{"dp_type": "Dataset", "free_text": "Rawinsonde"}
[{"awards": "1341725 Guest, Peter", "bounds_geometry": ["POLYGON((-180 -62,-179.5 -62,-179 -62,-178.5 -62,-178 -62,-177.5 -62,-177 -62,-176.5 -62,-176 -62,-175.5 -62,-175 -62,-175 -63.6,-175 -65.2,-175 -66.8,-175 -68.4,-175 -70,-175 -71.6,-175 -73.2,-175 -74.8,-175 -76.4,-175 -78,-175.5 -78,-176 -78,-176.5 -78,-177 -78,-177.5 -78,-178 -78,-178.5 -78,-179 -78,-179.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -76.4,168 -74.8,168 -73.2,168 -71.6,168 -70,168 -68.4,168 -66.8,168 -65.2,168 -63.6,168 -62,169.2 -62,170.4 -62,171.6 -62,172.8 -62,174 -62,175.2 -62,176.4 -62,177.6 -62,178.8 -62,-180 -62))"], "date_created": "Wed, 12 Jun 2019 00:00:00 GMT", "description": "This file contains rawinsonde data from 134 rawisnonde soundings performed during the 2017 PIPERS cruise for the period 14 April 2330 \u2013 5 June 1130 (UT). ", "east": -175.0, "geometry": ["POINT(176.5 -70)"], "keywords": "Air Temperature; Antarctica; Atmosphere; Atmospheric Surface Winds; Meteorology; NBP1704; PIPERS; Pressure; Radiosonde; Rawinsonde; Relative Humidity; Ross Sea; R/v Nathaniel B. Palmer; Wind Direction; Wind Speed", "locations": "Antarctica; Ross Sea", "north": -62.0, "nsf_funding_programs": "Antarctic Integrated System Science", "persons": "Guest, Peter", "project_titles": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica", "projects": [{"proj_uid": "p0010032", "repository": "USAP-DC", "title": "Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "PIPERS Meteorology Rawinsonde Data", "uid": "601185", "west": 168.0}, {"awards": "1141939 Lubin, Dan", "bounds_geometry": ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"], "date_created": "Tue, 12 Dec 2017 00:00:00 GMT", "description": "In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014).\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eThere are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water.\r\n\t\r\n\t\u003cbr\u003e\u003cbr\u003eAncillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response.", "east": 167.0365, "geometry": ["POINT(166.67325 -77.54515)"], "keywords": "Antarctica; Atmosphere; Meteorology; Radiosounding; Ross Island", "locations": "Antarctica; Ross Island", "north": -77.5203, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "persons": "Lubin, Dan", "project_titles": "Antarctic Cloud Physics: Fundamental Observations from Ross Island", "projects": [{"proj_uid": "p0000327", "repository": "USAP-DC", "title": "Antarctic Cloud Physics: Fundamental Observations from Ross Island"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.57, "title": "Shortwave Spectroradiometer Data from Ross Island, Antarctica", "uid": "601074", "west": 166.31}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
PIPERS Meteorology Rawinsonde Data
|
1341725 |
2019-06-12 | Guest, Peter |
Collaborative Research: Seasonal Sea Ice Production in the Ross Sea, Antarctica |
This file contains rawinsonde data from 134 rawisnonde soundings performed during the 2017 PIPERS cruise for the period 14 April 2330 – 5 June 1130 (UT). | ["POLYGON((-180 -62,-179.5 -62,-179 -62,-178.5 -62,-178 -62,-177.5 -62,-177 -62,-176.5 -62,-176 -62,-175.5 -62,-175 -62,-175 -63.6,-175 -65.2,-175 -66.8,-175 -68.4,-175 -70,-175 -71.6,-175 -73.2,-175 -74.8,-175 -76.4,-175 -78,-175.5 -78,-176 -78,-176.5 -78,-177 -78,-177.5 -78,-178 -78,-178.5 -78,-179 -78,-179.5 -78,180 -78,178.8 -78,177.6 -78,176.4 -78,175.2 -78,174 -78,172.8 -78,171.6 -78,170.4 -78,169.2 -78,168 -78,168 -76.4,168 -74.8,168 -73.2,168 -71.6,168 -70,168 -68.4,168 -66.8,168 -65.2,168 -63.6,168 -62,169.2 -62,170.4 -62,171.6 -62,172.8 -62,174 -62,175.2 -62,176.4 -62,177.6 -62,178.8 -62,-180 -62))"] | ["POINT(176.5 -70)"] | false | false |
