{"dp_type": "Project", "free_text": "ATMOSPHERIC WINDS"}
[{"awards": "2326960 Doddi, Abhiram", "bounds_geometry": "POLYGON((36 -68,36.9 -68,37.8 -68,38.7 -68,39.6 -68,40.5 -68,41.4 -68,42.3 -68,43.2 -68,44.1 -68,45 -68,45 -68.2,45 -68.4,45 -68.6,45 -68.8,45 -69,45 -69.2,45 -69.4,45 -69.6,45 -69.8,45 -70,44.1 -70,43.2 -70,42.3 -70,41.4 -70,40.5 -70,39.6 -70,38.7 -70,37.8 -70,36.9 -70,36 -70,36 -69.8,36 -69.6,36 -69.4,36 -69.2,36 -69,36 -68.8,36 -68.6,36 -68.4,36 -68.2,36 -68))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 20 May 2023 00:00:00 GMT", "description": "This international collaboration between the University of Colorado, the University of Kyoto, and the National Institute of Polar Research in Tokyo, will investigate the sources of atmospheric turbulence in coastal Antarctica. Strong winds forced against terrain produce waves called atmospheric gravity waves, which can grow in amplitude as they propagate to higher altitudes, becoming unstable, breaking, and causing turbulence. Another source of turbulence is shear layers in the atmosphere, where one layer of air slides over another, resulting in Kelvin-Helmholtz Instabilities. Collectively, both play important roles in accurately representing the Antarctic climate in weather prediction models. Collecting new turbulence observations in these remote southern high latitudes will improve wind and temperature forecasts of the Antarctic climate. This project will observe gravity wave and shear-induced turbulence dynamics by deploying custom high-altitude balloon systems in coordination and collaboration with a powerful remote sensing radar and multiple long-duration balloons during an observational field campaign at the Japanese Antarctic Syowa station. This research is motivated by the fact that the sources representing realistic multi-scale gravity wave (GW) drag, and Kelvin-Helmholtz Instability (KHI) dynamics, along with their contributions to momentum and energy budgets due to turbulent transport/mixing, are largely missing in the current General Circulation Model (GCM) parameterization schemes, resulting in degraded synoptic-scale forecasts at southern high latitudes. This project utilizes high-resolution in-situ turbulence instruments to characterize the large-scale dynamics of 1) orographic GWs produced by katabatic forcing, 2) non-orographic GWs produced by low-pressure synoptic-scale events, and 3) KHI instabilities emerging in a wide range of scales and background environments in the coastal Antarctic region. The project will deploy dozens of low-cost balloon systems equipped with custom in-situ turbulence and radiosonde instruments at the Japanese Syowa station in Eastern Antarctica. Balloon payloads descend slowly from an apogee of 20 km to provide high- resolution, wake-free turbulence observations, with deployment guidance from the PANSY radar at Syowa, in coordination with the LODEWAVE long duration balloon experiment. The combination of in-situ and remote sensing turbulence observations will quantify the structure and dynamics of small-scale turbulent atmospheric processes associated with GWs and KHI, thought to be ubiquitous in polar environments but rarely observed. Momentum fluxes and turbulence dissipation rates measured over a wide range of scales and background environments will provide datasets to validate current GCM parameterizations for atmospheric GW drag and turbulence diffusion coefficients in the lower and middle atmospheres at southern high latitudes, increasing our understanding of these processes and their contribution to Antarctic circulation and climate. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 45.0, "geometry": "POINT(40.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC WINDS; VERTICAL PROFILES; ATMOSPHERIC PRESSURE; HUMIDITY; Syowa Station", "locations": "Syowa Station", "north": -68.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Doddi, Abhiram; Lawrence, Dale", "platforms": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "RAPID: In-situ Observations to Characterize Multi-Scale Turbulent Atmospheric Processes Impacting Climate at Southern High Latitudes", "uid": "p0010420", "west": 36.0}, {"awards": "1625904 TBD", "bounds_geometry": "POLYGON((166 -77.5,166.4 -77.5,166.8 -77.5,167.2 -77.5,167.6 -77.5,168 -77.5,168.4 -77.5,168.8 -77.5,169.2 -77.5,169.6 -77.5,170 -77.5,170 -77.75,170 -78,170 -78.25,170 -78.5,170 -78.75,170 -79,170 -79.25,170 -79.5,170 -79.75,170 -80,169.6 -80,169.2 -80,168.8 -80,168.4 -80,168 -80,167.6 -80,167.2 -80,166.8 -80,166.4 -80,166 -80,166 -79.75,166 -79.5,166 -79.25,166 -79,166 -78.75,166 -78.5,166 -78.25,166 -78,166 -77.75,166 -77.5))", "dataset_titles": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).; Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "datasets": [{"dataset_uid": "200340", "doi": "https://doi.org/10.48567/h6qx-0613", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Skomik PCWS unmodified ten-minute observational data, 2022 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/skomik-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}, {"dataset_uid": "200341", "doi": "https://doi.org/10.48567/q4eh-nm67", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Sarah