{"dp_type": "Project", "free_text": "Benthic Ecology"}
[{"awards": "1644196 Cziko, Paul", "bounds_geometry": "POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14))", "dataset_titles": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019); Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019); Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "datasets": [{"dataset_uid": "601417", "doi": "10.15784/601417", "keywords": "Antarctica; Benthic Ecology; Benthic Invertebrates; Biota; McMurdo Sound; Notothenioid; Notothenioid Fishes; Photo/video; Photo/Video; Rocky Reef Community; Soft-Bottom Community; Timelaps Images", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-term underwater images from around a single mooring site in McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601417"}, {"dataset_uid": "601420", "doi": "10.15784/601420", "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601420"}, {"dataset_uid": "601416", "doi": "10.15784/601416", "keywords": "Antarctica; Bioacoustics; Biota; Hydroacoustics; Killer Whales; Leptonychotes Weddellii; McMurdo Sound; Oceans; Orcinus Orca; Sea Ice; Weddell Seal; Whales", "people": "Cziko, Paul", "repository": "USAP-DC", "science_program": null, "title": "Long-Term broadband underwater acoustic recordings from McMurdo Sound, Antarctica (2017-2019)", "url": "https://www.usap-dc.org/view/dataset/601416"}], "date_created": "Tue, 15 Dec 2020 00:00:00 GMT", "description": "Notothenioid fishes live in the world\u0027s coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish\u0027s habitat and the fish\u0027s behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid\u0027s freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information.", "east": 166.8, "geometry": "POINT(165.135 -77.52)", "instruments": null, "is_usap_dc": true, "keywords": "Benthic Ecology; ANIMALS/VERTEBRATES; USA/NSF; OCEAN TEMPERATURE; USAP-DC; MAMMALS; FIELD INVESTIGATION; Amd/Us; McMurdo Sound; FISH; AMD", "locations": "McMurdo Sound", "north": -77.14, "nsf_funding_programs": "Antarctic Instrumentation and Support; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cziko, Paul; DeVries, Arthur", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.9, "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "uid": "p0010147", "west": 163.47}, {"awards": "9815823 Smith, Craig", "bounds_geometry": "POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533))", "dataset_titles": "Expedition Data; Expedition data of LMG0009", "datasets": [{"dataset_uid": "001811", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "002689", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0009", "url": "https://www.rvdata.us/search/cruise/LMG0009"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}, {"dataset_uid": "001880", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/LMG0102"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -60.499832, "geometry": "POINT(-65.703331 -59.672)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35533, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": "LTER", "south": -66.98867, "title": "Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000610", "west": -70.90683}, {"awards": "9816049 DeMaster, David", "bounds_geometry": "POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368))", "dataset_titles": "Expedition Data; Expedition data of LMG0003", "datasets": [{"dataset_uid": "002690", "doi": null, "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition data of LMG0003", "url": "https://www.rvdata.us/search/cruise/LMG0003"}, {"dataset_uid": "001983", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP0004"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "OPP98-15823 P.I. Craig Smith\u003cbr/\u003eOPP98-16049 P.I. David DeMaster\u003cbr/\u003e\u003cbr/\u003ePrimary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems.", "east": -64.04498, "geometry": "POINT(-67.47576 -58.782285)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP; R/V LMG", "locations": null, "north": -52.35368, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "DeMaster, David; Smith, Craig", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V LMG; WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -65.21089, "title": "Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor", "uid": "p0000618", "west": -70.90654}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes
|
1644196 |
2020-12-15 | Cziko, Paul; DeVries, Arthur | Notothenioid fishes live in the world's coldest marine waters surrounding Antarctica and have evolved strategies to avoid freezing. Past studies have shown that most Antarctic notothenioids produce special antifreeze proteins that prevent the growth of ice crystals that enter the body. While these proteins help prevent individuals from being killed by growing ice crystals, it is unclear how these fish avoid the accumulation of these small ice crystals inside their tissues over time. This project will observe how ice crystal accumulation relates to the harshness of the fish's habitat and the fish's behavior within different habitats of McMurdo Sound, Antarctica. The researchers will collect fishes and ocean observations at different field sites that cover a range of habitat severity in terms of temperature and iciness. Researchers will install an underwater ocean observatory near McMurdo Station which will include a HD video camera and hydrophone. The observatory will allow continuous monitoring of ocean conditions and fish behavior that will help explain the conditions and behaviors that contribute to the acquisition and accrual of ice inside the body. Acoustic and video data from the observatory will be available to other scientists and to the public. The project will advance understanding of the many challenges life faces in extreme cold environments. This work continues a line of inquiry that has resulted in the discovery of potential medical and food preservation applications. Hundreds of antifreeze protein (AFP) structure-function studies have been conducted in the laboratory, providing a basic physical understanding of the AFP-ice interaction. How AFPs function within fishes and their range of environments, however, is far from clear. This project will provide an understanding of notothenioid's freezing avoidance mechanisms, and strategies by quantifying the acquisition, accumulation, and loss of internal ice crystals. Specifically, the goal is to determine if and how habitat severity (as defined by iciness, seawater temperature, and prevalence of supercooled water) and fish behavior influence the abundance of ice crystals in their tissues. Four locations in the McMurdo Sound with different levels of habitat severity will be sampled for oceanographic conditions and ice crystal count within fish tissues. Researchers will use a new technique to count the number of splenic ice crystals, expanding on and simplifying previous methods. Environmental data loggers will be deployed for the duration of the project at the four sites to provide context and real-time assessment of environmental conditions. An oceanographic observatory near McMurdo Station will provide year-round, real-time and archival records of oceanographic conditions, in situ video observations of anchor ice growth and ice-organism interactions, hydroacoustic recordings, and serve as proof-of concept for expanding scientific infrastructure in McMurdo Sound related to monitoring of supercooled waters and oceanographic information. | POLYGON((163.47 -77.14,163.803 -77.14,164.136 -77.14,164.469 -77.14,164.802 -77.14,165.135 -77.14,165.468 -77.14,165.801 -77.14,166.134 -77.14,166.467 -77.14,166.8 -77.14,166.8 -77.216,166.8 -77.292,166.8 -77.368,166.8 -77.444,166.8 -77.52,166.8 -77.596,166.8 -77.672,166.8 -77.748,166.8 -77.824,166.8 -77.9,166.467 -77.9,166.134 -77.9,165.801 -77.9,165.468 -77.9,165.135 -77.9,164.802 -77.9,164.469 -77.9,164.136 -77.9,163.803 -77.9,163.47 -77.9,163.47 -77.824,163.47 -77.748,163.47 -77.672,163.47 -77.596,163.47 -77.52,163.47 -77.444,163.47 -77.368,163.47 -77.292,163.47 -77.216,163.47 -77.14)) | POINT(165.135 -77.52) | false | false | ||||||||||
Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor
|
9815823 |
2010-05-04 | Smith, Craig |
|
