{"dp_type": "Dataset", "free_text": "Genetic Analysis"}
[{"awards": "1947040 Postlethwait, John; 1543383 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.", "uid": "601731", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Gene; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic; Antarctica", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.", "uid": "601728", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Rates of hemoglobin evolution among genes and across notothenioid species.", "uid": "601729", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.", "uid": "601730", "west": -180.0}, {"awards": "1543383 Postlethwait, John; 1947040 Postlethwait, John; 2232891 Postlethwait, John", "bounds_geometry": ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"], "date_created": "Fri, 08 Sep 2023 00:00:00 GMT", "description": "Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article \u201cCold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes\u201d by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Antarctica; Cold Adaptation; Cryonotothenioid; Dragonfish; Eleginopsioidea; Fish; Genetic Analysis; Hemoglobin; Icefish; Notothenioid; Notothenioid Fishes; Plunderfish; Sub-Antarctic", "locations": "Antarctica; Sub-Antarctic", "north": -37.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Postlethwait, John", "project_titles": "Evolution of hemoglobin genes in notothenioid fishes", "projects": [{"proj_uid": "p0010417", "repository": "USAP-DC", "title": "Evolution of hemoglobin genes in notothenioid fishes"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Notothenioid hemoglobin protein 3D modeling.", "uid": "601732", "west": -180.0}, {"awards": "1947040 Postlethwait, John", "bounds_geometry": ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"], "date_created": "Tue, 04 Jan 2022 00:00:00 GMT", "description": "Nucleic acid sequences, sequence alignments, model selection results, and phylogenetic trees from the phylogenetic placement of Notoxcellia species. ", "east": -62.3, "geometry": ["POINT(-62.7 -64.45)"], "keywords": "Alveolata; Antarctica; Antarctic Peninsula; Biota; Notoxcellia Coronata; Notoxcellia Picta; Oceans; Perkinsozoa; Xcellidae", "locations": "Antarctic Peninsula; Antarctica", "north": -63.9, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "persons": "Desvignes, Thomas; Varsani, Arvind; Postlethwait, John", "project_titles": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish ", "projects": [{"proj_uid": "p0010221", "repository": "USAP-DC", "title": "EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish "}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Phylogenetic Analysis of Notoxcellia species.", "uid": "601501", "west": -63.1}, {"awards": "0739648 Cary, Stephen", "bounds_geometry": ["POINT(163 -77.5)"], "date_created": "Tue, 01 Jan 2013 00:00:00 GMT", "description": "The glacial streams of the McMurdo Dry Valleys have extensive cyanobacterial mats that are a probable source of fixed C and N to the Valleys. The research will examine the interplay between the microbial mats in the ephemeral glacial streams and the microbiota of the hyporheic soils (wetted soil zone) underlying and adjacent to those mats. It is hypothesized that the mats are important sources of organic carbon and fixed nitrogen for the soil communities of the hyporheic zone, and release dissolved organic carbon (DOC) and nitrogen (DON) that serves the entire Dry Valley ecosystem. Field efforts will entail both observational and experimental components. Direct comparisons will be made between the mats and microbial populations underlying naturally rehydrated and desiccated mat areas, and between mat areas in the melt streams of the Adams and Miers Glaciers in Miers Valley. Both physiological and phylogenetic indices of the soil microbiota will be examined. Observations will include estimates of rates of mat carbon and nitrogen fixation, soil respiration and leucine and thymidine uptake (as measures of protein \u0026 DNA synthesis, respectively) by soil bacteria, bacterial densities and their molecular ecology. Experimental manipulations will include experimental re-wetting of soils and observations of the time course of response of the microbial community. The research will integrate modern molecular genetic approaches (ARISA-DNA fingerprinting and ultra deep 16S rDNA microbial phylogenetic analysis) with geochemistry to study the diversity, ecology, and function of microbial communities that thrive in these extreme environments. The broader impacts of the project include research and educational opportunities for graduate students and a postdoctoral associate. The P.I.s will involve undergraduates as work-study students and in REU programs, and will participate in educational and outreach programs.", "east": 163.0, "geometry": ["POINT(163 -77.5)"], "keywords": "Antarctica; Biota; Cell Counts; Dry Valleys; Microbiology", "locations": "Dry Valleys; Antarctica", "north": -77.5, "nsf_funding_programs": null, "persons": "Cary, S. Craig", "project_titles": "Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "projects": [{"proj_uid": "p0000476", "repository": "USAP-DC", "title": "Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.5, "title": "Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams", "uid": "600079", "west": 163.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in notothenioids.
