{"dp_type": "Dataset", "free_text": "Seismometer"}
[{"awards": "1914698 Hansen, Samantha", "bounds_geometry": ["POLYGON((148 -71.5,150.4 -71.5,152.8 -71.5,155.2 -71.5,157.6 -71.5,160 -71.5,162.4 -71.5,164.8 -71.5,167.2 -71.5,169.6 -71.5,172 -71.5,172 -72.15,172 -72.8,172 -73.45,172 -74.1,172 -74.75,172 -75.4,172 -76.05,172 -76.7,172 -77.35,172 -78,169.6 -78,167.2 -78,164.8 -78,162.4 -78,160 -78,157.6 -78,155.2 -78,152.8 -78,150.4 -78,148 -78,148 -77.35,148 -76.7,148 -76.05,148 -75.4,148 -74.75,148 -74.1,148 -73.45,148 -72.8,148 -72.15,148 -71.5))"], "date_created": "Wed, 24 Jan 2024 00:00:00 GMT", "description": "As seismic data availability increases, the necessity for automated processing techniques has become increasingly evident. Expanded geophysical datasets collected over the past several decades across Antarctica provide excellent resources to evaluate different event detection approaches. We have used the traditional Short-Term Average/Long-Term Average (STA/LTA) algorithm to catalogue seismic data recorded by 19 stations in East Antarctica between 2012 and 2015. However, the complexities of the East Antarctic dataset, including low magnitude events and phenomena such as icequakes, warrant more advanced automated detection techniques. Therefore, we have also applied template matching as well as several deep learning algorithms, including Generalized Phase Detection (GPD), PhaseNet, BasicPhaseAE, and EQTransformer (EQT), to identify seismic phases within our dataset. Our goal was not only to increase the volume of detectable seismic events but also to gain insights into the effectiveness of these different automated approaches. Our assessment evaluated the completeness of the newly generated catalogs, the precision of identified event locations, and the quality of the picks. The final events corresponding to each of our three catalogs (based on STA/LTA, template matching, and machine learning, respectively) are listed in the provided files.", "east": 172.0, "geometry": ["POINT(160 -74.75)"], "keywords": "Antarctica; Geoscientificinformation; Machine Learning; Seismic Event Detection; Seismology; Seismometer", "locations": "Antarctica", "north": -71.5, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hansen, Samantha; Ho, Long; Walter, Jacob", "project_titles": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)", "projects": [{"proj_uid": "p0010204", "repository": "USAP-DC", "title": "Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes\r\nSubglacial Basin (RESISSt)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "East Antarctic Seismicity from different Automated Event Detection Algorithms", "uid": "601762", "west": 148.0}, {"awards": "1643795 Mikesell, Thomas", "bounds_geometry": ["POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))"], "date_created": "Fri, 15 Jan 2021 00:00:00 GMT", "description": "This data set includes observations of Rayleigh and Love wave group and phase velocity dispersion curves from ambient noise crosscorrelation functions. The data set includes the corresponding shear wave velocity model produced by joint inversion of these dispersion curves. This investigators developed a new crust and upper mantle model directly beneath the seismic stations used in this study. Data are in NetCDF and GeoCSV formats. The Python code used to generate the NetCDF files from the GeoCSV files is also contained in the data set.", "east": -98.0, "geometry": ["POINT(-116.25 -79.25)"], "keywords": "Antarctica; Crust; Moho; Seismic Tomography; Seismology; Seismometer; Shear Wave Velocity; Surface Wave Dispersion; West Antarctica", "locations": "Antarctica; West Antarctica", "north": -75.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Mikesell, Dylan", "project_titles": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods", "projects": [{"proj_uid": "p0010155", "repository": "USAP-DC", "title": "Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "POLENET", "south": -83.5, "title": "2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data", "uid": "601423", "west": -134.5}, {"awards": "0229546 MacAyeal, Douglas", "bounds_geometry": ["POINT(168 -77)"], "date_created": "Wed, 01 Oct 2008 00:00:00 GMT", "description": "Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to understand the relevance of IHT to iceberg calving, drift and break-up. The seismic observations reveal that the IHT signal consists of extended episodes of stick-slip icequakes (typically thousands per hour) generated when the ice-cliff edges of two tabular icebergs rub together during glancing, strike/slip type iceberg collisions (e.g., between C16 and B15A). With the source mechanism revealed, IHT may provide a promising signal useful for the study of iceberg behavior and iceberg-related processes such as climate-induced ice-shelf disintegration.\n\nHere, a single day of seismometer data for a single station on iceberg C16 is provided as an example of \"a day in the life of an iceberg\" for use by scientists and students wishing to know more about IHT. The station data is from C16 \"B\" site on C16\u0027s northeast corner, and the day is 27 December, 2003, a day when B15A struck C16 and caused an episode of tremor that was particularly easy to identify and understand. \n\nThis represents only a small fraction of the total data that exist for the seismic program on iceberg C16. The full data are archived at the IRIS data center (where seismic data is commonly archived). This one-day data set is to provide glaciologists with ready access to a good example of IHT that they can use for teaching and for demonstration purposes. Data are available in comma-delimited ASCII format and Matlab native mat files. Data are available via FTP.", "east": 168.0, "geometry": ["POINT(168 -77)"], "keywords": "Geology/Geophysics - Other; Glaciology; Iceberg; Oceans; Ross Sea; Sea Ice; Seismometer; Southern Ocean", "locations": "Ross Sea; Southern Ocean", "north": -77.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas", "project_titles": "Collaborative Research of Earth\u0027s Largest Icebergs", "projects": [{"proj_uid": "p0000117", "repository": "USAP-DC", "title": "Collaborative Research of Earth\u0027s Largest Icebergs"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.0, "title": "Iceberg Harmonic Tremor, Seismometer Data, Antarctica", "uid": "609349", "west": 168.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