OPP98-15823 P.I. Craig Smith OPP98-16049 P.I. David DeMaster Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems. | POLYGON((-70.90683 -52.35533,-69.8661302 -52.35533,-68.8254304 -52.35533,-67.7847306 -52.35533,-66.7440308 -52.35533,-65.703331 -52.35533,-64.6626312 -52.35533,-63.6219314 -52.35533,-62.5812316 -52.35533,-61.5405318 -52.35533,-60.499832 -52.35533,-60.499832 -53.818664,-60.499832 -55.281998,-60.499832 -56.745332,-60.499832 -58.208666,-60.499832 -59.672,-60.499832 -61.135334,-60.499832 -62.598668,-60.499832 -64.062002,-60.499832 -65.525336,-60.499832 -66.98867,-61.5405318 -66.98867,-62.5812316 -66.98867,-63.6219314 -66.98867,-64.6626312 -66.98867,-65.703331 -66.98867,-66.7440308 -66.98867,-67.7847306 -66.98867,-68.8254304 -66.98867,-69.8661302 -66.98867,-70.90683 -66.98867,-70.90683 -65.525336,-70.90683 -64.062002,-70.90683 -62.598668,-70.90683 -61.135334,-70.90683 -59.672,-70.90683 -58.208666,-70.90683 -56.745332,-70.90683 -55.281998,-70.90683 -53.818664,-70.90683 -52.35533)) | POINT(-65.703331 -59.672) | false | false | |||||||||
Collaborative Research: Bentho-Pelagic Coupling on the West Antarctic Peninsula Shelf: The Impact and Fate of Bloom Material at the Seafloor
|
9816049 |
2010-05-04 | DeMaster, David; Smith, Craig |
|
OPP98-15823 P.I. Craig Smith<br/>OPP98-16049 P.I. David DeMaster<br/><br/>Primary production in Antarctic coastal waters is highly seasonal, yielding an intense pulse of biogenic particles to the continental shelf floor. This seasonal pulse may have major ramifications for carbon cycling, benthic ecology and material burial on the west Antarctic Peninsula (WAP) shelf. Thus, we propose a multii-disciplinary program to evaluate the seafloor accumulation, fate and benthic community impacts of bloom material along a transect of three stations crossing the Antarctic shelf in the Palmer LTER study area. Using a seasonal series of five cruises to our transect, we will test the following hypostheses: (1) A substantial proportion of spring/summer export production is deposited ont eh WAP shelf as phytodetritus or fecal pellets. (2) The deposited bloom production is a source of labile particulate organic carbon for benthos for an extended period of time (months). (3) Large amounts of labile bloom POC are rapidly subducted into the sediment column by the deposit-feeding and caching activities of benthos. (4) Macrobenthic detritivores sustain a rapid increase in biomass and abundance following the spring/summer particulate organic carbon pulse. To test these hypotheses, we will evaluate seabed deposition and lability of particulate organic carbon, patterns of particulate organic carbon mixing into sediments, seasonal variations in macrofaunal and megafaunal abundance, biomass and reproductive condition, and rates of particulate organic carbon and silica mineralization and accumulation in the seabed. Fluxes of biogenic materials and radionuclides into midwater particle traps will be contrasted with seabed deposition and burial rates to establish water-column and seabed preservation efficiencies for these materials. The project will substantially improve our understanding of the spring/summer production pulse on the WAP shelf and its impacts on seafloor communities and carbon cycling in Antarctic coastal systems. | POLYGON((-70.90654 -52.35368,-70.220384 -52.35368,-69.534228 -52.35368,-68.848072 -52.35368,-68.161916 -52.35368,-67.47576 -52.35368,-66.789604 -52.35368,-66.103448 -52.35368,-65.417292 -52.35368,-64.731136 -52.35368,-64.04498 -52.35368,-64.04498 -53.639401,-64.04498 -54.925122,-64.04498 -56.210843,-64.04498 -57.496564,-64.04498 -58.782285,-64.04498 -60.068006,-64.04498 -61.353727,-64.04498 -62.639448,-64.04498 -63.925169,-64.04498 -65.21089,-64.731136 -65.21089,-65.417292 -65.21089,-66.103448 -65.21089,-66.789604 -65.21089,-67.47576 -65.21089,-68.161916 -65.21089,-68.848072 -65.21089,-69.534228 -65.21089,-70.220384 -65.21089,-70.90654 -65.21089,-70.90654 -63.925169,-70.90654 -62.639448,-70.90654 -61.353727,-70.90654 -60.068006,-70.90654 -58.782285,-70.90654 -57.496564,-70.90654 -56.210843,-70.90654 -54.925122,-70.90654 -53.639401,-70.90654 -52.35368)) | POINT(-67.47576 -58.782285) | false | false |