{"dp_type": "Dataset", "free_text": "Water Temperature"}
[{"awards": "1644196 Cziko, Paul", "bounds_geometry": ["POLYGON((162.647931 -77.000624,163.049652 -77.000624,163.451373 -77.000624,163.853094 -77.000624,164.254815 -77.000624,164.656536 -77.000624,165.058257 -77.000624,165.459978 -77.000624,165.861699 -77.000624,166.26342 -77.000624,166.665141 -77.000624,166.665141 -77.0856883,166.665141 -77.1707526,166.665141 -77.2558169,166.665141 -77.3408812,166.665141 -77.4259455,166.665141 -77.5110098,166.665141 -77.5960741,166.665141 -77.6811384,166.665141 -77.7662027,166.665141 -77.851267,166.26342 -77.851267,165.861699 -77.851267,165.459978 -77.851267,165.058257 -77.851267,164.656536 -77.851267,164.254815 -77.851267,163.853094 -77.851267,163.451373 -77.851267,163.049652 -77.851267,162.647931 -77.851267,162.647931 -77.7662027,162.647931 -77.6811384,162.647931 -77.5960741,162.647931 -77.5110098,162.647931 -77.4259455,162.647931 -77.3408812,162.647931 -77.2558169,162.647931 -77.1707526,162.647931 -77.0856883,162.647931 -77.000624))"], "date_created": "Sun, 03 Jan 2021 00:00:00 GMT", "description": "Nearshore benthic seawater temperature (plus pressure and salinity for some sites) in McMurdo Sound, Antarctica for 2017-2019. Data includes those from standalone temperature (sometimes pressure) for several sites around McMurdo Sound as well as data from the cabled McMurdo Oceanographic Observatory moored conductivity-temperature-depth (CTD) sensor at the McMurdo Station seawater intake jetty. Data are from high precision SeaBird sensors (SBE56, SBE39, SBE19Plus and SBE37), with sample intervals from 90 sec to 15 min, depending on site. Sampled sites include Explorer\u0027s Cove at New Harbor, Cape Evans, Granite Harbor, and the McMurdo Station jetty. All sensors were deployed near or on the benthos at 20-25 m deep, in typical nearshore benthic fish and invertebrate habitat.", "east": 166.665141, "geometry": ["POINT(164.656536 -77.4259455)"], "keywords": "Antarctica; Benthic Ecology; CTD; Depth; McMurdo Sound; Oceanography; Oceans; Physical Oceanography; Pressure; Salinity; Seawater Measurements; Seawater Temperature; Supercooling; Tides", "locations": "McMurdo Sound; Antarctica", "north": -77.000624, "nsf_funding_programs": "Antarctic Instrumentation and Support", "persons": "Cziko, Paul", "project_titles": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0010147", "repository": "USAP-DC", "title": "Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.851267, "title": "High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)", "uid": "601420", "west": 162.647931}, {"awards": "1043623 Miller, Scott", "bounds_geometry": ["POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1402 conducted in 2014. The files are of XLS format.", "east": 146.0, "geometry": ["POINT(131.75 -57.2)"], "keywords": "Air-Sea Flux; Air Temperature; Antarctica; Atmosphere; CO2; CO2 Concentrations; East Antarctica; Flux; Meteorology; NBP1402; Oceans; Relative Humidity; Salinity; Totten Glacier; Water Measurements; Water Temperature; Weather Station Data; Wind Direction; Wind Speed", "locations": "East Antarctica; Totten Glacier; Antarctica", "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Miller, Scott; Butterworth, Brian", "project_titles": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean", "projects": [{"proj_uid": "p0010137", "repository": "USAP-DC", "title": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -67.4, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402", "uid": "601308", "west": 117.5}, {"awards": "1043623 Miller, Scott", "bounds_geometry": ["POLYGON((-180 -57,-169.5 -57,-159 -57,-148.5 -57,-138 -57,-127.5 -57,-117 -57,-106.5 -57,-96 -57,-85.5 -57,-75 -57,-75 -59.1,-75 -61.2,-75 -63.3,-75 -65.4,-75 -67.5,-75 -69.6,-75 -71.7,-75 -73.8,-75 -75.9,-75 -78,-85.5 -78,-96 -78,-106.5 -78,-117 -78,-127.5 -78,-138 -78,-148.5 -78,-159 -78,-169.5 -78,180 -78,178.3 -78,176.6 -78,174.9 -78,173.2 -78,171.5 -78,169.8 -78,168.1 -78,166.4 -78,164.7 -78,163 -78,163 -75.9,163 -73.8,163 -71.7,163 -69.6,163 -67.5,163 -65.4,163 -63.3,163 -61.2,163 -59.1,163 -57,164.7 -57,166.4 -57,168.1 -57,169.8 -57,171.5 -57,173.2 -57,174.9 -57,176.6 -57,178.3 -57,-180 -57))"], "date_created": "Fri, 01 May 2020 00:00:00 GMT", "description": "This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1210 conducted in 2013. The files are of XLS format", "east": -75.0, "geometry": ["POINT(-136 -67.5)"], "keywords": "Air-Sea Flux; Air Temperature; Amundsen Sea; Antarctica; Antarctic Peninsula; Atmosphere; CO2; Flux; Meteorology; NBP1210; Oceans; Ross Sea; R/v Nathaniel B. Palmer; Southern Ocean; Water Temperature; Wind Direction; Wind Speed", "locations": "Antarctic Peninsula; Amundsen Sea; Ross Sea; Southern Ocean; Antarctica", "north": -57.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Miller, Scott; Butterworth, Brian", "project_titles": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean", "projects": [{"proj_uid": "p0010137", "repository": "USAP-DC", "title": "Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210", "uid": "601309", "west": 163.0}, {"awards": "1142158 Cheng, Chi-Hing; 0231006 DeVries, Arthur", "bounds_geometry": ["POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))"], "date_created": "Wed, 08 Apr 2020 00:00:00 GMT", "description": "Benthic seawater temperature (within 10cm of the bottom) from near the McMurdo Station, Ross Island, Antarctica saltwater intake jetty. Data collected at two nearby locations: On muddy bottom at base of artificial rock jetty (~25m depth), and ~50m west of the Jetty in sponge/spicule mat habitat (~40m depth).", "east": 168.0, "geometry": ["POINT(165.5 -77.15)"], "keywords": "Antarctica; Benthic; McMurdo Sound; Mcmurdo Station; Oceans; Physical Oceanography; Temperature Probe; Water Temperature", "locations": "McMurdo Sound; Antarctica", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Cheng, Chi-Hing; Cziko, Paul; Devries, Arthur", "project_titles": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold", "projects": [{"proj_uid": "p0010091", "repository": "USAP-DC", "title": "Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.8, "title": "High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica", "uid": "601275", "west": 163.0}, {"awards": "1041022 McClintock, James", "bounds_geometry": ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"], "date_created": "Thu, 01 Jan 2015 00:00:00 GMT", "description": "The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica.", "east": -53.0, "geometry": ["POINT(-66 -65)"], "keywords": "Antarctic Peninsula; Biota; Oceans; Southern Ocean", "locations": "Antarctic Peninsula; Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "McClintock, James; Amsler, Charles; Angus, Robert", "project_titles": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "projects": [{"proj_uid": "p0000426", "repository": "USAP-DC", "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica", "uid": "600122", "west": -79.0}, {"awards": "0436190 Eastman, Joseph", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 \u0027International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,\u0027 or, \u0027ICEFISH,\u0027 provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; NBP0404; Oceans; R/v Nathaniel B. Palmer; Southern Ocean", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Eastman, Joseph", "project_titles": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "projects": [{"proj_uid": "p0000106", "repository": "USAP-DC", "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes", "uid": "600038", "west": -180.0}, {"awards": "0437887 Sidell, Bruce", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Thu, 01 Jan 2009 00:00:00 GMT", "description": "The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Biota; Oceans; Pot; Sample/collection Description; Sample/Collection Description; Southern Ocean; Trawl", "locations": "Southern Ocean", "north": -60.0, "nsf_funding_programs": null, "persons": "Sidell, Bruce", "project_titles": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis.", "projects": [{"proj_uid": "p0000527", "repository": "USAP-DC", "title": "Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis."}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis", "uid": "600039", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
High-resolution nearshore benthic seawater temperature from around McMurdo Sound, Antarctica (2017-2019)
|
1644196 |
2021-01-03 | Cziko, Paul |
Habitat Severity and Internal Ice in Antarctic Notothenioid Fishes |
Nearshore benthic seawater temperature (plus pressure and salinity for some sites) in McMurdo Sound, Antarctica for 2017-2019. Data includes those from standalone temperature (sometimes pressure) for several sites around McMurdo Sound as well as data from the cabled McMurdo Oceanographic Observatory moored conductivity-temperature-depth (CTD) sensor at the McMurdo Station seawater intake jetty. Data are from high precision SeaBird sensors (SBE56, SBE39, SBE19Plus and SBE37), with sample intervals from 90 sec to 15 min, depending on site. Sampled sites include Explorer's Cove at New Harbor, Cape Evans, Granite Harbor, and the McMurdo Station jetty. All sensors were deployed near or on the benthos at 20-25 m deep, in typical nearshore benthic fish and invertebrate habitat. | ["POLYGON((162.647931 -77.000624,163.049652 -77.000624,163.451373 -77.000624,163.853094 -77.000624,164.254815 -77.000624,164.656536 -77.000624,165.058257 -77.000624,165.459978 -77.000624,165.861699 -77.000624,166.26342 -77.000624,166.665141 -77.000624,166.665141 -77.0856883,166.665141 -77.1707526,166.665141 -77.2558169,166.665141 -77.3408812,166.665141 -77.4259455,166.665141 -77.5110098,166.665141 -77.5960741,166.665141 -77.6811384,166.665141 -77.7662027,166.665141 -77.851267,166.26342 -77.851267,165.861699 -77.851267,165.459978 -77.851267,165.058257 -77.851267,164.656536 -77.851267,164.254815 -77.851267,163.853094 -77.851267,163.451373 -77.851267,163.049652 -77.851267,162.647931 -77.851267,162.647931 -77.7662027,162.647931 -77.6811384,162.647931 -77.5960741,162.647931 -77.5110098,162.647931 -77.4259455,162.647931 -77.3408812,162.647931 -77.2558169,162.647931 -77.1707526,162.647931 -77.0856883,162.647931 -77.000624))"] | ["POINT(164.656536 -77.4259455)"] | false | false |
Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1402
|
1043623 |
2020-05-01 | Miller, Scott; Butterworth, Brian |
Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean |
This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1402 conducted in 2014. The files are of XLS format. | ["POLYGON((117.5 -47,120.35 -47,123.2 -47,126.05 -47,128.9 -47,131.75 -47,134.6 -47,137.45 -47,140.3 -47,143.15 -47,146 -47,146 -49.04,146 -51.08,146 -53.12,146 -55.16,146 -57.2,146 -59.24,146 -61.28,146 -63.32,146 -65.36,146 -67.4,143.15 -67.4,140.3 -67.4,137.45 -67.4,134.6 -67.4,131.75 -67.4,128.9 -67.4,126.05 -67.4,123.2 -67.4,120.35 -67.4,117.5 -67.4,117.5 -65.36,117.5 -63.32,117.5 -61.28,117.5 -59.24,117.5 -57.2,117.5 -55.16,117.5 -53.12,117.5 -51.08,117.5 -49.04,117.5 -47))"] | ["POINT(131.75 -57.2)"] | false | false |
Eddy covariance air-sea momentum, heat, and carbon dioxide fluxes in the Southern Ocean from the N.B. Palmer cruise NBP1210
|
1043623 |
2020-05-01 | Miller, Scott; Butterworth, Brian |
Air-Sea Fluxes of Momentum, Heat, and Carbon Dioxide at High Wind Speeds in the Southern Ocean |