|
1947040 1543383 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy RELAX tests for pervasive changes in strength of natural selection on hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
aBSREL tests for episodic diversifying selection on hemoglobin genes in notothenioids.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy aBSREL tests for diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Rates of hemoglobin evolution among genes and across notothenioid species.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Results of hemoglobin gene KaKs (dN/dS) analyses in notothenioids in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
MEME tests of sites evolving under episodic diversifying selection in notothenioid hemoglobin genes.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Phylogenetic tree of Notothenioid species used in analyses and results of the HyPhy MEME tests for sites evolving under episodic diversifying selection in notothenioid hemoglobin genes in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Notothenioid hemoglobin protein 3D modeling.
|
1543383 1947040 2232891 |
2023-09-08 | Desvignes, Thomas; Postlethwait, John |
Evolution of hemoglobin genes in notothenioid fishes |
Notothenioid hemoglobin protein 3D modeling using SWISS-MODEL in the research article “Cold-driven hemoglobin evolution in Antarctic notothenioid fishes prior to hemoglobin gene loss in white-blooded icefishes” by Thomas Desvignes, Iliana Bista, Karina Herrera, Audrey Landes, John H. Postlethwait. | ["POLYGON((-180 -37,-144 -37,-108 -37,-72 -37,-36 -37,0 -37,36 -37,72 -37,108 -37,144 -37,180 -37,180 -42.3,180 -47.6,180 -52.9,180 -58.2,180 -63.5,180 -68.8,180 -74.1,180 -79.4,180 -84.69999999999999,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -84.7,-180 -79.4,-180 -74.1,-180 -68.8,-180 -63.5,-180 -58.2,-180 -52.9,-180 -47.6,-180 -42.300000000000004,-180 -37))"] | ["POINT(0 -89.999)"] | false | false |
Phylogenetic Analysis of Notoxcellia species.
|
1947040 |
2022-01-04 | Desvignes, Thomas; Varsani, Arvind; Postlethwait, John |
EAGER: Origin and Physiological Consequences of a Neoplasm Outbreak in Antarctic Fish |
Nucleic acid sequences, sequence alignments, model selection results, and phylogenetic trees from the phylogenetic placement of Notoxcellia species. | ["POLYGON((-63.1 -63.9,-63.02 -63.9,-62.94 -63.9,-62.86 -63.9,-62.78 -63.9,-62.7 -63.9,-62.62 -63.9,-62.54 -63.9,-62.46 -63.9,-62.38 -63.9,-62.3 -63.9,-62.3 -64.01,-62.3 -64.12,-62.3 -64.23,-62.3 -64.34,-62.3 -64.45,-62.3 -64.56,-62.3 -64.67,-62.3 -64.78,-62.3 -64.89,-62.3 -65,-62.38 -65,-62.46 -65,-62.54 -65,-62.62 -65,-62.7 -65,-62.78 -65,-62.86 -65,-62.94 -65,-63.02 -65,-63.1 -65,-63.1 -64.89,-63.1 -64.78,-63.1 -64.67,-63.1 -64.56,-63.1 -64.45,-63.1 -64.34,-63.1 -64.23,-63.1 -64.12,-63.1 -64.01,-63.1 -63.9))"] | ["POINT(-62.7 -64.45)"] | false | false |
Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams
|
0739648 |
2013-01-01 | Cary, S. Craig |
Collaborative Research: Biogeochemistry of Cyanobactrial Mats and Hyporheic Zone Microbes in McMurdo Dry Valley Glacial Meltwater Streams |
The glacial streams of the McMurdo Dry Valleys have extensive cyanobacterial mats that are a probable source of fixed C and N to the Valleys. The research will examine the interplay between the microbial mats in the ephemeral glacial streams and the microbiota of the hyporheic soils (wetted soil zone) underlying and adjacent to those mats. It is hypothesized that the mats are important sources of organic carbon and fixed nitrogen for the soil communities of the hyporheic zone, and release dissolved organic carbon (DOC) and nitrogen (DON) that serves the entire Dry Valley ecosystem. Field efforts will entail both observational and experimental components. Direct comparisons will be made between the mats and microbial populations underlying naturally rehydrated and desiccated mat areas, and between mat areas in the melt streams of the Adams and Miers Glaciers in Miers Valley. Both physiological and phylogenetic indices of the soil microbiota will be examined. Observations will include estimates of rates of mat carbon and nitrogen fixation, soil respiration and leucine and thymidine uptake (as measures of protein & DNA synthesis, respectively) by soil bacteria, bacterial densities and their molecular ecology. Experimental manipulations will include experimental re-wetting of soils and observations of the time course of response of the microbial community. The research will integrate modern molecular genetic approaches (ARISA-DNA fingerprinting and ultra deep 16S rDNA microbial phylogenetic analysis) with geochemistry to study the diversity, ecology, and function of microbial communities that thrive in these extreme environments. The broader impacts of the project include research and educational opportunities for graduate students and a postdoctoral associate. The P.I.s will involve undergraduates as work-study students and in REU programs, and will participate in educational and outreach programs. | ["POINT(163 -77.5)"] | ["POINT(163 -77.5)"] | false | false |