{"dp_type": "Dataset", "free_text": "South Shetland Islands"}
[{"awards": null, "bounds_geometry": ["POINT(-58 -62)"], "date_created": "Mon, 21 Dec 2020 00:00:00 GMT", "description": "Surface spectra of red and green snow algae were collected at two sites on King George Island (KGI), the largest of the South Shetland Islands, and one site on northern Nelson Island (NI), southwest of KGI in January 2018. Optically thick (\u003e 30cm) snow packs were prioritized for spectral albedo data acquisition and corresponding snow algae sampling in order to minimize the impact of the underlying ground on spectral albedo. Sites were also selected based on where it was possible to sample 1) a control site with relatively clean snow having no visible snow algae 2) green snow algae, 3) red snow algae and 4) mixed-phase green and red algae. At each site, duplicates of each snow type were measured with the spectrometer (except at Nelson Island where only one Mixed site was observed). All samples were collected around noon local Chilean time, when the seasonal snow pack was also receiving the most incoming solar radiation. Spectral reflectance measurements were collected with an Analytical Spectral Devices (ASD) FieldSpec\u00ae 4 hyperspectral spectroradiometer (Malvern Panalytical, USA) between 350 and 2500 nm. The sensor was equipped with a light-diffusing fore optic remote cosine receptor (RCR) to measure planar irradiance. We selected three different locations and collected spectral measurements for two samples each of green, red, and mixed snow algae patches, and two algae-free or \u201cclean\u201d snow areas, for a total of 24 measurement sites (2 of each of the 4 types across the 3 sites). Areas with snowmelt ponding were avoided. The RCR was placed upward to collect the downwelling planar irradiance incident upon the snow surface (Ed) and the upwelling planar irradiance reflected from the snow (Eu). Measurements were collected in triplicate. The operator was located in a direction 90 - 135\u00ba away from the sun to minimize solar glint and self-shadowing. Snow conditions did not allow for a tripod, so nadir orientation was determined by practice with a level and by visual assistance of an observer. Since the measurements were carried out under heavily overcast conditions where irradiance is dominated by the diffuse insolation with no solar azimuthal dependence, the influence of slight tilt when measuring the downwelling irradiance (i.e. the cosine error) is expected to be minor (\u003c0.5%). The reflectance measurements were taken prior to excavation of snow sample for laboratory analysis. Post-processing of the data involved computing spectral reflectance, as the ratio of the upwelling flux normalized to the downwelling flux for each wavelength. The mean of the three measurements was calculated for each site. Ambient light conditions were too low in the short-wave infrared wavelengths for getting adequate signal-to-noise for our measurements. In post-processing, reflectance values were truncated at 1350 nm for this analysis. This value represents the limit often used for RF calculations in other studies. In addition, empirical correction coefficients were used to correct for temperature related radiometric inter-channel steps using the procedure and MATLAB code from Hueni et al. (2017). This removed the step function near 1000 nm for most of the spectra, although not fully for all spectra. However, this discontinuity does not significantly impact results or albedo calculations. Albedo was calculated as the integrated R in two different intervals: visible (400-700 nm) and infrared (700-1300 nm). ", "east": -58.0, "geometry": ["POINT(-58 -62)"], "keywords": "Antarctica; South Shetland Islands", "locations": "South Shetland Islands; Antarctica", "north": -62.0, "nsf_funding_programs": null, "persons": "Khan, Alia", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -62.0, "title": "Red and Green Snow Algae Surface Spectra", "uid": "601412", "west": -58.0}, {"awards": "1826712 McMahon, Kelton; 1443585 Polito, Michael; 1443386 Emslie, Steven; 1443424 McMahon, Kelton", "bounds_geometry": ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"], "date_created": "Fri, 13 Sep 2019 00:00:00 GMT", "description": "This data set contains measurements of carbon (\u03b413C) and nitrogen (\u03b415N) stable isotope values of whole-body Antarctic krill (Euphausia superba) collected from trawl surveys of waters surrounding the South Shetland Islands and the northern Antarctic Peninsula during the 2006-07 and 2008-90 Austral summers. Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer. Individual krill were lipid-extracted prior to analyses. The data set also includes latitude, longitude, month, and year of sample collection, standard length of the krill to the nearest mm, age class, sex, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Polito et al., 2013 and Polito et al., 2019.", "east": -54.0, "geometry": ["POINT(-58.5 -62)"], "keywords": "Antarctica; Antarctic Krill; Antarctic Peninsula; Biota; Carbon Isotopes; Isotope Data; Krill; Nitrogen Isotopes; Oceans; Southern Ocean; Stable Isotope Analysis", "locations": "Antarctica; Southern Ocean; Antarctic Peninsula", "north": -60.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Polito, Michael", "project_titles": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators", "projects": [{"proj_uid": "p0010047", "repository": "USAP-DC", "title": "Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -64.0, "title": "Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009", "uid": "601210", "west": -63.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Red and Green Snow Algae Surface Spectra
