{"dp_type": "Project", "free_text": "Beardmore Glacier Area"}
[{"awards": "0944282 Hasiotis, Stephen", "bounds_geometry": "POINT(175 -86)", "dataset_titles": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "datasets": [{"dataset_uid": "600156", "doi": "10.15784/600156", "keywords": "Antarctica; Beardmore Glacier; Biota; Fossil; Paleoclimate; Sample/collection Description; Sample/Collection Description; Solid Earth; Transantarctic Mountains", "people": "Hasiotis, Stephen", "repository": "USAP-DC", "science_program": null, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600156"}], "date_created": "Fri, 03 Jun 2016 00:00:00 GMT", "description": "Intellectual Merit: \u003cbr/\u003eThis proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? \u003cbr/\u003e\u003cbr/\u003eBroader impacts: \u003cbr/\u003eThis study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal.", "east": 175.0, "geometry": "POINT(175 -86)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -86.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Hasiotis, Stephen", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica", "uid": "p0000423", "west": 175.0}, {"awards": "0838914 Wannamaker, Philip", "bounds_geometry": "POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13))", "dataset_titles": "Agglutinated Foraminifera, genome sequencing data; Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "datasets": [{"dataset_uid": "000211", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Agglutinated Foraminifera, genome sequencing data", "url": "http://www.ncbi.nlm.nih.gov/sites/myncbi/collections/public/1vwfrm7rJme2hrzl6smGVhpk-/"}, {"dataset_uid": "600102", "doi": "10.15784/600102", "keywords": "Antarctica; Magnetotelluric; Potential Field; Solid Earth; Transantarctic Mountains", "people": "Wannamaker, Philip", "repository": "USAP-DC", "science_program": null, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "url": "https://www.usap-dc.org/view/dataset/600102"}], "date_created": "Mon, 12 Nov 2012 00:00:00 GMT", "description": "This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth\u0027s natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base.", "east": 179.94691, "geometry": "POINT(160.482115 -83.239175)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -82.13, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Instrumentation and Support", "paleo_time": null, "persons": "Bowser, Samuel; Wannamaker, Philip", "platforms": "Not provided", "repo": "NCBI GenBank", "repositories": "NCBI GenBank; USAP-DC", "science_programs": null, "south": -84.34835, "title": "Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements", "uid": "p0000247", "west": 141.01732}, {"awards": "0229698 Hammer, William", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Tue, 07 Aug 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Triassic and Jurassic dinosaurs and other vertebrates from the central Transantarctic Mountains of Antarctica. A field program to search for Upper Triassic to Jurassic age fossil vertebrates in the Beardmore Glacier region will be carried out in the 2003-04 austral summer. Initially, field efforts will concentrate on the Hanson Formation that has produced the only Jurassic dinosaur fauna from Antarctica. Further excavation of the Hanson dinosaur locality on Mt. Kirkpatrick will occur, followed by an extensive search of other exposures of the Hanson, Falla and Upper Fremouw Formations in the Beardmore area. A field party of six persons will allow two smaller groups to work independently at different sites. This group will operate for 3-4 weeks out of a small helicopter camp located in the Beardmore area. In addition to collecting new specimens an interpretation of the depositional settings for each of the vertebrate sites will be made. The second and third years of this project will be dedicated to preparation and study of the vertebrates. Antarctic vertebrates provide a unique opportunity to study the evolutionary and biogeographic significance of high latitude Mesozoic faunas and this project should result in significant advances in knowledge in this field.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC", "persons": "Hammer, William R.", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Vertebrate Paleontology of the Triassic to Jurassic Sedimentary Sequence in the Beardmore Glacier Area, Antarctica", "uid": "p0000366", "west": null}, {"awards": "0126146 Miller, Molly", "bounds_geometry": "POINT(171 -83.75)", "dataset_titles": null, "datasets": null, "date_created": "Wed, 20 Jun 2007 00:00:00 GMT", "description": "This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.\u003cbr/\u003e\u003cbr/\u003eThis project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today.", "east": 171.0, "geometry": "POINT(171 -83.75)", "instruments": null, "is_usap_dc": false, "keywords": "Beardmore Glacier; FIELD SURVEYS; Paleoclimate; Permian; Paleontology; FIELD INVESTIGATION; Sedimentologic; Ichnologic; Stratigraphic; Gondwana", "locations": "Beardmore Glacier", "north": -83.75, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e MESOZOIC \u003e JURASSIC; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -83.75, "title": "Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains", "uid": "p0000736", "west": 171.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Paleoenvironmental and Paleoclimatic Analysis of the Beacon Supergroup, Beardmore Glacier Area, Central Transantarctic Mountains, Antarctica