This dataset contains meteorological and air-sea flux data (momentum, heat, and CO2 fluxes; CO2 gas transfer velocity) collected during the the Nathaniel B. Palmer expedition NBP1210 conducted in 2013. The files are of XLS format | ["POLYGON((-180 -57,-169.5 -57,-159 -57,-148.5 -57,-138 -57,-127.5 -57,-117 -57,-106.5 -57,-96 -57,-85.5 -57,-75 -57,-75 -59.1,-75 -61.2,-75 -63.3,-75 -65.4,-75 -67.5,-75 -69.6,-75 -71.7,-75 -73.8,-75 -75.9,-75 -78,-85.5 -78,-96 -78,-106.5 -78,-117 -78,-127.5 -78,-138 -78,-148.5 -78,-159 -78,-169.5 -78,180 -78,178.3 -78,176.6 -78,174.9 -78,173.2 -78,171.5 -78,169.8 -78,168.1 -78,166.4 -78,164.7 -78,163 -78,163 -75.9,163 -73.8,163 -71.7,163 -69.6,163 -67.5,163 -65.4,163 -63.3,163 -61.2,163 -59.1,163 -57,164.7 -57,166.4 -57,168.1 -57,169.8 -57,171.5 -57,173.2 -57,174.9 -57,176.6 -57,178.3 -57,-180 -57))"] | ["POINT(-136 -67.5)"] | false | false |
High-resolution benthic seawater temperature record 1999-2012 (25-40m depth) from near intake jetty at McMurdo Station, Antarctica
|
1142158 0231006 |
2020-04-08 | Cheng, Chi-Hing; Cziko, Paul; Devries, Arthur |
Antarctic Notothenioid Fish Freeze Avoidance and Genome-wide Evolution for Life in the Cold |
Benthic seawater temperature (within 10cm of the bottom) from near the McMurdo Station, Ross Island, Antarctica saltwater intake jetty. Data collected at two nearby locations: On muddy bottom at base of artificial rock jetty (~25m depth), and ~50m west of the Jetty in sponge/spicule mat habitat (~40m depth). | ["POLYGON((163 -76.5,163.5 -76.5,164 -76.5,164.5 -76.5,165 -76.5,165.5 -76.5,166 -76.5,166.5 -76.5,167 -76.5,167.5 -76.5,168 -76.5,168 -76.63,168 -76.76,168 -76.89,168 -77.02,168 -77.15,168 -77.28,168 -77.41,168 -77.54,168 -77.67,168 -77.8,167.5 -77.8,167 -77.8,166.5 -77.8,166 -77.8,165.5 -77.8,165 -77.8,164.5 -77.8,164 -77.8,163.5 -77.8,163 -77.8,163 -77.67,163 -77.54,163 -77.41,163 -77.28,163 -77.15,163 -77.02,163 -76.89,163 -76.76,163 -76.63,163 -76.5))"] | ["POINT(165.5 -77.15)"] | false | false |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica
|
1041022 |
2015-01-01 | McClintock, James; Amsler, Charles; Angus, Robert |
The effects of ocean acidification and rising sea surface temperatures on shallow-water benthic organisms in Antarctica |
The research will investigate the individual and combined effects of rising ocean acidification and sea surface temperatures on shallow-water calcified benthic organisms in western Antarctic Peninsular (WAP) marine communities. The Southern Ocean is predicted to become undersaturated in terms of both aragonite and calcite within 50 and 100 years, respectively, challenging calcification processes. Adding to the problem, antarctic calcified benthic marine organisms are more vulnerable to ocean acidification than temperate and tropical species because they are generally weakly calcified. Many antarctic organisms are essentially stenothermal, and those in the West Antarctic Peninsula are being subjected to rising seawater temperatures. The project employs both single-species and multi-species level approaches to evaluating the impacts of rising ocean acidification and seawater temperature on representative calcified and non-calcified macroalgae, on calcified and non-calcified mesograzers, and on a calcified macro-grazer, all of which are important ecological players in the rich benthic communities. Multi-species analysis will focus on the diverse assemblage of amphipods and mesogastropods that are associated with dominant macroalgae that collectively play a key role in community dynamics along the WAP. The project will support undergraduate research, both through NSF programs, as well as home university-based programs, some designed to enhance the representation of minorities in the sciences. The principal investigators also will support and foster graduate education through mentoring of graduate students. Through their highly successful UAB IN ANTARCTICA interactive web program, they will continue to involve large numbers of