PCWS unmodified ten-minute observational data, 2020 - present (ongoing).", "url": "https://amrdcdata.ssec.wisc.edu/dataset/sarah-pcws-unmodified-ten-minute-observational-data-2022-present-ongoing"}], "date_created": "Mon, 12 Dec 2022 00:00:00 GMT", "description": "Our knowledge of Antarctic weather and climate relies on only a handful of direct observing stations located on this harsh and remote continent. This observing system reports meteorological measurements from an existing network of automatic weather stations (AWS) spread across a vast area. This MRI project will enable the development, testing and eventual deployment of a next generation of polar automatic climate and weather observing stations for unattended use in the Antarctic. The proposed new Automatic Weather Station (AWS) system will enhance the capabilities and accuracy of the meteorological observations, enabling climate quality measurements. This project will involve development of a more capable instrumentation core, with two major goals. The first goal is to lower the cost for an AWS electronic core to 3 times less than currently employed systems. The second is to enable an onboard temperature calibration capability, an innovative development for the Antarctic AWS. The capability for onboard calibration will add confidence in the critical climate measure of ambient temperature, along with other standard meteorological parameters. Observations made by a modernized AWS network will inform and extend future numerical climate modeling efforts, improve operational weather forecasts, capture weather phenomena, and support environmental science research in other disciplines. A theme of the project is the inclusion of community college students in all aspects of the effort. With an eye on training the next generation of research instrumentation expertise, while involving other science, technology, engineering and mathematics (STEM) fields, undergraduate students will be involved in the development, testing and deployment of new AWS systems. As well as reporting, data analysis and publication of scientific knowledge, students intending to transfer to a 4-year university, as well as those pursuing electronics or electrical engineering associate degrees will be introduced to weather and climate topics. This MRI award was supported with funds from the Division of Polar Programs and the Division of Atmospheric and Geospace Sciences, both of the Directorate of Geosciences.", "east": 170.0, "geometry": "POINT(168 -78.75)", "instruments": null, "is_usap_dc": true, "keywords": "ATMOSPHERIC WINDS; Madison Area Technical College; SNOW/ICE; SURFACE PRESSURE; ATMOSPHERIC RADIATION; HUMIDITY; AIR TEMPERATURE; METEOROLOGICAL STATIONS; WEATHER STATIONS", "locations": "Madison Area Technical College", "north": -77.5, "nsf_funding_programs": null, "paleo_time": null, "persons": "Lazzara, Matthew; Cassano, John; L\u0027\u0027Ecuyer, Tristan; Kulie, Mark", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -80.0, "title": "MRI: Development of a Modern Polar Climate and Weather Automated Observing System", "uid": "p0010396", "west": 166.0}, {"awards": "1924730 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "AMRC Automatic Weather Station project data", "datasets": [{"dataset_uid": "200316", "doi": "10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "AMRC Automatic Weather Station project data", "url": "https://doi.org/10.48567/1hn2-nw60"}], "date_created": "Tue, 23 Aug 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic \"cold\" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers. This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "SURFACE TEMPERATURE; ATMOSPHERIC PRESSURE; ATMOSPHERIC TEMPERATURE; Antarctica; SURFACE WINDS; HUMIDITY; AIR TEMPERATURE; ATMOSPHERIC WINDS; ATMOSPHERIC PRESSURE MEASUREMENTS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew; Welhouse, Lee J", "platforms": null, "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022", "uid": "p0010370", "west": -180.0}, {"awards": "1643436 Donohoe, Aaron", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "datasets": [{"dataset_uid": "601579", "doi": "10.15784/601579", "keywords": "Antarctica; Southern Ocean", "people": "Donohoe, Aaron", "repository": "USAP-DC", "science_program": null, "title": "Partionining of CERES planetary albedo between atmospheric and surface reflection", "url": "https://www.usap-dc.org/view/dataset/601579"}], "date_created": "Fri, 10 Jun 2022 00:00:00 GMT", "description": "This project will use observations and coupled climate model simulations to examine the causes of sea ice variability. Sea ice in the Southern Ocean has increased in area over the observational record but researchers have yet to agree on the cause. Researchers suggests that changes in surface winds, upper-ocean freshening, or internal ocean/atmosphere variability could be the main driver for the increase in sea ice area. This project will determine how much of the change in sea ice area from year to year is due to oceanic, atmospheric, and radiative processes. Reconciling the observation-based