{"dp_type": "Project", "free_text": "Firn Aquifer"}
[{"awards": "1745116 Scambos, Ted", "bounds_geometry": "POLYGON((-75 -69,-74 -69,-73 -69,-72 -69,-71 -69,-70 -69,-69 -69,-68 -69,-67 -69,-66 -69,-65 -69,-65 -69.5,-65 -70,-65 -70.5,-65 -71,-65 -71.5,-65 -72,-65 -72.5,-65 -73,-65 -73.5,-65 -74,-66 -74,-67 -74,-68 -74,-69 -74,-70 -74,-71 -74,-72 -74,-73 -74,-74 -74,-75 -74,-75 -73.5,-75 -73,-75 -72.5,-75 -72,-75 -71.5,-75 -71,-75 -70.5,-75 -70,-75 -69.5,-75 -69))", "dataset_titles": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer", "datasets": [{"dataset_uid": "601390", "doi": "10.15784/601390", "keywords": "Airborne Radar; Antarctica; Antarctic Peninsula; Firn; Firn Aquifer; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; GPR; Hydrology; Snow/ice; Snow/Ice; Wilkins Ice Shelf", "people": "Wallin, Bruce; Solomon, Kip; Miller, Olivia; Mi\u00e8ge, Cl\u00e9ment; Montgomery, Lynn; Koenig, Lora; Scambos, Ted; Forster, Richard; Miller, Julie", "repository": "USAP-DC", "science_program": null, "title": "Density, hydrology and geophysical measurements from the Wilkins Ice Shelf firn aquifer", "url": "https://www.usap-dc.org/view/dataset/601390"}], "date_created": "Tue, 08 Sep 2020 00:00:00 GMT", "description": "Snow or firn aquifers are areas of subsurface meltwater storage that form in glaciated regions experiencing intense summer surface melting and high snowfall. Aquifers can induce hydrofracturing, and thereby accelerate flow or trigger ice-shelf instability leading to increased ice-sheet mass loss. Widespread aquifers have recently been discovered in Greenland. These have been modelled and mapped using new satellite and airborne remote-sensing techniques. In Antarctica, a series of catastrophic break-ups at the Wilkins Ice Shelf on the Antarctic Peninsula that was previously attributed to effects of surface melting and brine infiltration is now recognized as being consistent with a firn aquifer--possibly stimulated by long-period ocean swell--that enhanced ice-shelf hydrofracture. This project will verify inferences (from the same mapping approach used in Greenland) that such aquifers are indeed present in Antarctica. The team will survey two high-probability sites: the Wilkins Ice Shelf, and the southern George VI Ice Shelf. \u003cbr/\u003e\u003cbr/\u003eThis two-year study will characterize the firn at the two field sites, drill shallow (~60 m maximum) ice cores, examine snow pits (~2 m), and install two AMIGOS (Automated Met-Ice-Geophysics Observing System) stations that include weather, GPS, and firn temperature sensors that will collect and transmit measurements for at least a year before retrieval. Ground-penetrating radar survey in areas surrounding the field sites will track aquifer extent and depth variations. Ice and microwave model studies will be combined with the field-observed properties to further explore the range of firn aquifers and related upper-snow-layer conditions. This study will provide valuable experience for three early-career scientists. An outreach effort through field blogging, social media posts, K-12 presentations, and public lectures is planned to engage the public in the team\u0027s Antarctic scientific exploration and discovery.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -65.0, "geometry": "POINT(-70 -71.5)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR", "is_usap_dc": true, "keywords": "USAP-DC; Firn Aquifer; USA/NSF; FIELD INVESTIGATION; AMD; GLACIERS/ICE SHEETS; Wilkens Ice Shelf; Antarctic Peninsula; Amd/Us", "locations": "Antarctic Peninsula; Wilkens Ice Shelf", "north": -69.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Scambos, Ted", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -74.0, "title": "Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences", "uid": "p0010126", "west": -75.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antarctic Firn Aquifers: Extent, Characteristics, and Comparison with Greenland Occurrences
|
1745116 |
2020-09-08 | Scambos, Ted |
|
Snow or firn aquifers are areas of subsurface meltwater storage that form in glaciated regions experiencing intense summer surface melting and high snowfall. Aquifers can induce hydrofracturing, and thereby accelerate flow or trigger ice-shelf instability leading to increased ice-sheet mass loss. Widespread aquifers have recently been discovered in Greenland. These have been modelled and mapped using new satellite and airborne remote-sensing techniques. In Antarctica, a series of catastrophic break-ups at the Wilkins Ice Shelf on the Antarctic Peninsula that was previously attributed to effects of surface melting and brine infiltration is now recognized as being consistent with a firn aquifer--possibly stimulated by long-period ocean swell--that enhanced ice-shelf hydrofracture. This project will verify inferences (from the same mapping approach used in Greenland) that such aquifers are indeed present in Antarctica. The team will survey two high-probability sites: the Wilkins Ice Shelf, and the southern George VI Ice Shelf. <br/><br/>This two-year study will characterize the firn at the two field sites, drill shallow (~60 m maximum) ice cores, examine snow pits (~2 m), and install two AMIGOS (Automated Met-Ice-Geophysics Observing System) stations that include weather, GPS, and firn temperature sensors that will collect and transmit measurements for at least a year before retrieval. Ground-penetrating radar survey in areas surrounding the field sites will track aquifer extent and depth variations. Ice and microwave model studies will be combined with the field-observed properties to further explore the range of firn aquifers and related upper-snow-layer conditions. This study will provide valuable experience for three early-career scientists. An outreach effort through field blogging, social media posts, K-12 presentations, and public lectures is planned to engage the public in the team's Antarctic scientific exploration and discovery.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-75 -69,-74 -69,-73 -69,-72 -69,-71 -69,-70 -69,-69 -69,-68 -69,-67 -69,-66 -69,-65 -69,-65 -69.5,-65 -70,-65 -70.5,-65 -71,-65 -71.5,-65 -72,-65 -72.5,-65 -73,-65 -73.5,-65 -74,-66 -74,-67 -74,-68 -74,-69 -74,-70 -74,-71 -74,-72 -74,-73 -74,-74 -74,-75 -74,-75 -73.5,-75 -73,-75 -72.5,-75 -72,-75 -71.5,-75 -71,-75 -70.5,-75 -70,-75 -69.5,-75 -69)) | POINT(-70 -71.5) | false | false |