{"dp_type": "Project", "free_text": "Crystal Structure"}
[{"awards": "1142173 Bay, Ryan; 1142010 Talghader, Joseph", "bounds_geometry": "POINT(112.085 -79.467)", "dataset_titles": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "datasets": [{"dataset_uid": "600172", "doi": "10.15784/600172", "keywords": "Antarctica; Ash Layer; Borehole Camera; Glaciology; Ice Core Records; WAIS Divide; WAIS Divide Ice Core", "people": "Talghader, Joseph", "repository": "USAP-DC", "science_program": null, "title": "Optical Fabric and Fiber Logging of Glacial Ice (1142010)", "url": "https://www.usap-dc.org/view/dataset/600172"}], "date_created": "Thu, 05 Nov 2015 00:00:00 GMT", "description": "1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum.", "east": 112.085, "geometry": "POINT(112.085 -79.467)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e OPTICAL DUST LOGGERS", "is_usap_dc": true, "keywords": "Fabric; Optical Scattering; Not provided; FIELD SURVEYS; Ice Core; Siple Dome; Antarctic; Dust; WAIS Divide; LABORATORY; Crystal Structure; Chronology; FIELD INVESTIGATION; Borehole", "locations": "Antarctic; WAIS Divide; Siple Dome", "north": -79.467, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Talghader, Joseph; Bay, Ryan", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -79.467, "title": "Optical Fabric and Fiber Logging of Glacial Ice", "uid": "p0000339", "west": 112.085}, {"awards": "1043265 Deming, Jody", "bounds_geometry": "POLYGON((162.1397 -77.14085,162.828507 -77.14085,163.517314 -77.14085,164.206121 -77.14085,164.894928 -77.14085,165.583735 -77.14085,166.272542 -77.14085,166.961349 -77.14085,167.650156 -77.14085,168.338963 -77.14085,169.02777 -77.14085,169.02777 -77.200745,169.02777 -77.26064,169.02777 -77.320535,169.02777 -77.38043,169.02777 -77.440325,169.02777 -77.50022,169.02777 -77.560115,169.02777 -77.62001,169.02777 -77.679905,169.02777 -77.7398,168.338963 -77.7398,167.650156 -77.7398,166.961349 -77.7398,166.272542 -77.7398,165.583735 -77.7398,164.894928 -77.7398,164.206121 -77.7398,163.517314 -77.7398,162.828507 -77.7398,162.1397 -77.7398,162.1397 -77.679905,162.1397 -77.62001,162.1397 -77.560115,162.1397 -77.50022,162.1397 -77.440325,162.1397 -77.38043,162.1397 -77.320535,162.1397 -77.26064,162.1397 -77.200745,162.1397 -77.14085))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 31 Jul 2014 00:00:00 GMT", "description": "The relatively pristine Antarctic continent with its extensive maritime zone represents a unique location on the planet to investigate the long distance aerial transport and deposition of marine microorganisms. The vast extent of new sea ice that forms each winter around the continent results in large numbers of frost flowers, delicate ice-crystal structures of high salt content that form on the surface of the ice and are readily dispersed by wind. The proposed research builds on earlier work in the Arctic and tests the new hypothesis that wind-borne frost flowers provide an effective mechanism for the transport of marine bacteria over long distances, one that can be uniquely sourced and tracked by the frost flower salt signature in the Antarctic realm. A highly resolved genomic snapshot of the microbial community will be acquired at each stage in the transport path, which will track decreasing fractions of the marine microbial community as it freezes into sea ice, incorporates into frost flowers, converts to aerosols, and ultimately deposits within continental snowpack. En route from sea ice to snowpack, marine bacteria will be exposed to an array of environmental stresses, including high salinity, low temperatures, UV light and potential desiccation. A parallel proteomic analysis will enable an evaluation of the microbial response to these extreme conditions and potential survival mechanisms that allow persistence or eventual colonization of deposition sites across Antarctica. Current understanding of microbes in the Antarctic atmosphere is based on a limited number of microscopic and culture-based assays and a single report of low-resolution 16S RNA gene sequence analysis. The research will broadly impact understanding of atmospheric microbiology, from source to deposition, and various issues of microbial survival, colonization, endemism, and diversity under extreme conditions. In addition to venues that reach the scientific community, the research team will develop a permanent multi-media and artifact-based exhibit on Antarctic Microbial Transport that will be showcased at Seattle\u0027s Pacific Science Center (PSC), which educates nearly a million visitors annually.", "east": 169.02777, "geometry": "POINT(165.583735 -77.440325)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -77.14085, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Deming, Jody", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -77.7398, "title": "High