understanding with model representations of sea ice variability will improve confidence in projections of future changes in Southern Ocean sea ice. The goal of this proposal is to improve our understanding of the processes that drive Southern Ocean sea ice year-to-year variability and long term trends. This knowledge will provide insight into how Southern Ocean sea ice responded to greenhouse gas and ozone forcing in the past and how it will respond in the future. The energy budget of the coupled cryosphere/ocean/atmosphere climate system will be used as a framework to disentangle drivers and responses during sea ice loss events. The technique consists of: (i) calculating the coupled energy budget of the climate system at the monthly timescale, (ii) isolating the radiative impact of sea ice variability from the radiative impact of cloud variability in the observed satellite radiation record and (iii) analyzing the vertical structure of atmospheric energy transport to determine the vertical profile of energy transport into the atmospheric column. This framework will allow the investigators to distinguish whether ice loss events are triggered by oceanic processes, atmospheric dynamics, or radiative processes. Preliminary results show that a diversity of mechanisms can drive Southern Ocean sea ice variability in coupled climate models whereas observed sea ice variability appears to be dominated by atmospheric dynamics. The exploration of biases between models and observations in both the mean state and in specific processes will yield more accurate projections of the future of sea ice in the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; AMD; Amd/Us; SEA ICE; United States Of America; COMPUTERS; ATMOSPHERIC WINDS; ATMOSPHERIC RADIATION; NSF/USA", "locations": "United States Of America", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Donohoe, Aaron; Schweiger, Axel", "platforms": "OTHER \u003e MODELS \u003e COMPUTERS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System", "uid": "p0010336", "west": -180.0}, {"awards": "1543305 Lazzara, Matthew", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "Antarctic Automatic Weather Station", "datasets": [{"dataset_uid": "200291", "doi": "https://doi.org/10.48567/1hn2-nw60", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Antarctic Automatic Weather Station", "url": "https://amrdcdata.ssec.wisc.edu/group/about/automatic-weather-station-project"}], "date_created": "Mon, 16 May 2022 00:00:00 GMT", "description": "The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations made from the AAWS network have been used to check on satellite and remote sensing observations. This project proposes to use the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall and blowing snow events. Specifically, this project proposes to improve our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. This project will fill a gap in knowledge of snowfall distribution, and distinguishing between snowfall and blowing snow events using a suite of precipitation sensors near McMurdo Station.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "HUMIDITY; SURFACE PRESSURE; ATMOSPHERIC TEMPERATURE; AMD; ATMOSPHERIC PRESSURE; USA/NSF; AIR TEMPERATURE; Antarctica; USAP-DC; Amd/Us; SURFACE WINDS; SURFACE AIR TEMPERATURE; ATMOSPHERIC PRESSURE MEASUREMENTS; WEATHER STATIONS; ATMOSPHERIC WINDS", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019", "uid": "p0010319", "west": -180.0}, {"awards": "2001430 Cassano, John", "bounds_geometry": "POLYGON((166 -77,166.4 -77,166.8 -77,167.2 -77,167.6 -77,168 -77,168.4 -77,168.8 -77,169.2 -77,169.6 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.6 -78,169.2 -78,168.8 -78,168.4 -78,168 -78,167.6 -78,167.2 -78,166.8 -78,166.4 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77))", "dataset_titles": "Radar Data for Phoenix Airfield (NZFX), 2019", "datasets": [{"dataset_uid": "200358", "doi": "10.48567/wrfx-7c88", "keywords": null, "people": null, "repository": "AMRDC", "science_program": null, "title": "Radar Data for Phoenix Airfield (NZFX), 2019", "url": "https://amrdcdata.ssec.wisc.edu/dataset/radar-data-for-phoenix-airfield-nzfx-2019"}], "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "Despite several decades of successful Antarctic aviation, centered upon flight operations in the McMurdo (Phoenix Field, Ross Island; RsI) area, systemized description of radar observations such as are normally found essential in operational aviation settings are notably lacking. The Ross Island region of Antarctica is a topographically complex region that results in large variations in the mesoscale high wind and precipitation features across the region. The goals of this project are to increase the understanding of the three-dimensional structure of these mesoscale meteorology features. Of particular interest are those features observed with radar signals. This project will leverage observations from the scanning X-band radar installed during the AWARE field campaign in 2016 and the installation of an EWR Radar Systems X-band scanning radar (E700XD) to be deployed during the 2019-20 field season, at McMurdo. Several science questions and case studies will be addressed during the season. This award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 170.0, "geometry": "POINT(168 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "SNOW; AMD; FIELD SURVEYS; Amd/Us; McMurdo; USAP-DC; USA/NSF; ATMOSPHERIC WINDS", "locations": "McMurdo", "north": -77.