|
0944282 |
2016-06-03 | Hasiotis, Stephen |
|
Intellectual Merit: <br/>This proposal will study the diversity, abundance, and tiering patterns of ichnofossils in continental and marine deposits of the Beacon Supergroup in the Beardmore Glacier Area (BGA). The PIs will focus on continental strata that contain a variety of ichnofossils and paleosols. Ichnofossils will be evaluated for their architectural and surficial morphologies, and will be compared to modern and ancient traces to interpret the tracemaker behavior and paleoenvironmental setting. Distribution of ichnofossils within these units may indicate the effect of lateral variability of pedogenesis, the magnitude and frequency of depositional events, and the amount of moisture within the sediment, as well as the effects of climate change. The paleoclimatic significance of ichnofossils will be determined by comparing the burrow size, occurrence, tiering, and pedogenic significance of ichnofossils in measured sections of stratigraphic units deposited during global warming and cooling episodes. Comparisons will be made between BGA formations to stratigraphically equivalent rocks deposited at low paleolatitudes with previously determined paleoclimatic settings. The objectives of this project are to address two major questions: what differences existed in ichnodiversity, abundance, and tiering in marine and continental deposits between high- and low-paleolatitudes, and was there a dearth of habitat usage in continental deposits during the late Paleozoic and Mesozoic, particularly in fluvial and lacustrine environments compared to the habitat usage in the marine realm at that time? <br/><br/>Broader impacts: <br/>This study will enhance the ability to interpret paleoenvironments to the subenvironmental scale, understand the evolution of soil biota and ecosystems at high paleolatitudes, determine the role of organisms in soil formation at high paleolatitudes, explore the effects of climate change on the body size and diversity of organisms in the soil communities, and develop new tools to interpret paleoclimate in high latitudes. There is a strong education component associated with this proposal. | POINT(175 -86) | POINT(175 -86) | false | false | |||
Rift Mechanisms and Thermal Regime of the Lithosphere across Beardmore Glacier Region, Central Transantarctic Mountains, from Magnetotelluric Measurements
|
0838914 |
2012-11-12 | Bowser, Samuel; Wannamaker, Philip | This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The investigators will examine competing hypotheses for the mechanism of extension and creation of the Transantarctic Mountains, and evolution of the thermal regimes of rifted West Antarctica and stable East Antarctica using magnetotelluric (MT) profiles. Surrounded almost entirely by ocean ridges, Antarctica is a special tectonic situation because of the need to make accommodation space for rifting in the Transantarctic region. In the MT method, temporal variations in the Earth's natural electromagnetic field are used as source fields to probe the electrical resistivity structure in the depth range of 1 to 200 km, or more. Geophysical methods, such as MT, are appropriate in Antarctica because of the predominance of thick ice cover over most of the Continent and the difficult operating environment. The proposed effort will consist of approximately 50 sites over a distance approaching 500 km with a 10 km average spacing, oriented normal to the Transantarctic Mountains (TAM), in the Beardmore glacier area. High quality MT soundings will be collected over thick ice sheets using a custom electrode preamp design, updated from previous Antarctic projects. Data acquisition will take place over two field seasons. The primary goals are three-fold: to establish the location of the deeper tectonic transition between East and West Antarctica that may be offset from the physiographic transition at the surface, using deep resistivity structure distinguish between modes of extensional upwelling and magmatism that may be vertically non-uniform, depth and magnitude of quasi-layered deep crustal low resistivity, particularly below West Antarctica, will be used to estimate crustal heat flux into the ice sheet base. | POLYGON((141.01732 -82.13,144.910279 -82.13,148.803238 -82.13,152.696197 -82.13,156.589156 -82.13,160.482115 -82.13,164.375074 -82.13,168.268033 -82.13,172.160992 -82.13,176.053951 -82.13,179.94691 -82.13,179.94691 -82.351835,179.94691 -82.57367,179.94691 -82.795505,179.94691 -83.01734,179.94691 -83.239175,179.94691 -83.46101,179.94691 -83.682845,179.94691 -83.90468,179.94691 -84.126515,179.94691 -84.34835,176.053951 -84.34835,172.160992 -84.34835,168.268033 -84.34835,164.375074 -84.34835,160.482115 -84.34835,156.589156 -84.34835,152.696197 -84.34835,148.803238 -84.34835,144.910279 -84.34835,141.01732 -84.34835,141.01732 -84.126515,141.01732 -83.90468,141.01732 -83.682845,141.01732 -83.46101,141.01732 -83.239175,141.01732 -83.01734,141.01732 -82.795505,141.01732 -82.57367,141.01732 -82.351835,141.01732 -82.13)) | POINT(160.482115 -83.239175) | false | false | ||||