|
None | 2020-12-21 | Khan, Alia | No project link provided | Surface spectra of red and green snow algae were collected at two sites on King George Island (KGI), the largest of the South Shetland Islands, and one site on northern Nelson Island (NI), southwest of KGI in January 2018. Optically thick (> 30cm) snow packs were prioritized for spectral albedo data acquisition and corresponding snow algae sampling in order to minimize the impact of the underlying ground on spectral albedo. Sites were also selected based on where it was possible to sample 1) a control site with relatively clean snow having no visible snow algae 2) green snow algae, 3) red snow algae and 4) mixed-phase green and red algae. At each site, duplicates of each snow type were measured with the spectrometer (except at Nelson Island where only one Mixed site was observed). All samples were collected around noon local Chilean time, when the seasonal snow pack was also receiving the most incoming solar radiation. Spectral reflectance measurements were collected with an Analytical Spectral Devices (ASD) FieldSpec® 4 hyperspectral spectroradiometer (Malvern Panalytical, USA) between 350 and 2500 nm. The sensor was equipped with a light-diffusing fore optic remote cosine receptor (RCR) to measure planar irradiance. We selected three different locations and collected spectral measurements for two samples each of green, red, and mixed snow algae patches, and two algae-free or “clean” snow areas, for a total of 24 measurement sites (2 of each of the 4 types across the 3 sites). Areas with snowmelt ponding were avoided. The RCR was placed upward to collect the downwelling planar irradiance incident upon the snow surface (Ed) and the upwelling planar irradiance reflected from the snow (Eu). Measurements were collected in triplicate. The operator was located in a direction 90 - 135º away from the sun to minimize solar glint and self-shadowing. Snow conditions did not allow for a tripod, so nadir orientation was determined by practice with a level and by visual assistance of an observer. Since the measurements were carried out under heavily overcast conditions where irradiance is dominated by the diffuse insolation with no solar azimuthal dependence, the influence of slight tilt when measuring the downwelling irradiance (i.e. the cosine error) is expected to be minor (<0.5%). The reflectance measurements were taken prior to excavation of snow sample for laboratory analysis. Post-processing of the data involved computing spectral reflectance, as the ratio of the upwelling flux normalized to the downwelling flux for each wavelength. The mean of the three measurements was calculated for each site. Ambient light conditions were too low in the short-wave infrared wavelengths for getting adequate signal-to-noise for our measurements. In post-processing, reflectance values were truncated at 1350 nm for this analysis. This value represents the limit often used for RF calculations in other studies. In addition, empirical correction coefficients were used to correct for temperature related radiometric inter-channel steps using the procedure and MATLAB code from Hueni et al. (2017). This removed the step function near 1000 nm for most of the spectra, although not fully for all spectra. However, this discontinuity does not significantly impact results or albedo calculations. Albedo was calculated as the integrated R in two different intervals: visible (400-700 nm) and infrared (700-1300 nm). | ["POINT(-58 -62)"] | ["POINT(-58 -62)"] | false | false |
Carbon and nitrogen stable isotope values of Antarctic Krill from the South Shetland Islands and the northern Antarctic Peninsula 2007 and 2009
|
1826712 1443585 1443386 1443424 |
2019-09-13 | Polito, Michael |
Collaborative Research: Investigating Holocene Shifts in the Diets and Paleohistory of Antarctic Krill Predators |
This data set contains measurements of carbon (δ13C) and nitrogen (δ15N) stable isotope values of whole-body Antarctic krill (Euphausia superba) collected from trawl surveys of waters surrounding the South Shetland Islands and the northern Antarctic Peninsula during the 2006-07 and 2008-90 Austral summers. Stable isotope analyses were conducted using an elemental analyzer coupled to a continuous flow stable isotope ratio mass spectrometer. Individual krill were lipid-extracted prior to analyses. The data set also includes latitude, longitude, month, and year of sample collection, standard length of the krill to the nearest mm, age class, sex, and carbon to nitrogen ratios. Details of the data set and all relevant methods are provided in Polito et al., 2013 and Polito et al., 2019. | ["POLYGON((-63 -60,-62.1 -60,-61.2 -60,-60.3 -60,-59.4 -60,-58.5 -60,-57.6 -60,-56.7 -60,-55.8 -60,-54.9 -60,-54 -60,-54 -60.4,-54 -60.8,-54 -61.2,-54 -61.6,-54 -62,-54 -62.4,-54 -62.8,-54 -63.2,-54 -63.6,-54 -64,-54.9 -64,-55.8 -64,-56.7 -64,-57.6 -64,-58.5 -64,-59.4 -64,-60.3 -64,-61.2 -64,-62.1 -64,-63 -64,-63 -63.6,-63 -63.2,-63 -62.8,-63 -62.4,-63 -62,-63 -61.6,-63 -61.2,-63 -60.8,-63 -60.4,-63 -60))"] | ["POINT(-58.5 -62)"] | false | false |