teachers, K-12 students, and other members of the community at large in their scientific endeavors in Antarctica. | ["POLYGON((-79 -60,-76.4 -60,-73.8 -60,-71.2 -60,-68.6 -60,-66 -60,-63.4 -60,-60.8 -60,-58.2 -60,-55.6 -60,-53 -60,-53 -61,-53 -62,-53 -63,-53 -64,-53 -65,-53 -66,-53 -67,-53 -68,-53 -69,-53 -70,-55.6 -70,-58.2 -70,-60.8 -70,-63.4 -70,-66 -70,-68.6 -70,-71.2 -70,-73.8 -70,-76.4 -70,-79 -70,-79 -69,-79 -68,-79 -67,-79 -66,-79 -65,-79 -64,-79 -63,-79 -62,-79 -61,-79 -60))"] | ["POINT(-66 -65)"] | false | false |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes
|
0436190 |
2009-01-01 | Eastman, Joseph |
Biodiversity, Buoyancy and Morphological Studies of Non-Antarctic Notothenioid Fishes |
Patterns of biodiversity, as revealed by basic research in organismal biology, may be derived from ecological and evolutionary processes expressed in unique settings, such as Antarctica. The polar regions and their faunas are commanding increased attention as declining species diversity, environmental change, commercial fisheries, and resource management are now being viewed in a global context. Commercial fishing is known to have a direct and pervasive effect on marine biodiversity, and occurs in the Southern Ocean as far south as the Ross Sea. The nature of fish biodiversity in the Antarctic is different than in all other ocean shelf areas. Waters of the Antarctic continental shelf are ice covered for most of the year and water temperatures are nearly constant at -1.5 C. In these waters components of the phyletically derived Antarctic clade of Notothenioids dominate fish diversity. In some regions, including the southwestern Ross Sea, Notothenioids are overwhelmingly dominant in terms of number of species, abundance, and biomass. Such dominance by a single taxonomic group is unique among shelf faunas of the world. In the absence of competition from a taxonomically diverse fauna, Notothenioids underwent a habitat or depth related diversification keyed to the utilization of unfilled niches in the water column, especially pelagic or partially pelagic zooplanktivory and piscivory. This has been accomplished in the absence of a swim bladder for buoyancy control. They also may form a special type of adaptive radiation known as a species flock, which is an assemblage of a disproportionately high number of related species that have evolved rapidly within a defined area where most species are endemic. Diversification in buoyancy is the hallmark of the notothenioid radiation. Buoyancy is the feature of notothenioid biology that determines whether a species lives on the substrate, in the water column or both. Buoyancy also influences other key aspects of life history including swimming, feeding and reproduction and thus has implications for the role of the species in the ecosystem. With similarities to classic evolutionary hot spots, the Antarctic shelf and its Notothenioid radiation merit further exploration. The 2004 'International Collaborative Expedition to collect and study Fish Indigenous to Sub-Antarctic Habitats,' or, 'ICEFISH,' provided a platform for collection of notothenioid fishes from sub-Antarctic waters between South America and Africa, which will be examined in this project. This study will determine buoyancy for samples of all notothenioid species captured during the ICEFISH cruise. This essential aspect of the biology is known for only 19% of the notothenioid fauna. Also, the gross and microscopic anatomy of brains and sense organs of the phyletically basal families Bovichtidae, Eleginopidae, and of the non-Antarctic species of the primarily Antarctic family Nototheniidae will be examined. The fish biodiversity and endemicity in poorly known localities along the ICEFISH cruise track, seamounts and deep trenches will be quantified. Broader impacts include improved information for comprehending and conserving biodiversity, a scientific and societal priority. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |
Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis
|
0437887 |
2009-01-01 | Sidell, Bruce |
Collaborative Research: Differential Expression of Oxygen-binding Proteins in Antarctic Fishes Affects Nitric Oxide-mediated Pathways of Angiogenesis and Mitochondrial Biogenesis. |
The polar ocean presently surrounding Antarctica is the coldest, most thermally stable marine environment on earth. Because oxygen solubility in seawater is inversely proportional to temperature, the cold Antarctic seas are an exceptionally oxygen-rich aquatic habitat. Eight families of a single perciform suborder, the Notothenioidei, dominate the present fish fauna surrounding Antarctica. Notothenioids account for approximately 35% of fish species and 90% of fish biomass south of the Antarctic Polar Front. Radiation of closely related notothenioid species thus has occurred rapidly and under a very unusual set of conditions: relative oceanographic isolation from other faunas due to circumpolar currents and deep ocean trenches surrounding the continent, chronically, severely cold water temperatures, very high oxygen availability, very low levels of niche competition in a Southern Ocean depauperate of species subsequent to a dramatic crash in species diversity of fishes that occurred sometime between the mid-Tertiary and present. These features make Antarctic notothenioid fishes an uniquely attractive group for the study of physiological and biochemical adaptations to cold body temperature. Few distinctive features of Antarctic fishes are as unique as the pattern of expression of oxygen-binding proteins in one notothenioid family, the Channichthyidae (Antarctic icefishes). All channichthyid icefishes lack the circulating oxygen-binding protein, hemoglobin (Hb); the intracellular oxygen-binding protein, myoglobin (Mb) is not uniformly expressed in species of this family. Both proteins are normally considered essential for adequate delivery of oxygen to aerobically poised tissues of animals. To compensate for the absence of Hb, icefishes have developed large hearts, rapidly circulate a large blood volume and possess elaborate vasculature of larger lumenal diameter than is seen in red-blooded fishes. Loss of Mb expression in oxidative muscles correlates with dramatic elevation in density of mitochondria within the cell, although each individual organelle is less densely packed with respiratory proteins. Within the framework of oxygen movement, the adaptive significance of greater vascular density and mitochondrial populations is understandable but mechanisms underlying development of these characteristics remain unknown. The answer may lie in another major function of both Hb and Mb, degradation of the ubiquitous bioactive compound, nitric oxide (NO). The research will test the hypothesis that loss of hemoprotein expression in icefishes has resulted in an increase in levels of NO that mediate modification of vascular systems and expansion of mitochondrial populations in oxidative tissues. The objectives of the proposal are to quantify the vascular density of retinas in +Hb and -Hb notothenioid species, to characterize NOS isoforms and catalytic activity in retina and cardiac muscle of Antarctic notothenioid fishes, to evaluate level of expression of downstream factors implicat ed in angiogenesis (in retinal tissue) and mitochondrial biogenesis (in cardiac muscle), and to determine whether inhibition of NOS in vivo results in regression of angiogenic and mitochondrial biogenic responses in icefishes. Broader impacts range from basic biology, through training of young scientists, to enhanced understanding of clinically relevant biomedical processes. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |