROMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "LABORATORY; Climate; Argon-40; 40Ar; Argon-39; FIELD SURVEYS; Chronology; Ice Core Gas Age; Gas Record; Ice Core; FIELD INVESTIGATION; Tephra; Mount Moulton; Not provided; Caldera; 39Ar; Stratigraphy; Ice Core Depth", "locations": "Mount Moulton", "north": -76.05, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.05, "title": "Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica", "uid": "p0000755", "west": 135.1333}, {"awards": "0229245 Hamilton, Gordon", "bounds_geometry": "POINT(135 -76)", "dataset_titles": null, "datasets": null, "date_created": "Thu, 30 Mar 2006 00:00:00 GMT", "description": "A \u0027horizontal ice core\u0027 was collected at the Mount Moulton blue ice field in West Antarctica and preliminary analyses of the sample material suggests that a ~500 kyr climate record is preserved in the ice at this site. This award will contribute to the understanding of the Mt Moulton record by assessing the potential for ice-flow induced deformation of the stratigraphic profile. In addition, this award builds on the recognition of blue ice areas as archives of long climate records by conducting reconnaissance studies for a potential horizontal ice core location at the Allan Hills in East Antarctica. The objectives of this project are to contribute to the glaciological understanding of blue ice areas in Antarctica. Ice flow conditions at the Mt Moulton blue ice field will be studied to assess the possibility that the stratigraphic record has been deformed and reconnaissance of a potential horizontal ice core site in the Allan Hills blue ice field will also be accomplished. Short field programs will be undertaken at each location to collect relevant measurements of ice flow and subglacial topography, and to conduct sampling of material that will enable the preservation of the stratigraphic sequences to be assessed.", "east": 135.0, "geometry": "POINT(135 -76)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e ACOUSTIC RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": false, "keywords": "Mount Moulton; Not provided; Subglacial Topography; FIELD INVESTIGATION; Ice Flow; West Antarctica; FIELD SURVEYS; Stratigraphy; Horizontal Ice Core; GROUND-BASED OBSERVATIONS; Blue Ice; Radar", "locations": "Mount Moulton; West Antarctica", "north": -76.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Bauer, Rob; Hamilton, Gordon S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; Not provided", "repositories": null, "science_programs": null, "south": -76.0, "title": "Glaciology of Blue Ice Areas in Antarctica", "uid": "p0000248", "west": 135.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Atmospheric Mineral Nanoparticles in Antarctic Ice during the last Climatic Cycle
|
1744961 |
2025-01-06 | Olesik, John |
|
The main goal of this project is to identify and geochemically characterize atmospheric mineral nanoparticles and fine microparticles in pre-industrial Antarctic ice during the last climatic cycle. Recent technological and industrial development is introducing a large number of natural and engineered nanoparticles and fine microparticles into Earth's atmosphere. These constitute a concern for human health, mainly due to their high chemical reactivity. While many atmospheric nanoparticle studies have been performed in modern urban environments, there is essentially no information about their occurrence in a pristine pre-industrial atmosphere. This information is critical, as it constitutes an important benchmark for comparison to the modern atmosphere. Information on nanoparticles from the pre-industrial atmosphere can be obtained from atmospheric mineral nanoparticles that are entrapped in remote pre-industrial Antarctic ice covering the last climatic cycles. Mineral nanoparticles and fine microparticles can also affect several climatic processes. First, they directly influence the global energy balance by reflecting solar radiation and indirectly influence through changes in cloud formation (and clouds also reflect solar radiation). Second, atmospheric mineral nanoparticles such as iron oxides could have fertilized the oceans, causing blooms of marine phytoplankton that may have drawn part of the atmospheric carbon dioxide into the oceans during glacial ages (the "biological pump"). Third, a significant amount of extraterrestrial material entering the Earth atmosphere is thought to be transported to the poles as nanoparticles called "meteoric smoke" that form polar stratospheric clouds implicated in changes of the ozone hole.<br/><br/>This project aims to establish the natural background of unknown classes of glacial particles whose size is below the detection limit of the conventional dust analyzers. The team will take advantage of ice samples from the "horizontal ice core", already extracted from the remote Taylor Glacier (coastal East Antarctica) covering the last ~44,000 years. These ancient samples are particularly suited to project scope because i) a large ice volume is available ii) the team expects to find a markedly different geochemistry between nanoparticles deposited during the last glacial age and during the current interglacial. A set of advanced techniques including Transmission Electron Microscopy, Single Particle Inductively Coupled Plasma Mass Spectrometry (spICP-MS), and spICP-Time of Flight MS will be employed to determine mineral nanoparticle and fine microparticle sizes, number/volume, and chemical composition. So far, the elemental composition of dust entrapped in polar ice has been mainly determined by Inductively Coupled Plasma Sector Field Mass Spectrometry and it is generally assumed to be descriptive of the coarse aeolian dust fraction. However, project will test whether or not the determined elemental composition is instead mainly linked to the previously unobserved smaller mineral nanoparticle content. Results on nanoparticles will be compared with a set of new experiments of total dust composition measured by Inductively Coupled Plasma Sector Field Mass Spectrometry, using the same ice samples from Taylor Glacier.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((161.711586 -77.75758,161.71322740000002 -77.75758,161.7148688 -77.75758,161.71651020000002 -77.75758,161.7181516 -77.75758,161.719793 -77.75758,161.72143440000002 -77.75758,161.7230758 -77.75758,161.72471720000001 -77.75758,161.7263586 -77.75758,161.728 -77.75758,161.728 -77.75784200000001,161.728 -77.758104,161.728 -77.758366,161.728 -77.758628,161.728 -77.75889000000001,161.728 -77.759152,161.728 -77.75941399999999,161.728 -77.759676,161.728 -77.759938,161.728 -77.7602,161.7263586 -77.7602,161.72471720000001 -77.7602,161.7230758 -77.7602,161.72143440000002 -77.7602,161.719793 -77.7602,161.7181516 -77.7602,161.71651020000002 -77.7602,161.7148688 -77.7602,161.71322740000002 -77.7602,161.711586 -77.7602,161.711586 -77.759938,161.711586 -77.759676,161.711586 -77.75941399999999,161.711586 -77.759152,161.711586 -77.75889000000001,161.711586 -77.758628,161.711586 -77.758366,161.711586 -77.758104,161.711586 -77.75784200000001,161.711586 -77.75758)) | POINT(161.719793 -77.75889000000001) | false | false | |||||
Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica
|
0838936 0839031 |
2016-03-29 | Brook, Edward J.; Severinghaus, Jeffrey P. | Severinghaus/0839031 <br/><br/>This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).<br/><br/>This award supports a project to develop a precise gas-based chronology for an archive of large-volume samples of the ancient atmosphere, which would enable ultra-trace gas measurements that are currently precluded by sample size limitations of ice cores. The intellectual merit of the proposed work is that it will provide a critical test of the "clathrate hypothesis" that methane clathrates contributed to the two abrupt atmospheric methane concentration increases during the last deglaciation 15 and 11 kyr ago. This approach employs large volumes of ice (>1 ton) to measure carbon-14 on past atmospheric methane across the abrupt events. Carbon-14 is an ideal discriminator of fossil sources of methane to the atmosphere, because most methane sources (e.g., wetlands, termites, biomass burning) are rich in carbon-14, whereas clathrates and other fossil sources are devoid of carbon-14. The proposed work is a logical extension to Taylor Glacier, Antarctica, of an approach pioneered at the margin of the Greenland ice sheet over the past 7 years. The Greenland work found higher-than-expected carbon-14 values, likely due in part to contaminants stemming from the high impurity content of Greenland ice and the interaction of the ice with sediments from the glacier bed. The data also pointed to the possibility of a previously unknown process, in-situ cosmogenic production of carbon-14 methane (radiomethane) in the ice matrix. Antarctic ice in Taylor Glacier is orders of magnitude cleaner than the ice at the Greenland site, and is much colder and less stratigraphically disturbed, offering the potential for a clear resolution of this puzzle and a definitive test of the cosmogenic radiomethane hypothesis. Even if cosmogenic radiomethane in ice is found, it still may be possible to reconstruct atmospheric radiomethane with a correction enabled by a detailed understanding of the process, which will be sought by co-measuring carbon-14 in carbon monoxide and carbon dioxide. The broader impacts of the proposed work are that the clathrate test may shed light on the stability of the clathrate reservoir and its potential for climate feedbacks under human-induced warming. Development of Taylor Glacier as a "horizontal ice core" would provide a community resource for other researchers. Education of one postdoc, one graduate student, and one undergraduate, would add to human resources. This award has field work in Antarctica. | POINT(161.75 -77.75) | POINT(161.75 -77.75) | false | false | ||||||
Collaborative Research: The Taylor Glacier, Antarctica, Horizontal Ice Core: Exploring changes in the Natural Methane Budget in a Warming World and Expanding the Paleo-archive
|
1245821 1245659 1246148 |
2015-07-13 | Petrenko, Vasilii; Brook, Edward J.; Severinghaus, Jeffrey P.; PETRENKO, VASILLI | This award supports a project to use the Taylor Glacier, Antarctica, ablation zone to collect ice samples for a range of paleoenvironmental studies. A record of carbon-14 of atmospheric methane (14CH4) will be obtained for the last deglaciation and the Early Holocene, together with a supporting record of CH4 stable isotopes. In-situ cosmogenic 14C content and partitioning of 14C between different species (14CH4, C-14 carbon monoxide (14CO) and C-14 carbon dioxide (14CO2)) will be determined with unprecedented precision in ice from the surface down to ~67 m. Further age-mapping of the ablating ice stratigraphy will take place using a combination of CH4, CO2, δ18O of oxygen gas and H2O stable isotopes. High precision, high-resolution records of CO2, δ13C of CO2, nitrous oxide (N2O) and N2O isotopes will be obtained for the last deglaciation and intervals during the last glacial period. The potential of 14CO2 and Krypton-81 (81Kr) as absolute dating tools for glacial ice will be investigated. The intellectual merit of proposed work includes the fact that the response of natural methane sources to continuing global warming is uncertain, and available evidence is insufficient to rule out the possibility of catastrophic releases from large 14C-depleted reservoirs such as CH4 clathrates and permafrost. The proposed paleoatmospheric 14CH4 record will improve our understanding of the possible magnitude and timing of CH4 release from these reservoirs during a large climatic warming. A thorough understanding of in-situ cosmogenic 14C in glacial ice (production rates by different mechanisms and partitioning between species) is currently lacking. Such an understanding will likely enable the use of in-situ 14CO in ice at accumulation sites as a reliable, uncomplicated tracer of the past cosmic ray flux and possibly past solar activity, as well as the use of 14CO2 at both ice accumulation and ice ablation sites as an absolute dating tool. Significant gaps remain in our understanding of the natural carbon cycle, as well as in its responses to global climate change. The proposed high-resolution, high-precision records of δ13C of CO2 would provide new information on carbon cycle changes both during times of rising CO2 in a warming climate and falling CO2 in a cooling climate. N2O is an important greenhouse gas that increased by ~30% during the last deglaciation. The causes of this increase are still largely uncertain, and the proposed high-precision record of N2O concentration and isotopes would provide further insights into N2O source changes in a warming world. The broader impacts of proposed work include an improvement in our understanding of the response of these greenhouse gas budgets to global warming and inform societally important model projections of future climate change. The continued age-mapping of Taylor Glacier ablation ice will add value to this high-quality, easily accessible archive of natural environmental variability. Establishing 14CO as a robust new tracer for past cosmic ray flux would inform paleoclimate studies and constitute a valuable contribution to the study of the societally important issue of climate change. The proposed work will contribute to the development of new laboratory and field analytical systems. The data from the study will be made available to the scientific community and the broad public through the NSIDC and NOAA Paleoclimatology data centers. 1 graduate student each will be trained at UR, OSU and SIO, and the work will contribute to the training of a postdoc at OSU. 3 UR undergraduates will be involved in fieldwork and research. The work will support a new, junior UR faculty member, Petrenko. All PIs have a strong history of and commitment to scientific outreach in the forms of media interviews, participation in filming of field projects, as well as speaking to schools and the public about their research, and will continue these activities as part of the proposed work. This award has field work in Antarctica. | POINT(162.167 -77.733) | POINT(162.167 -77.733) | false | false | ||||||
Collaborative Proposal: 2000+ Year Detailed, Calibrated Climate Reconstruction from a South Pole Ice Core Set in an Antarctic - Global Scale Context
|
0636506 |
2010-07-29 | Korotkikh, Elena; Kreutz, Karl; Kurbatov, Andrei V.; Mayewski, Paul A. |
|
This award supports a project to examine an existing ice core of opportunity from South Pole (SPRESO core) to develop a 2000+ year long climate record. SPRESO ice core will be an annually dated, sub-annually-resolved reconstruction of past climate (atmospheric circulation, temperature, precipitation rate, and atmospheric chemistry) utilizing continuous, co-registered measurements (n=45) of: major ions, trace elements, and stable isotope series, plus selected sections for microparticle size and composition. The intellectual merit of this project relates to the fact that few 2000+ year records of this quality exist in Antarctica despite increasing scientific interest in this critical time period as the framework within which to understand modern climate. The scientific impact of this ice core investigation are that it will provide an in-depth understanding of climate variability; a baseline for assessing modern climate variability in the context of human activity; and a contribution to the prediction of future climate variability. The broader impact of this work is that the proposed research addresses important questions concerning the role of Antarctica in past, present, and future global change. Results will be translated into publicly accessible information through public lectures, media appearances, and an extensive outreach activity housed in our Institute. Our ice core activities provide a major basis for curriculum in K-12 and University plus a basis for several field and laboratory based graduate theses and undergraduate student projects. The project will support one PhD student for 3 years and undergraduate salaries. The Climate Change Institute has a long history of gender and ethnically diverse student and staff involvement in research. | POLYGON((-137.7 -75.7,-137.4 -75.7,-137.1 -75.7,-136.8 -75.7,-136.5 -75.7,-136.2 -75.7,-135.9 -75.7,-135.6 -75.7,-135.3 -75.7,-135 -75.7,-134.7 -75.7,-134.7 -75.773,-134.7 -75.846,-134.7 -75.919,-134.7 -75.992,-134.7 -76.065,-134.7 -76.138,-134.7 -76.211,-134.7 -76.284,-134.7 -76.357,-134.7 -76.43,-135 -76.43,-135.3 -76.43,-135.6 -76.43,-135.9 -76.43,-136.2 -76.43,-136.5 -76.43,-136.8 -76.43,-137.1 -76.43,-137.4 -76.43,-137.7 -76.43,-137.7 -76.357,-137.7 -76.284,-137.7 -76.211,-137.7 -76.138,-137.7 -76.065,-137.7 -75.992,-137.7 -75.919,-137.7 -75.846,-137.7 -75.773,-137.7 -75.7)) | POINT(-136.2 -76.065) | false | false | |||||
Collaborative Research: Refining a 500-kry Climate Record From the Moulton Blue Ice Field in West Antarctica
|
0230348 0230021 0230316 |
2006-08-01 | White, James; Popp, Trevor; Dunbar, Nelia; Sowers, Todd A.; Steig, Eric J. |
|
The summit crater of Mt. Moulton, in West Antarctica, contains a 600-m thick horizontally-exposed section of ice with intercalated tephra layers from nearby Mt Berlin. Argon-40/Argon-39 dating of the thick, near-source tephra indicates that the age of the horizontal ice section ranges between 15,000 and 492,000 years. Thus, the Mt Moulton site offers an unparalleled repository of ancient West Antarctic snow and trapped air that can be used to investigate West Antarctic climate over much of the past 500,000 years. The planar nature and consistent dips of the tephra layers suggests that, although the ice section has thinned, it is otherwise undeformed. The Mt. Moulton site was visited during the 1999/2000 field season, at which time a horizontal ice core representing approximately 400 meters of ice was collected, ranging in age from 15,000 to older than 480,000 years. In addition to this horizontal core, samples of ice at a range of depths were collected in order to test the quality of the climate record in the ice. Forty tephra layers intercalated in the ice were also collected in order to provide chronology for the ice section. The results of this first effort are extremely encouraging. Based on the d?18 O of ice, for example, there is clearly a useable record of past climate at Mt. Moulton extending back beyond 140,000 years. There is work to do, however, to realize the full potential of this horizontal ice core. The elemental and isotopic composition of trapped gases suggest some contamination with modern air, for example. As gas cross-dating of ice cores is the current standard by which climate records are intercompared, we need to understand why and how the gas record is compromised before adding Moulton to our arsenal of ice core paleoclimate records. This award supports a collaborative effort between three institutions with following objectives: 1) to evaluate more thoroughly the integrity of the climatic record through shallow drilling of the blue ice area, as well as the snow field upslope from the blue ice; 2) to improve the radioisotopic dating of specific tephra layers; 3) to obtain baseline information about modern snowfall deposition, mean annual temperature, and wind pumping around the summit of Mt. Moulton; and 4) to study how firn densification differs when surface accumulation changes from net accumulation to net ablation. | POINT(135.1333 -76.05) | POINT(135.1333 -76.05) | false | false | |||||
Glaciology of Blue Ice Areas in Antarctica
|
0229245 |
2006-03-30 | Bauer, Rob; Hamilton, Gordon S. | No dataset link provided | A 'horizontal ice core' was collected at the Mount Moulton blue ice field in West Antarctica and preliminary analyses of the sample material suggests that a ~500 kyr climate record is preserved in the ice at this site. This award will contribute to the understanding of the Mt Moulton record by assessing the potential for ice-flow induced deformation of the stratigraphic profile. In addition, this award builds on the recognition of blue ice areas as archives of long climate records by conducting reconnaissance studies for a potential horizontal ice core location at the Allan Hills in East Antarctica. The objectives of this project are to contribute to the glaciological understanding of blue ice areas in Antarctica. Ice flow conditions at the Mt Moulton blue ice field will be studied to assess the possibility that the stratigraphic record has been deformed and reconnaissance of a potential horizontal ice core site in the Allan Hills blue ice field will also be accomplished. Short field programs will be undertaken at each location to collect relevant measurements of ice flow and subglacial topography, and to conduct sampling of material that will enable the preservation of the stratigraphic sequences to be assessed. | POINT(135 -76) | POINT(135 -76) | false | false |