Shortwave Spectroradiometer Data from Ross Island, Antarctica
|
1141939 |
2017-12-12 | Lubin, Dan |
Antarctic Cloud Physics: Fundamental Observations from Ross Island |
In this project we made fundamental measurements of cloud optical and microphysical properties at Ross Island, Antarctica, using a versatile shortwave spectroradiometer (Panalytical, Inc.) acquired for atmospheric field research by the Scripps Institution of Oceanography (SIO). This instrument measures downwelling spectral irradiance at the Earth surface in the wavelength interval 350-2200 nm. From this data set one can retrieve properties of coastal Antarctic stratiform clouds including optical depth, thermodynamic phase, liquid water droplet effective radius, and ice cloud effective particle size. The instrument was installed at Arrival Heights, and measurements were made from 10 October 2012 to 4 February 2013. Spectral data recorded in one-minute averages, with some gaps for instrument maintenance and data backup, and some occasional down time when the site was inaccessible. Active satellite remote sensing data (CloudSat and CALIPSO) were used for validation and interpretation of the spectroradiometer retrievals (Scott and Lubin 2014). <br><br>There are two reasons why this measurement program remains timely. One straightforward reason involves the location of McMurdo Station, which is the US Antarctic Programs air transport entry point to the continent. Improvements in our knowledge of atmospheric physics in this region can eventually lead to improvements in numerical weather forecasting relevant to aviation. A second reason involves the recent advances in cloud microphysics for global climate model simulation. Mixed-phase cloud parameterizations have become very sophisticated, requiring validation with each new improvement. Traditional observational test cases - from the Arctic or mid-latitude storm systems - are often quite complex. A coastal Antarctic site at very high latitudes can provide more straightforward cases for testing current microphysical parameterizations. Over Ross Island aerosol and cloud nucleation sources are essentially all natural and oceanic, and cloud geometry is simple, while at the same time there is abundant supercooled cloud liquid water. <br><br>Ancillary meteorological data from the McMurdo Weather Office are also included here for help in interpreting the spectroradiometer data, including rawinsonde profiles, surface weather observations from the active ice runway, and automated FMQ19 surface weather measurements from Williams Field and Pegasus runway. For interpretation of clear sky or nearly cloud-free irradiance spectra (i.e., when a large fraction of the irradiance is directional from the Sun and not diffused by clouds), we recommend consulting Meywerk and Ramanathan (1999) for information about the Panalytical instruments cosine response. | ["POLYGON((166.31 -77.5203,166.38265 -77.5203,166.4553 -77.5203,166.52795 -77.5203,166.6006 -77.5203,166.67325 -77.5203,166.7459 -77.5203,166.81855 -77.5203,166.8912 -77.5203,166.96385 -77.5203,167.0365 -77.5203,167.0365 -77.52527,167.0365 -77.53024,167.0365 -77.53521,167.0365 -77.54018,167.0365 -77.54515,167.0365 -77.55012,167.0365 -77.55509,167.0365 -77.56006,167.0365 -77.56503,167.0365 -77.57,166.96385 -77.57,166.8912 -77.57,166.81855 -77.57,166.7459 -77.57,166.67325 -77.57,166.6006 -77.57,166.52795 -77.57,166.4553 -77.57,166.38265 -77.57,166.31 -77.57,166.31 -77.56503,166.31 -77.56006,166.31 -77.55509,166.31 -77.55012,166.31 -77.54515,166.31 -77.54018,166.31 -77.53521,166.31 -77.53024,166.31 -77.52527,166.31 -77.5203))"] | ["POINT(166.67325 -77.54515)"] | false | false |