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Seefeldt, Mark; Kingsmill, David", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "AMRDC", "repositories": "AMRDC", "science_programs": null, "south": -78.0, "title": "RAPID: An Improved Understanding of Mesoscale Wind and Precipitation Variability in the Ross Island Region Based on Radar Observations", "uid": "p0010226", "west": 166.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RAPID: In-situ Observations to Characterize Multi-Scale Turbulent Atmospheric Processes Impacting Climate at Southern High Latitudes
|
2326960 |
2023-05-20 | Doddi, Abhiram; Lawrence, Dale | No dataset link provided | This international collaboration between the University of Colorado, the University of Kyoto, and the National Institute of Polar Research in Tokyo, will investigate the sources of atmospheric turbulence in coastal Antarctica. Strong winds forced against terrain produce waves called atmospheric gravity waves, which can grow in amplitude as they propagate to higher altitudes, becoming unstable, breaking, and causing turbulence. Another source of turbulence is shear layers in the atmosphere, where one layer of air slides over another, resulting in Kelvin-Helmholtz Instabilities. Collectively, both play important roles in accurately representing the Antarctic climate in weather prediction models. Collecting new turbulence observations in these remote southern high latitudes will improve wind and temperature forecasts of the Antarctic climate. This project will observe gravity wave and shear-induced turbulence dynamics by deploying custom high-altitude balloon systems in coordination and collaboration with a powerful remote sensing radar and multiple long-duration balloons during an observational field campaign at the Japanese Antarctic Syowa station. This research is motivated by the fact that the sources representing realistic multi-scale gravity wave (GW) drag, and Kelvin-Helmholtz Instability (KHI) dynamics, along with their contributions to momentum and energy budgets due to turbulent transport/mixing, are largely missing in the current General Circulation Model (GCM) parameterization schemes, resulting in degraded synoptic-scale forecasts at southern high latitudes. This project utilizes high-resolution in-situ turbulence instruments to characterize the large-scale dynamics of 1) orographic GWs produced by katabatic forcing, 2) non-orographic GWs produced by low-pressure synoptic-scale events, and 3) KHI instabilities emerging in a wide range of scales and background environments in the coastal Antarctic region. The project will deploy dozens of low-cost balloon systems equipped with custom in-situ turbulence and radiosonde instruments at the Japanese Syowa station in Eastern Antarctica. Balloon payloads descend slowly from an apogee of 20 km to provide high- resolution, wake-free turbulence observations, with deployment guidance from the PANSY radar at Syowa, in coordination with the LODEWAVE long duration balloon experiment. The combination of in-situ and remote sensing turbulence observations will quantify the structure and dynamics of small-scale turbulent atmospheric processes associated with GWs and KHI, thought to be ubiquitous in polar environments but rarely observed. Momentum fluxes and turbulence dissipation rates measured over a wide range of scales and background environments will provide datasets to validate current GCM parameterizations for atmospheric GW drag and turbulence diffusion coefficients in the lower and middle atmospheres at southern high latitudes, increasing our understanding of these processes and their contribution to Antarctic circulation and climate. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((36 -68,36.9 -68,37.8 -68,38.7 -68,39.6 -68,40.5 -68,41.4 -68,42.3 -68,43.2 -68,44.1 -68,45 -68,45 -68.2,45 -68.4,45 -68.6,45 -68.8,45 -69,45 -69.2,45 -69.4,45 -69.6,45 -69.8,45 -70,44.1 -70,43.2 -70,42.3 -70,41.4 -70,40.5 -70,39.6 -70,38.7 -70,37.8 -70,36.9 -70,36 -70,36 -69.8,36 -69.6,36 -69.4,36 -69.2,36 -69,36 -68.8,36 -68.6,36 -68.4,36 -68.2,36 -68)) | POINT(40.5 -69) | false | false | |||||
MRI: Development of a Modern Polar Climate and Weather Automated Observing System
|
1625904 |
2022-12-12 | Lazzara, Matthew; Cassano, John; L''Ecuyer, Tristan; Kulie, Mark |
|
