{"dp_type": "Dataset", "free_text": "Shearwave Spitting"}
[{"awards": "1148982 Hansen, Samantha", "bounds_geometry": ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"], "date_created": "Thu, 20 Apr 2017 00:00:00 GMT", "description": "Using data from the Transantarctic Mountains (TAMs) Northern Network, shear-wave splitting analysis has been employed to constrain azimuthal anisotropy beneath a portion of the northern TAMs. Splitting measurements were made for PKS, SKS, and SKKS phases with the eigenvalue method in SplitLab. The results show two distinct geographic regions of anisotropy: one behind the TAMs front and the other along the Ross Sea coastline. The anisotropic structure behind the TAMs front is best attributed to relict fabric associated with past tectonic episodes. Along the coastline, the anisotropy is interpreted to reflect mantle flow associated with rift-related decompression melting and Cenozoic extension.", "east": 165.120012, "geometry": ["POINT(159.223506 -74.6349495)"], "keywords": "Antarctica; Geology/Geophysics - Other; GPS; Sample/collection Description; Sample/Collection Description; Seismology; Shearwave Spitting; Solid Earth; Transantarctic Mountains", "locations": "Antarctica; Transantarctic Mountains", "north": -73.032547, "nsf_funding_programs": null, "persons": "Hansen, Samantha", "project_titles": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin", "projects": [{"proj_uid": "p0000300", "repository": "USAP-DC", "title": "CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -76.237352, "title": "Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains", "uid": "601019", "west": 153.327}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Shear Wave Splitting Analysis and Seismic Anisotropy beneath the Northern Transantarctic Mountains
|
1148982 |
2017-04-20 | Hansen, Samantha |
CAREER: Deciphering the Tectonic History of the Transantarctic Mountains and the Wilkes Subglacial Basin |
Using data from the Transantarctic Mountains (TAMs) Northern Network, shear-wave splitting analysis has been employed to constrain azimuthal anisotropy beneath a portion of the northern TAMs. Splitting measurements were made for PKS, SKS, and SKKS phases with the eigenvalue method in SplitLab. The results show two distinct geographic regions of anisotropy: one behind the TAMs front and the other along the Ross Sea coastline. The anisotropic structure behind the TAMs front is best attributed to relict fabric associated with past tectonic episodes. Along the coastline, the anisotropy is interpreted to reflect mantle flow associated with rift-related decompression melting and Cenozoic extension. | ["POLYGON((153.327 -73.032547,154.5063012 -73.032547,155.6856024 -73.032547,156.8649036 -73.032547,158.0442048 -73.032547,159.223506 -73.032547,160.4028072 -73.032547,161.5821084 -73.032547,162.7614096 -73.032547,163.9407108 -73.032547,165.120012 -73.032547,165.120012 -73.3530275,165.120012 -73.673508,165.120012 -73.9939885,165.120012 -74.314469,165.120012 -74.6349495,165.120012 -74.95543,165.120012 -75.2759105,165.120012 -75.596391,165.120012 -75.9168715,165.120012 -76.237352,163.9407108 -76.237352,162.7614096 -76.237352,161.5821084 -76.237352,160.4028072 -76.237352,159.223506 -76.237352,158.0442048 -76.237352,156.8649036 -76.237352,155.6856024 -76.237352,154.5063012 -76.237352,153.327 -76.237352,153.327 -75.9168715,153.327 -75.596391,153.327 -75.2759105,153.327 -74.95543,153.327 -74.6349495,153.327 -74.314469,153.327 -73.9939885,153.327 -73.673508,153.327 -73.3530275,153.327 -73.032547))"] | ["POINT(159.223506 -74.6349495)"] | false | false |