{"dp_type": "Project", "free_text": "ALUMINUM-26 ANALYSIS"}
[{"awards": "1744771 Balco, Gregory", "bounds_geometry": "POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))", "dataset_titles": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities; 5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "datasets": [{"dataset_uid": "601601", "doi": "10.15784/601601", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "people": "Halberstadt, Anna Ruth; Buchband, Hannah; Balco, Gregory", "repository": "USAP-DC", "science_program": null, "title": "5 million year transient Antarctic ice sheet model run with \"desensitized\" marine ice margin instabilities", "url": "https://www.usap-dc.org/view/dataset/601601"}, {"dataset_uid": "601602", "doi": "10.15784/601602", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Modeling; Marine Ice Margin Instability; Model Output", "people": "Balco, Gregory; Halberstadt, Anna Ruth; Buchband, Hannah", "repository": "USAP-DC", "science_program": null, "title": "5 million year transient Antarctic ice sheet model run with \"sensitized\" marine ice margin instabilities", "url": "https://www.usap-dc.org/view/dataset/601602"}], "date_created": "Tue, 21 Jun 2022 00:00:00 GMT", "description": "The purpose of this project is to use geological data that record past changes in the Antarctic ice sheets to test computer models for ice sheet change. The geologic data mainly consist of dated glacial deposits that are preserved above the level of the present ice sheet, and range in age from thousands to millions of years old. These provide information about the size, thickness, and rate of change of the ice sheets during past times when the ice sheets were larger than present. In addition, some of these data are from below the present ice surface and therefore also provide some information about past warm periods when ice sheets were most likely smaller than present. The primary purpose of the computer model is to predict future ice sheet changes, but because significant changes in the size of ice sheets are slow and likely occur over hundreds of years or longer, the only way to determine whether these models are accurate is to test their ability to reproduce past ice sheet changes. The primary purpose of this project is to carry out such a test. The research team will compile relevant geologic data, in some cases generate new data by dating additional deposits, and develop methods and software to compare data to model simulations. In addition, this project will (i) contribute to building and sustaining U.S. science capacity through postdoctoral training in geochronology, ice sheet modeling, and data science, and (ii) improve public access to geologic data and model simulations relevant to ice sheet change through online database and website development. \u003cbr/\u003e\u003cbr/\u003eTechnical aspects of this project are primarily focused on the field of cosmogenic-nuclide exposure-dating, which is a method that relies on the production of rare stable and radio-nuclides by cosmic-ray interactions with rocks and minerals exposed at the Earth\u0027s surface. Because the advance and retreat of ice sheets results in alternating cosmic-ray exposure and shielding of underlying bedrock and surficial deposits, this technique is commonly used to date and reconstruct past ice sheet changes. First, this project will contribute to compiling and systematizing a large amount of cosmogenic-nuclide exposure age data collected in Antarctica during the past three decades. Second, it will generate additional geochemical data needed to improve the extent and usefulness of measurements of stable cosmogenic nuclides, cosmogenic neon-21 in particular, that are useful for constraining ice-sheet behavior on million-year timescales. Third, it will develop a computational framework for comparison of the geologic data set with existing numerical model simulations of Antarctic ice sheet change during the past several million years, with particular emphasis on model simulations of past warm periods, for example the middle Pliocene ca. 3-3.3 million years ago, during which the Antarctic ice sheets are hypothesized to have been substantially smaller than present. Fourth, guided by the results of this comparison, it will generate new model simulations aimed at improving agreement between model simulations and geologic data, as well as diagnosing which processes or parameterizations in the models are or are not well constrained by the data.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "BERYLLIUM-10 ANALYSIS; AMD; ICE SHEETS; GLACIATION; Amd/Us; LABORATORY; USA/NSF; Antarctica; ALUMINUM-26 ANALYSIS; USAP-DC", "locations": "Antarctica", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "Balco, Gregory", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements", "uid": "p0010342", "west": -180.0}, {"awards": "1341658 Mukhopadhyay, Sujoy", "bounds_geometry": "POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786))", "dataset_titles": "Ohio Range Subglacial rock core cosmogenic nuclide data", "datasets": [{"dataset_uid": "601351", "doi": "10.15784/601351", "keywords": "Aluminum-26; Antarctica; Beryllium-10; Cosmogenic Dating; Cosmogenic Radionuclides; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Sheet Fluctuations; Ohio Range; Rocks", "people": "Mukhopadhyay, Sujoy", "repository": "USAP-DC", "science_program": null, "title": "Ohio Range Subglacial rock core cosmogenic nuclide data", "url": "https://www.usap-dc.org/view/dataset/601351"}], "date_created": "Sun, 28 Jun 2020 00:00:00 GMT", "description": "Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare.\r\nTo test model predictions,sub-glacial rock cores were obtained from the Ohio Range along the Transantarctic Mountains near the present-day WAIS divide using a Winkie drill. Rock cores were recovered from 10 to ~30 m under the present-day ice levels. At the Ohio Range, the glacial to interglacial variations in ice sheet levels is ~120 meters. So 30 meters represent a significant fraction of the variation over the course of an ice age.\r\nHigh concentrations of the cosmic ray produced isotopes were detected in the rock cores, indicating extensive periods of ice-free exposure to cosmic irradiation during the last 2 million years. Modeling of the data suggest that bedrock surfaces at the Ohio Range that are currently covered by 30 meters of ice experienced more exposure than ice cover, especially in the Pleistocene. An ice sheet model prediction for the Ohio Range subglacial sample sites however, significantly underestimates exposure in the last 2 million years, and over-predicts ice cover in the Pleistocene. To adjust for the higher amounts of exposure we observe in our samples, the ice sheet model simulations require more frequent and/or longer-lasting WAIS ice drawdowns. This has important implications for future sea-level change as the model maybe under-predicting the magnitude of sea-level contributions from WAIS during the ice-age cycles. Improving the accuracy of the ice sheet models through model-data comparison should remain a prime objective in the face of a warming planet as understanding WAIS behavior is going to be key for predicting and planning for the effects of sea-level change. The project helped support and train a graduate student in climate research related to Antarctica, cosmogenic nuclide analyses and led to a Master\u2019s Thesis. The project also provide partial support to a postdoctoral scholar obtaining cosmogenic neon measurements and for training and mentoring the graduate student\u0027s cosmogenic neon measurements and interpretation. The project results were communicated to the scientific community at conferences and through seminars. The broader community was engaged through the University of California Davis\u0027s Picnic Day celebration, an annual open house that attracts over 70,000 people to the campus, and through classroom visit at a local elementary school.", "east": -116.38, "geometry": "POINT(-116.415 -84.788)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ROCK CORERS; IN SITU/LABORATORY INSTRUMENTS \u003e SPECTROMETERS/RADIOMETERS \u003e AMS; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e GAS CHROMATOGRAPHS", "is_usap_dc": true, "keywords": "Ice Sheet Fluctuations; ALUMINUM-26 ANALYSIS; BERYLLIUM-10 ANALYSIS; Cosmogenic Radionuclides; USAP-DC; FIELD INVESTIGATION; AMD; Ohio Range; GLACIER THICKNESS/ICE SHEET THICKNESS; ICE SHEETS; LABORATORY", "locations": "Ohio Range", "north": -84.786, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Mukhopadhyay, Sujoy", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -84.79, "title": "Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier", "uid": "p0010113", "west": -116.45}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Synoptic Evaluation of Long-Term Antarctic Ice Sheet Model Simulations using a Continent-Wide Database of Cosmogenic-Nuclide Measurements
|
1744771 |
2022-06-21 | Balco, Gregory | The purpose of this project is to use geological data that record past changes in the Antarctic ice sheets to test computer models for ice sheet change. The geologic data mainly consist of dated glacial deposits that are preserved above the level of the present ice sheet, and range in age from thousands to millions of years old. These provide information about the size, thickness, and rate of change of the ice sheets during past times when the ice sheets were larger than present. In addition, some of these data are from below the present ice surface and therefore also provide some information about past warm periods when ice sheets were most likely smaller than present. The primary purpose of the computer model is to predict future ice sheet changes, but because significant changes in the size of ice sheets are slow and likely occur over hundreds of years or longer, the only way to determine whether these models are accurate is to test their ability to reproduce past ice sheet changes. The primary purpose of this project is to carry out such a test. The research team will compile relevant geologic data, in some cases generate new data by dating additional deposits, and develop methods and software to compare data to model simulations. In addition, this project will (i) contribute to building and sustaining U.S. science capacity through postdoctoral training in geochronology, ice sheet modeling, and data science, and (ii) improve public access to geologic data and model simulations relevant to ice sheet change through online database and website development. <br/><br/>Technical aspects of this project are primarily focused on the field of cosmogenic-nuclide exposure-dating, which is a method that relies on the production