Our knowledge of Antarctic weather and climate relies on only a handful of direct observing stations located on this harsh and remote continent. This observing system reports meteorological measurements from an existing network of automatic weather stations (AWS) spread across a vast area. This MRI project will enable the development, testing and eventual deployment of a next generation of polar automatic climate and weather observing stations for unattended use in the Antarctic. The proposed new Automatic Weather Station (AWS) system will enhance the capabilities and accuracy of the meteorological observations, enabling climate quality measurements. This project will involve development of a more capable instrumentation core, with two major goals. The first goal is to lower the cost for an AWS electronic core to 3 times less than currently employed systems. The second is to enable an onboard temperature calibration capability, an innovative development for the Antarctic AWS. The capability for onboard calibration will add confidence in the critical climate measure of ambient temperature, along with other standard meteorological parameters. Observations made by a modernized AWS network will inform and extend future numerical climate modeling efforts, improve operational weather forecasts, capture weather phenomena, and support environmental science research in other disciplines. A theme of the project is the inclusion of community college students in all aspects of the effort. With an eye on training the next generation of research instrumentation expertise, while involving other science, technology, engineering and mathematics (STEM) fields, undergraduate students will be involved in the development, testing and deployment of new AWS systems. As well as reporting, data analysis and publication of scientific knowledge, students intending to transfer to a 4-year university, as well as those pursuing electronics or electrical engineering associate degrees will be introduced to weather and climate topics. This MRI award was supported with funds from the Division of Polar Programs and the Division of Atmospheric and Geospace Sciences, both of the Directorate of Geosciences. | POLYGON((166 -77.5,166.4 -77.5,166.8 -77.5,167.2 -77.5,167.6 -77.5,168 -77.5,168.4 -77.5,168.8 -77.5,169.2 -77.5,169.6 -77.5,170 -77.5,170 -77.75,170 -78,170 -78.25,170 -78.5,170 -78.75,170 -79,170 -79.25,170 -79.5,170 -79.75,170 -80,169.6 -80,169.2 -80,168.8 -80,168.4 -80,168 -80,167.6 -80,167.2 -80,166.8 -80,166.4 -80,166 -80,166 -79.75,166 -79.5,166 -79.25,166 -79,166 -78.75,166 -78.5,166 -78.25,166 -78,166 -77.75,166 -77.5)) | POINT(168 -78.75) | false | false | |||||
Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022
|
1924730 |
2022-08-23 | Lazzara, Matthew; Welhouse, Lee J |
|
The Antarctic Automatic Weather Station network is the most extensive surficial meteorological network in the Antarctic, approaching its 30th year at several of its data stations. Its prime focus is also as a long term observational record, to measure the near surface weather and climatology of the Antarctic atmosphere. Antarctic Automatic Weather Stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. The surface observations from the Antarctic Automatic Weather Station network are also used operationally, for forecast purposes, and in the planning of field work. Surface observations made from the network have also been used to check the validity of satellite and remote sensing observations. The proposed effort informs our understanding of the Antarctic environment and its weather and climate trends over the past few decades. The research has implications for potential future operations and logistics for the US Antarctic Program during the winter season. As a part of this endeavor, all project participants will engage in a coordinated outreach effort to bring the famous Antarctic "cold" to public seminars, K-12, undergraduate, and graduate classrooms, and senior citizen centers. This project proposes to use the surface conditions observed by the Antarctic Automatic Weather Station (AWS) network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes. Consideration will also be given to low temperature physical environments such as may be encountered during Antarctic winter, and the best ways to characterize these, and other ?cold pool? phenomena. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters over the GTS (WMO Global Telecommunication System). Being able to support improvements in numerical weather prediction and climate modeling will have lasting impacts on Antarctic science and logistical support. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
What Processes Drive Southern Ocean Sea Ice Variability and Trends? Insights from the Energy Budget of the Coupled Cryosphere-ocean-atmosphere System
|
1643436 |
2022-06-10 | Donohoe, Aaron; Schweiger, Axel |
|