Resolution Genomic and Proteomic Analyses of a Microbial Transport Mechanism from Antarctic Marine Waters to Permanent Snowpack", "uid": "p0000356", "west": 162.1397}, {"awards": "9614844 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56557,-144 -43.56557,-108 -43.56557,-72 -43.56557,-36 -43.56557,0 -43.56557,36 -43.56557,72 -43.56557,108 -43.56557,144 -43.56557,180 -43.56557,180 -46.996716,180 -50.427862,180 -53.859008,180 -57.290154,180 -60.7213,180 -64.152446,180 -67.583592,180 -71.014738,180 -74.445884,180 -77.87703,144 -77.87703,108 -77.87703,72 -77.87703,36 -77.87703,0 -77.87703,-36 -77.87703,-72 -77.87703,-108 -77.87703,-144 -77.87703,-180 -77.87703,-180 -74.445884,-180 -71.014738,-180 -67.583592,-180 -64.152446,-180 -60.7213,-180 -57.290154,-180 -53.859008,-180 -50.427862,-180 -46.996716,-180 -43.56557))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002110", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9803"}, {"dataset_uid": "002003", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9901"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56557, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -77.87703, "title": "Dynamic/Thermodynamic Processes and Their Contribution to the Sea Ice Thickness Distribution and Radar Backscatter in the Ross Sea", "uid": "p0000628", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Optical Fabric and Fiber Logging of Glacial Ice
|
1142173 1142010 |
2015-11-05 | Talghader, Joseph; Bay, Ryan |
|
1142010/Talghader This award supports a project to combine the expertise of both glaciologists and optical engineers to develop polarization- preserving optical scattering techniques for borehole tools to identify changes in high-resolution crystal structure (fabric) and dust content of glacial ice. The intellectual merit of this work is that the fabric and impurity content of the ice contain details on climate, volcanic activity and ice flow history. Such fabric measurements are currently taken by slicing an ice core into sections after it has started to depressurize which is an extremely time-intensive process that damages the core and does not always preserve the properties of ice in its in-situ state. In addition the ice core usually must be consumed in order to measure the components of the dust. The fabric measurements of this study utilize the concept that singly-scattered light in ice preserves most of its polarization when it is backscattered once from bubbles or dust; therefore, changes to the polarization of singly-backscattered light must originate with the birefringence. Measurements based on this concept will enable this program to obtain continuous records of fabric and correlate them to chronology and dust content. The project will also develop advanced borehole instruments to replace current logging tools, which require optical sources, detectors and power cables to be submerged in borehole fluid and lowered into the ice sheet at temperatures of -50oC. The use of telecommunications fiber will allow all sources and detectors to remain at the surface and enable low-noise signal processing techniques such as lock-in amplification that increase signal integrity and reduce needed power. Further, fiber logging systems would be much smaller and more flexible than current tools and capable of navigating most boreholes without a heavy winch. In order to assess fabric in situ and test fiber-optic borehole tools, field measurements will be made at WAIS Divide and a deep log will also be made at Siple Dome, both in West Antarctica. If successful, the broader impacts of the proposed research would include the development of new analytical methods and lightweight logging tools for ice drilling research that can operate in boreholes drilled in ice. Eventually the work could result in the development of better prehistoric records of glacier flow, atmospheric particulates, precipitation, and climate forcing. The project encompasses a broad base of theoretical, experimental, and design work, which makes it ideal for training graduate students and advanced undergraduates. Collaboration with schools and classroom teachers will help bring aspects of optics, climate, and polar science to an existing Middle School curriculum. | POINT(112.085 -79.467) | POINT(112.085 -79.467) | false | false | |||||
High Resolution Genomic and Proteomic Analyses of a Microbial Transport Mechanism from Antarctic Marine Waters to Permanent Snowpack
|
1043265 |