of rare stable and radio-nuclides by cosmic-ray interactions with rocks and minerals exposed at the Earth's surface. Because the advance and retreat of ice sheets results in alternating cosmic-ray exposure and shielding of underlying bedrock and surficial deposits, this technique is commonly used to date and reconstruct past ice sheet changes. First, this project will contribute to compiling and systematizing a large amount of cosmogenic-nuclide exposure age data collected in Antarctica during the past three decades. Second, it will generate additional geochemical data needed to improve the extent and usefulness of measurements of stable cosmogenic nuclides, cosmogenic neon-21 in particular, that are useful for constraining ice-sheet behavior on million-year timescales. Third, it will develop a computational framework for comparison of the geologic data set with existing numerical model simulations of Antarctic ice sheet change during the past several million years, with particular emphasis on model simulations of past warm periods, for example the middle Pliocene ca. 3-3.3 million years ago, during which the Antarctic ice sheets are hypothesized to have been substantially smaller than present. Fourth, guided by the results of this comparison, it will generate new model simulations aimed at improving agreement between model simulations and geologic data, as well as diagnosing which processes or parameterizations in the models are or are not well constrained by the data.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60)) | POINT(0 -89.999) | false | false | ||||
Constraining Plio-Pleistocene West Antarctic Ice Sheet Behavior from the Ohio Range and Scott Glacier
|
1341658 |
2020-06-28 | Mukhopadhyay, Sujoy |
|
Modeling fluctuations in the extent of the West Antarctic Ice Sheet (WAIS) over time is a principal goal of the glaciological community. These models will provide a critical basis for predictions of future sea level change, and therefore this work great societal relevance. The mid-Pliocene time interval is of particular interest, as it is the most recent period in which global temperatures were warmer and atmospheric CO2 concentrations may have been higher than current levels. However, observational constraints on fluctuations in the WAIS older than the last glacial maximum are rare. To test model predictions,sub-glacial rock cores were obtained from the Ohio Range along the Transantarctic Mountains near the present-day WAIS divide using a Winkie drill. Rock cores were recovered from 10 to ~30 m under the present-day ice levels. At the Ohio Range, the glacial to interglacial variations in ice sheet levels is ~120 meters. So 30 meters represent a significant fraction of the variation over the course of an ice age. High concentrations of the cosmic ray produced isotopes were detected in the rock cores, indicating extensive periods of ice-free exposure to cosmic irradiation during the last 2 million years. Modeling of the data suggest that bedrock surfaces at the Ohio Range that are currently covered by 30 meters of ice experienced more exposure than ice cover, especially in the Pleistocene. An ice sheet model prediction for the Ohio Range subglacial sample sites however, significantly underestimates exposure in the last 2 million years, and over-predicts ice cover in the Pleistocene. To adjust for the higher amounts of exposure we observe in our samples, the ice sheet model simulations require more frequent and/or longer-lasting WAIS ice drawdowns. This has important implications for future sea-level change as the model maybe under-predicting the magnitude of sea-level contributions from WAIS during the ice-age cycles. Improving the accuracy of the ice sheet models through model-data comparison should remain a prime objective in the face of a warming planet as understanding WAIS behavior is going to be key for predicting and planning for the effects of sea-level change. The project helped support and train a graduate student in climate research related to Antarctica, cosmogenic nuclide analyses and led to a Master’s Thesis. The project also provide partial support to a postdoctoral scholar obtaining cosmogenic neon measurements and for training and mentoring the graduate student's cosmogenic neon measurements and interpretation. The project results were communicated to the scientific community at conferences and through seminars. The broader community was engaged through the University of California Davis's Picnic Day celebration, an annual open house that attracts over 70,000 people to the campus, and through classroom visit at a local elementary school. | POLYGON((-116.45 -84.786,-116.443 -84.786,-116.436 -84.786,-116.429 -84.786,-116.422 -84.786,-116.415 -84.786,-116.408 -84.786,-116.401 -84.786,-116.394 -84.786,-116.387 -84.786,-116.38 -84.786,-116.38 -84.7864,-116.38 -84.7868,-116.38 -84.7872,-116.38 -84.7876,-116.38 -84.788,-116.38 -84.7884,-116.38 -84.7888,-116.38 -84.7892,-116.38 -84.7896,-116.38 -84.79,-116.387 -84.79,-116.394 -84.79,-116.401 -84.79,-116.408 -84.79,-116.415 -84.79,-116.422 -84.79,-116.429 -84.79,-116.436 -84.79,-116.443 -84.79,-116.45 -84.79,-116.45 -84.7896,-116.45 -84.7892,-116.45 -84.7888,-116.45 -84.7884,-116.45 -84.788,-116.45 -84.7876,-116.45 -84.7872,-116.45 -84.7868,-116.45 -84.7864,-116.45 -84.786)) | POINT(-116.415 -84.788) | false | false |