{"dp_type": "Project", "free_text": "Argon-Argon Dates"}
[{"awards": "1744949 Campbell, Seth; 1745015 Zimmerer, Matthew; 1744927 Mitrovica, Jerry", "bounds_geometry": "POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74))", "dataset_titles": "Ar/Ar data for samples collected during the 2018-2019 Mt. Waesche field season.; Mt. Waesche ground-penetrating radar data 2018-2019", "datasets": [{"dataset_uid": "601974", "doi": "10.15784/601974", "keywords": "Antarctica; Argon-Argon Dates; Argon Isotopes; Cryosphere; Executive Committee Range; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marie Byrd Land; Mount Waesche; Volcano; West Antarctic", "people": "Iverson, Nels; Zimmerer, Matthew; Dunbar, Nelia; McIntosh, William C", "repository": "USAP-DC", "science_program": null, "title": "Ar/Ar data for samples collected during the 2018-2019 Mt. Waesche field season.", "url": "https://www.usap-dc.org/view/dataset/601974"}, {"dataset_uid": "601490", "doi": "10.15784/601490", "keywords": "Antarctica; GPR; Mt. Waesche", "people": "Braddock, Scott", "repository": "USAP-DC", "science_program": null, "title": "Mt. Waesche ground-penetrating radar data 2018-2019", "url": "https://www.usap-dc.org/view/dataset/601490"}], "date_created": "Fri, 22 Oct 2021 00:00:00 GMT", "description": "This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (\u003c80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography \u003c100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -111.0, "geometry": "POINT(-128 -77)", "instruments": null, "is_usap_dc": true, "keywords": "FIELD SURVEYS; Mt. Waesche; USA/NSF; SNOW/ICE; GLACIER THICKNESS/ICE SHEET THICKNESS; PALEOCLIMATE RECONSTRUCTIONS; LABORATORY; LAVA COMPOSITION/TEXTURE; Amd/Us; AMD; USAP-DC", "locations": "Mt. Waesche", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": null, "persons": "Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial", "uid": "p0010272", "west": -145.0}, {"awards": "9527329 Kyle, Philip", "bounds_geometry": "POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 01 Jan 1970 00:00:00 GMT", "description": "Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments.", "east": -135.0, "geometry": "POINT(-172.5 -72.5)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS", "is_usap_dc": false, "keywords": "Radiometric Dating; Radiometric Ages; Argon-Argon Dates; Geochronology; 40Ar/39Ar; Tephra; Geochemistry; Cape Roberts Project; Geology; Not provided", "locations": null, "north": -65.0, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Kyle, Philip; Krissek, Lawrence", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": -80.0, "title": "The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology", "uid": "p0000050", "west": 150.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
| Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Collaborative Research: Constraining West Antarctic Ice Sheet elevation during the last interglacial
|
1744949 1745015 1744927 |
2021-10-22 | Braddock, Scott; Campbell, Seth; Ackert, Robert; Zimmerer, Matthew; Mitrovica, Jerry |
|
This study will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult and data are lacking because the evidence lies beneath the present ice sheet. This study will drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. This study will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle. Understanding the geometry of a reduced WAIS during intervals when the planet was warmer than present may provide a possible analogue for future environmental conditions given predicted temperature trends. A reduction of WAIS results in rising sea levels which threatens coastal communities across the globe. The data will help improve numerical ice sheet models to better predict WAIS response to current and future climate trends. The project supports a teacher educational workshop and the training of graduate and undergraduate students. The goal of this project is to obtain rock samples from beneath the WAIS through shallow (<80 m) drilling at Mt. Waesche, a volcano in Marie Byrd Land, near an ice dome of WAIS (2000 m elevation). The lithologies of lava flows exposed on the flank of the volcano are well-suited for cosmogenic 3He and 36Cl as well as 40Ar/39Ar measurements which will establish eruption and exposure age. Existing 40Ar/39Ar data indicate basaltic lava flows on the volcano flank as young as 350 ka. Thus, measured cosmogenic nuclides measured in rock cores from beneath the ice surface will be indicative of relatively recent exposure during periods of reduced ice elevation, most likely, during the last interglacial. The first field season is focused on identifying appropriate locations for drilling and a ground penetrating radar (GPR) survey of the subglacial topography <100m under the blue ice area. Mapping and dating the adjacent exposed lava flows will allow tracing of lava flows of known age and composition below the ice margin that will be targeted for drilling the following year. The second field season activities include drilling 8 boreholes (two transects) through blue ice with the Winkie drill near the ice margin to 80 m depth to obtain rock cores from the sub-ice lava flows. 3He exposure ages will constrain the duration and minimum extent of past surface lowering of the WAIS in Marie Byrd Land. Deeper GPR imaging (up to 700 m) will hope to reveal additional evidence of lava/ice interactions that would independently place constraints on lower ice levels during past eruptions. Results from this study will be compared with the modeled ice elevation histories at Mt. Waesche to validate ice sheet modeling efforts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-145 -74,-141.6 -74,-138.2 -74,-134.8 -74,-131.4 -74,-128 -74,-124.6 -74,-121.2 -74,-117.8 -74,-114.4 -74,-111 -74,-111 -74.6,-111 -75.2,-111 -75.8,-111 -76.4,-111 -77,-111 -77.6,-111 -78.2,-111 -78.8,-111 -79.4,-111 -80,-114.4 -80,-117.8 -80,-121.2 -80,-124.6 -80,-128 -80,-131.4 -80,-134.8 -80,-138.2 -80,-141.6 -80,-145 -80,-145 -79.4,-145 -78.8,-145 -78.2,-145 -77.6,-145 -77,-145 -76.4,-145 -75.8,-145 -75.2,-145 -74.6,-145 -74)) | POINT(-128 -77) | false | false | |||||
|
The Cape Roberts Project: Volcanic Record, Geochemistry and 40Ar/39Ar Chronology
|
9527329 |
1970-01-01 | Kyle, Philip; Krissek, Lawrence | No dataset link provided | Kyle OPP 9527329 Abstract The Cape Roberts Project is an international drilling project to obtain a series of cores from the sedimentary strata beneath the sea floor off Cape Roberts in the Ross Sea. The project is a joint venture by scientists from the national Antarctic programs of Germany, Italy, New Zealand, the United Kingdom., Australia, and the United States. Drilling will continuously core a composite section of sediments over 1500 m thick which is expected to represent parts of the time period between 30 and more than 100 million years ago. The principle objectives of this component of the project will be to examine the record of igneous material in the drill core and provide high precision 40Ar/39Ar dates from tephra (volcanic ash) layers, disseminated ash, feldspars and epiclastic volcanic detrital grains to constrain depositional age and provenance of the sediments in the cores. This project will contribute to general geologic logging of the core and will characterize any igneous material using electron microprobe, x-ray fluorescence (XRF) and instrumental neutron activation analysis (INAA) analyses. The presence of alkalic volcanic detritus from the Cenozoic McMurdo Volcanics will constrain the initiation of this phase of volcanism and improve our understanding of the relationship between volcanism and tectonism. The influx of sediments eroded from Jurassic Kirkpatrick Basalts and Ferrar Dolerites will be used to time the unroofing and rates of uplift of the Transantarctic Mountains. Geochemical analyses of core samples will examine the geochemistry and provenance of the sediments. | POLYGON((-180 -65,-175.5 -65,-171 -65,-166.5 -65,-162 -65,-157.5 -65,-153 -65,-148.5 -65,-144 -65,-139.5 -65,-135 -65,-135 -66.5,-135 -68,-135 -69.5,-135 -71,-135 -72.5,-135 -74,-135 -75.5,-135 -77,-135 -78.5,-135 -80,-139.5 -80,-144 -80,-148.5 -80,-153 -80,-157.5 -80,-162 -80,-166.5 -80,-171 -80,-175.5 -80,180 -80,177 -80,174 -80,171 -80,168 -80,165 -80,162 -80,159 -80,156 -80,153 -80,150 -80,150 -78.5,150 -77,150 -75.5,150 -74,150 -72.5,150 -71,150 -69.5,150 -68,150 -66.5,150 -65,153 -65,156 -65,159 -65,162 -65,165 -65,168 -65,171 -65,174 -65,177 -65,-180 -65)) | POINT(-172.5 -72.5) | false | false |