Vertebrate Paleontology of the Triassic to Jurassic Sedimentary Sequence in the Beardmore Glacier Area, Antarctica
|
0229698 |
2007-08-07 | Hammer, William R. | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, supports a project to investigate Triassic and Jurassic dinosaurs and other vertebrates from the central Transantarctic Mountains of Antarctica. A field program to search for Upper Triassic to Jurassic age fossil vertebrates in the Beardmore Glacier region will be carried out in the 2003-04 austral summer. Initially, field efforts will concentrate on the Hanson Formation that has produced the only Jurassic dinosaur fauna from Antarctica. Further excavation of the Hanson dinosaur locality on Mt. Kirkpatrick will occur, followed by an extensive search of other exposures of the Hanson, Falla and Upper Fremouw Formations in the Beardmore area. A field party of six persons will allow two smaller groups to work independently at different sites. This group will operate for 3-4 weeks out of a small helicopter camp located in the Beardmore area. In addition to collecting new specimens an interpretation of the depositional settings for each of the vertebrate sites will be made. The second and third years of this project will be dedicated to preparation and study of the vertebrates. Antarctic vertebrates provide a unique opportunity to study the evolutionary and biogeographic significance of high latitude Mesozoic faunas and this project should result in significant advances in knowledge in this field. | None | None | false | false | |||
Collaborative Research: Late Paleozoic-Mesozoic Fauna, Environment, Climate and Basinal History: Beardmore Glacier Area, Transantarctic Mountains
|
0126146 |
2007-06-20 | Miller, Molly | No dataset link provided | This award, provided by the Antarctic Geology and Geophysics Program of the Office of Polar Programs, provides funds for a study to investigate paleoenvironmental conditions during the late Paleozoic and Mesozoic in central interior Antarctica. The 4 km thick sequence of sedimentary rocks, known as the Beacon Supergroup, in the Beardmore Glacier area records 90 million years of Permian through Jurassic history of this high-paleolatitude sector of Gondwana. It accumulated in a foreland basin with a rate of subsidence approximately equal to the rate of deposition. The deposits have yielded diverse vertebrate fossils, in situ fossil forests, and exceptionally well preserved plant fossils. They give a unique glimpse of glacial, lake, and stream/river environments and ecosystems and preserve an unparalleled record of the depositional, paleoclimatic, and tectonic history of the area. The excellent work done to date provides a solid base of information on which to build understanding of conditions and processes.<br/><br/>This project is a collaborative study of this stratigraphic section that will integrate sedimentologic, paleontologic, and ichnologic observations to answer focused questions, including: (1) What are the stratigraphic architecture and alluvial facies of Upper Permian to Jurassic rocks in the Beardmore area?; (2) In what tectonostratigraphic setting were these rocks deposited?; (3) Did vertebrates inhabit the cold, near-polar, Permian floodplains, as indicated by vertebrate burrows, and can these burrows be used to identify, for the first time, the presence of small early mammals in Mesozoic deposits?; and (4) How did bottom-dwelling animals in lakes and streams use substrate ecospace, how did ecospace use at these high paleolatitudes differ from ecospace use in equivalent environments at low paleolatitudes, and what does burrow distribution reveal about seasonality of river flow and thus about paleoclimate? Answers to these questions will (1) clarify the paleoclimatic, basinal, and tectonic history of this part of Gondwana, (2) elucidate the colonization of near-polar ecosystems by vertebrates, (3) provide new information on the environmental and paleolatitudinal distributions of early mammals, and (4) allow semi-quantitative assessment of the activity and abundance of bottom-dwelling animals in different freshwater environments at high and low latitudes. In summary, this project will contribute significantly to an understanding of paleobiology and paleoecology at a high latitude floodplain setting during a time in Earth history when the climate was much different than today. | POINT(171 -83.75) | POINT(171 -83.75) | false | false |