East Antarctic Seismicity from different Automated Event Detection Algorithms
|
1914698 |
2024-01-24 | Hansen, Samantha; Ho, Long; Walter, Jacob |
Collaborative Research: Resolving earth structure influence on ice-sheet stability in the Wilkes
Subglacial Basin (RESISSt) |
As seismic data availability increases, the necessity for automated processing techniques has become increasingly evident. Expanded geophysical datasets collected over the past several decades across Antarctica provide excellent resources to evaluate different event detection approaches. We have used the traditional Short-Term Average/Long-Term Average (STA/LTA) algorithm to catalogue seismic data recorded by 19 stations in East Antarctica between 2012 and 2015. However, the complexities of the East Antarctic dataset, including low magnitude events and phenomena such as icequakes, warrant more advanced automated detection techniques. Therefore, we have also applied template matching as well as several deep learning algorithms, including Generalized Phase Detection (GPD), PhaseNet, BasicPhaseAE, and EQTransformer (EQT), to identify seismic phases within our dataset. Our goal was not only to increase the volume of detectable seismic events but also to gain insights into the effectiveness of these different automated approaches. Our assessment evaluated the completeness of the newly generated catalogs, the precision of identified event locations, and the quality of the picks. The final events corresponding to each of our three catalogs (based on STA/LTA, template matching, and machine learning, respectively) are listed in the provided files. | ["POLYGON((148 -71.5,150.4 -71.5,152.8 -71.5,155.2 -71.5,157.6 -71.5,160 -71.5,162.4 -71.5,164.8 -71.5,167.2 -71.5,169.6 -71.5,172 -71.5,172 -72.15,172 -72.8,172 -73.45,172 -74.1,172 -74.75,172 -75.4,172 -76.05,172 -76.7,172 -77.35,172 -78,169.6 -78,167.2 -78,164.8 -78,162.4 -78,160 -78,157.6 -78,155.2 -78,152.8 -78,150.4 -78,148 -78,148 -77.35,148 -76.7,148 -76.05,148 -75.4,148 -74.75,148 -74.1,148 -73.45,148 -72.8,148 -72.15,148 -71.5))"] | ["POINT(160 -74.75)"] | false | false |
2D shear-wave velocity model across the West Antarctic Rift System from POLENET-ANET seismic data
|
1643795 |
2021-01-15 | Mikesell, Dylan |
Collaborative Research: Monitoring Antarctic Ice Sheet Changes with Ambient Seismic Noise Methods |
This data set includes observations of Rayleigh and Love wave group and phase velocity dispersion curves from ambient noise crosscorrelation functions. The data set includes the corresponding shear wave velocity model produced by joint inversion of these dispersion curves. This investigators developed a new crust and upper mantle model directly beneath the seismic stations used in this study. Data are in NetCDF and GeoCSV formats. The Python code used to generate the NetCDF files from the GeoCSV files is also contained in the data set. | ["POLYGON((-134.5 -75,-130.85 -75,-127.2 -75,-123.55 -75,-119.9 -75,-116.25 -75,-112.6 -75,-108.95 -75,-105.3 -75,-101.65 -75,-98 -75,-98 -75.85,-98 -76.7,-98 -77.55,-98 -78.4,-98 -79.25,-98 -80.1,-98 -80.95,-98 -81.8,-98 -82.65,-98 -83.5,-101.65 -83.5,-105.3 -83.5,-108.95 -83.5,-112.6 -83.5,-116.25 -83.5,-119.9 -83.5,-123.55 -83.5,-127.2 -83.5,-130.85 -83.5,-134.5 -83.5,-134.5 -82.65,-134.5 -81.8,-134.5 -80.95,-134.5 -80.1,-134.5 -79.25,-134.5 -78.4,-134.5 -77.55,-134.5 -76.7,-134.5 -75.85,-134.5 -75))"] | ["POINT(-116.25 -79.25)"] | false | false |
Iceberg Harmonic Tremor, Seismometer Data, Antarctica
|
0229546 |
2008-10-01 | Okal, Emile; Aster, Richard; Bassis, Jeremy; MacAyeal, Douglas |
Collaborative Research of Earth's Largest Icebergs |
Seismometers were placed on a 25 km by 50 km iceberg called C16 in the Ross Sea, Antarctica, to identify the Iceberg harmonic Tremor (IHT) source mechanism and to understand the relevance of IHT to iceberg calving, drift and break-up. The seismic observations reveal that the IHT signal consists of extended episodes of stick-slip icequakes (typically thousands per hour) generated when the ice-cliff edges of two tabular icebergs rub together during glancing, strike/slip type iceberg collisions (e.g., between C16 and B15A). With the source mechanism revealed, IHT may provide a promising signal useful for the study of iceberg behavior and iceberg-related processes such as climate-induced ice-shelf disintegration. Here, a single day of seismometer data for a single station on iceberg C16 is provided as an example of "a day in the life of an iceberg" for use by scientists and students wishing to know more about IHT. The station data is from C16 "B" site on C16's northeast corner, and the day is 27 December, 2003, a day when B15A struck C16 and caused an episode of tremor that was particularly easy to identify and understand. This represents only a small fraction of the total data that exist for the seismic program on iceberg C16. The full data are archived at the IRIS data center (where seismic data is commonly archived). This one-day data set is to provide glaciologists with ready access to a good example of IHT that they can use for teaching and for demonstration purposes. Data are available in comma-delimited ASCII format and Matlab native mat files. Data are available via FTP. | ["POINT(168 -77)"] | ["POINT(168 -77)"] | false | false |