2014-07-31 | Deming, Jody | No dataset link provided | The relatively pristine Antarctic continent with its extensive maritime zone represents a unique location on the planet to investigate the long distance aerial transport and deposition of marine microorganisms. The vast extent of new sea ice that forms each winter around the continent results in large numbers of frost flowers, delicate ice-crystal structures of high salt content that form on the surface of the ice and are readily dispersed by wind. The proposed research builds on earlier work in the Arctic and tests the new hypothesis that wind-borne frost flowers provide an effective mechanism for the transport of marine bacteria over long distances, one that can be uniquely sourced and tracked by the frost flower salt signature in the Antarctic realm. A highly resolved genomic snapshot of the microbial community will be acquired at each stage in the transport path, which will track decreasing fractions of the marine microbial community as it freezes into sea ice, incorporates into frost flowers, converts to aerosols, and ultimately deposits within continental snowpack. En route from sea ice to snowpack, marine bacteria will be exposed to an array of environmental stresses, including high salinity, low temperatures, UV light and potential desiccation. A parallel proteomic analysis will enable an evaluation of the microbial response to these extreme conditions and potential survival mechanisms that allow persistence or eventual colonization of deposition sites across Antarctica. Current understanding of microbes in the Antarctic atmosphere is based on a limited number of microscopic and culture-based assays and a single report of low-resolution 16S RNA gene sequence analysis. The research will broadly impact understanding of atmospheric microbiology, from source to deposition, and various issues of microbial survival, colonization, endemism, and diversity under extreme conditions. In addition to venues that reach the scientific community, the research team will develop a permanent multi-media and artifact-based exhibit on Antarctic Microbial Transport that will be showcased at Seattle's Pacific Science Center (PSC), which educates nearly a million visitors annually. | POLYGON((162.1397 -77.14085,162.828507 -77.14085,163.517314 -77.14085,164.206121 -77.14085,164.894928 -77.14085,165.583735 -77.14085,166.272542 -77.14085,166.961349 -77.14085,167.650156 -77.14085,168.338963 -77.14085,169.02777 -77.14085,169.02777 -77.200745,169.02777 -77.26064,169.02777 -77.320535,169.02777 -77.38043,169.02777 -77.440325,169.02777 -77.50022,169.02777 -77.560115,169.02777 -77.62001,169.02777 -77.679905,169.02777 -77.7398,168.338963 -77.7398,167.650156 -77.7398,166.961349 -77.7398,166.272542 -77.7398,165.583735 -77.7398,164.894928 -77.7398,164.206121 -77.7398,163.517314 -77.7398,162.828507 -77.7398,162.1397 -77.7398,162.1397 -77.679905,162.1397 -77.62001,162.1397 -77.560115,162.1397 -77.50022,162.1397 -77.440325,162.1397 -77.38043,162.1397 -77.320535,162.1397 -77.26064,162.1397 -77.200745,162.1397 -77.14085)) | POINT(165.583735 -77.440325) | false | false | |||||
Dynamic/Thermodynamic Processes and Their Contribution to the Sea Ice Thickness Distribution and Radar Backscatter in the Ross Sea
|
9614844 |
2010-05-04 | Jeffries, Martin |
|
This project is a study of the effects of antarctic sea ice in the global climate system, through an examination of how the spatial distribution of ice and snow thickness and of open water is reflected in satellite-based synthetic aperture radar (SAR) imagery. The field investigations will be carried out from the RVIB Nathaniel B. Palmer in winter 1998 and summer 1999, and will produce observations of the snow and ice distribution, the crystal structure, stable isotopes, salinity and temperature structure of ice cores, and the stratigraphy, grain size, and water content of the snow cover. The SAR images from ERS-2 and RADARSAT will be acquired at the McMurdo ground station, and processed at the Alaska SAR Facility. These will provide information about the large-scale ice motion field and the small-scale ice deformation field, both of which contribute to the observed ice thickness distribution. In addition, a study of the spatial and temporal variation of the backscattered microwave energy will contribute to the development of numerical models that simulate the dynamic and thermodynamic interactions among the sea ice, ocean, and atmosphere. The surface data is vital for the extraction of environmental information from the radar data, and for the ultimate validation of interactive models. | POLYGON((-180 -43.56557,-144 -43.56557,-108 -43.56557,-72 -43.56557,-36 -43.56557,0 -43.56557,36 -43.56557,72 -43.56557,108 -43.56557,144 -43.56557,180 -43.56557,180 -46.996716,180 -50.427862,180 -53.859008,180 -57.290154,180 -60.7213,180 -64.152446,180 -67.583592,180 -71.014738,180 -74.445884,180 -77.87703,144 -77.87703,108 -77.87703,72 -77.87703,36 -77.87703,0 -77.87703,-36 -77.87703,-72 -77.87703,-108 -77.87703,-144 -77.87703,-180 -77.87703,-180 -74.445884,-180 -71.014738,-180 -67.583592,-180 -64.152446,-180 -60.7213,-180 -57.290154,-180 -53.859008,-180 -50.427862,-180 -46.996716,-180 -43.56557)) | POINT(0 -89.999) | false | false |