This project will use observations and coupled climate model simulations to examine the causes of sea ice variability. Sea ice in the Southern Ocean has increased in area over the observational record but researchers have yet to agree on the cause. Researchers suggests that changes in surface winds, upper-ocean freshening, or internal ocean/atmosphere variability could be the main driver for the increase in sea ice area. This project will determine how much of the change in sea ice area from year to year is due to oceanic, atmospheric, and radiative processes. Reconciling the observation-based understanding with model representations of sea ice variability will improve confidence in projections of future changes in Southern Ocean sea ice. The goal of this proposal is to improve our understanding of the processes that drive Southern Ocean sea ice year-to-year variability and long term trends. This knowledge will provide insight into how Southern Ocean sea ice responded to greenhouse gas and ozone forcing in the past and how it will respond in the future. The energy budget of the coupled cryosphere/ocean/atmosphere climate system will be used as a framework to disentangle drivers and responses during sea ice loss events. The technique consists of: (i) calculating the coupled energy budget of the climate system at the monthly timescale, (ii) isolating the radiative impact of sea ice variability from the radiative impact of cloud variability in the observed satellite radiation record and (iii) analyzing the vertical structure of atmospheric energy transport to determine the vertical profile of energy transport into the atmospheric column. This framework will allow the investigators to distinguish whether ice loss events are triggered by oceanic processes, atmospheric dynamics, or radiative processes. Preliminary results show that a diversity of mechanisms can drive Southern Ocean sea ice variability in coupled climate models whereas observed sea ice variability appears to be dominated by atmospheric dynamics. The exploration of biases between models and observations in both the mean state and in specific processes will yield more accurate projections of the future of sea ice in the Southern Ocean. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019
|
1543305 |
2022-05-16 | Lazzara, Matthew |
|
The Antarctic Automatic Weather Station (AWS) network is the most extensive ground meteorological network in the Antarctic, approaching its 30th year at several of its installations. Its prime focus as a long term observational record is to measure the near surface weather and climatology of the Antarctic atmosphere. AWS stations measure air-temperature, pressure, wind speed and direction at a nominal surface height of ~ 2-3m. Other parameters such as relative humidity and snow accumulation may also be taken. Observational data from the AWS are collected via Iridium network, or DCS Argos aboard either NOAA or MetOp polar orbiting satellites and thus made available in near real time to operational and synoptic weather forecasters. The surface observations from the AAWS network are important records for recent climate change and meteorological processes. The surface observations from the AAWS network are also used operationally, and in the planning of field work. The surface observations made from the AAWS network have been used to check on satellite and remote sensing observations. This project proposes to use the surface conditions observed by the AWS network to determine how large-scale modes of climate variability impact Antarctic weather and climate, how the surface observations from the AWS network are linked to surface layer and boundary layer processes, and to quantify the impact of snowfall and blowing snow events. Specifically, this project proposes to improve our understanding of the processes that lead to unusual weather events and how these events are related to large-scale modes of climate variability. This project will fill a gap in knowledge of snowfall distribution, and distinguishing between snowfall and blowing snow events using a suite of precipitation sensors near McMurdo Station. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | |||||
RAPID: An Improved Understanding of Mesoscale Wind and Precipitation Variability in the Ross Island Region Based on Radar Observations
|
2001430 |
2021-07-06 | Cassano, John; Seefeldt, Mark; Kingsmill, David |
|
Despite several decades of successful Antarctic aviation, centered upon flight operations in the McMurdo (Phoenix Field, Ross Island; RsI) area, systemized description of radar observations such as are normally found essential in operational aviation settings are notably lacking. The Ross Island region of Antarctica is a topographically complex region that results in large variations in the mesoscale high wind and precipitation features across the region. The goals of this project are to increase the understanding of the three-dimensional structure of these mesoscale meteorology features. Of particular interest are those features observed with radar signals. This project will leverage observations from the scanning X-band radar installed during the AWARE field campaign in 2016 and the installation of an EWR Radar Systems X-band scanning radar (E700XD) to be deployed during the 2019-20 field season, at McMurdo. Several science questions and case studies will be addressed during the season. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((166 -77,166.4 -77,166.8 -77,167.2 -77,167.6 -77,168 -77,168.4 -77,168.8 -77,169.2 -77,169.6 -77,170 -77,170 -77.1,170 -77.2,170 -77.3,170 -77.4,170 -77.5,170 -77.6,170 -77.7,170 -77.8,170 -77.9,170 -78,169.6 -78,169.2 -78,168.8 -78,168.4 -78,168 -78,167.6 -78,167.2 -78,166.8 -78,166.4 -78,166 -78,166 -77.9,166 -77.8,166 -77.7,166 -77.6,166 -77.5,166 -77.4,166 -77.3,166 -77.2,166 -77.1,166 -77)) | POINT(168 -77.5) | false | false |