{"dp_type": "Dataset", "free_text": "East Antarctic Plateau"}
[{"awards": "2019719 Brook, Edward", "bounds_geometry": ["POLYGON((50 -84,55 -84,60 -84,65 -84,70 -84,75 -84,80 -84,85 -84,90 -84,95 -84,100 -84,100 -84.6,100 -85.2,100 -85.8,100 -86.4,100 -87,100 -87.6,100 -88.2,100 -88.8,100 -89.4,100 -90,95 -90,90 -90,85 -90,80 -90,75 -90,70 -90,65 -90,60 -90,55 -90,50 -90,50 -89.4,50 -88.8,50 -88.2,50 -87.6,50 -87,50 -86.4,50 -85.8,50 -85.2,50 -84.6,50 -84))"], "date_created": "Mon, 10 Mar 2025 00:00:00 GMT", "description": "This dataset contains the basal ice unit thickness as measured by the NSF COLDEX MARFA ice-penetrating radar survey, which mainly focuses on the southern flank of Dome A. The \"basal ice unit\" is hereby defined as the bottom portion of the ice sheet where no clear and traceable englacial reflection is detected by the radar sounder. Raw radar data can be found at: https://doi.org/10.15784/601768. The basal ice unit is mapped using the DecisionSpace Geosciences 10ep software package. This dataset provides three data products:\r\n\u003cbr/\u003e\u2022 Thickness of the basal ice unit\r\n\u003cbr/\u003e\u2022 Thickness of the stratigraphic ice unit above the basal ice unit\r\n\u003cbr/\u003e\u2022 The shape of the basal ice unit boundary, where rapid basal ice unit thinning is observed in the middle of the South Pole Basin.", "east": 100.0, "geometry": ["POINT(75 -87)"], "keywords": "Antarctica; Coldex; Cryosphere; East Antarctica; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "locations": "Antarctica; East Antarctica; East Antarctic Plateau", "north": -84.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Yan, Shuai; Young, Duncan A.; Vega Gonzalez, Alejandra; Singh, Shivangini; Kerr, Megan; Blankenship, Donald D.", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar", "uid": "601912", "west": 50.0}, {"awards": "2019719 Brook, Edward", "bounds_geometry": ["POLYGON((50 -84,55 -84,60 -84,65 -84,70 -84,75 -84,80 -84,85 -84,90 -84,95 -84,100 -84,100 -84.6,100 -85.2,100 -85.8,100 -86.4,100 -87,100 -87.6,100 -88.2,100 -88.8,100 -89.4,100 -90,95 -90,90 -90,85 -90,80 -90,75 -90,70 -90,65 -90,60 -90,55 -90,50 -90,50 -89.4,50 -88.8,50 -88.2,50 -87.6,50 -87,50 -86.4,50 -85.8,50 -85.2,50 -84.6,50 -84))"], "date_created": "Mon, 19 Feb 2024 00:00:00 GMT", "description": "This dataset constitutes the as-recorded echo data from the MARFA radar system. The data was recorded by a National Instruments acquisition system, simultaneously with GPS, magnetics, laser range data, outside air temperature and IMU data. The data was acquired using the Environment for Linked Serial Acquisition (ELSA).\r\n\r\nThe data is provided in two forms: \r\n\u2022 Flight based and as recorded on the aircraft in raw packets\r\n\u2022 Transect based, reorganized into transects corresponding to the survey design, and demultiplexed into text tables and flat binary files.\r\n", "east": 100.0, "geometry": ["POINT(75 -87)"], "keywords": "Antarctica; Coldex; East Antarctic Plateau; Glaciology; Radar Echo Sounder", "locations": "Antarctica; East Antarctic Plateau", "north": -84.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin; Kerr, Megan; Buhl, Dillon; Ng, Gregory; Kempf, Scott D.; Chan, Kristian", "project_titles": "Center for Oldest Ice Exploration", "projects": [{"proj_uid": "p0010321", "repository": "USAP-DC", "title": "Center for Oldest Ice Exploration"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "COLDEX", "south": -90.0, "title": "NSF COLDEX Raw MARFA Ice Penetrating Radar data", "uid": "601768", "west": 50.0}, {"awards": null, "bounds_geometry": ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "This dataset includes:\r\n1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). \r\n2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). \r\n3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand.\r\n4) Tie points to constrain flow model used to develop JRI_2008 chronology.", "east": 54.9, "geometry": ["POINT(-1.4 -73.15)"], "keywords": "Antarctica; Antarctic Peninsula; Biomass Burning; Black Carbon; Dronning Maud Land; East Antarctic Plateau; Ice Core", "locations": "Antarctica; Antarctic Peninsula; Dronning Maud Land; East Antarctic Plateau", "north": -64.2, "nsf_funding_programs": null, "persons": "McConnell, Joseph; Chellman, Nathan", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -82.1, "title": "Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores", "uid": "601464", "west": -57.7}, {"awards": "0941678 ; 0424589 Gogineni, S. Prasad; 0733025 Blankenship, Donald; 1443690 Young, Duncan", "bounds_geometry": ["POLYGON((114 -74,115.2 -74,116.4 -74,117.6 -74,118.8 -74,120 -74,121.2 -74,122.4 -74,123.6 -74,124.8 -74,126 -74,126 -74.3,126 -74.6,126 -74.9,126 -75.2,126 -75.5,126 -75.8,126 -76.1,126 -76.4,126 -76.7,126 -77,124.8 -77,123.6 -77,122.4 -77,121.2 -77,120 -77,118.8 -77,117.6 -77,116.4 -77,115.2 -77,114 -77,114 -76.7,114 -76.4,114 -76.1,114 -75.8,114 -75.5,114 -75.2,114 -74.9,114 -74.6,114 -74.3,114 -74))"], "date_created": "Fri, 18 Dec 2020 00:00:00 GMT", "description": "The data set published here consists of 26 ice-penetrating radar IRHs (internal reflecting horizons) which were traced across multiple ice-penetrating radar surveys that deployed several generations of modern ice-penetrating radar sounders over a decade, between 2008 and 2018, over the Dome C region of the East Antarctic Plateau. The data set is associated to publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759\u20134777, 2021, https://doi.org/10.5194/essd-13-4759-2021.\r\n\r\nWe can subdivide the radar sounders used into three sets. The primary set was collected by the University of Texas at Austin Institute for Geophysics (UTIG) and the Australian Antarctic Division (AAD) as part of the ICECAP project) between 2008 and 2015. This includes the Oldest Ice candidate A (OIA) survey flown by ICECAP in January 2016. Data were collected with the High Capacity Airborne Radar Sounder (HiCARS) 1 \u0026 2 and its Multifrequency Airborne Radar-sounder for Full-phase Assessment (MARFA) descendant. The data was collected from a DC-3T Basler which operated from Concordia Station. \r\n\r\nThe second set consists of the Vostok-Dome C airborne radar transect was flown by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas using the Multi-Channel Coherent Radar Depth Sounder (MCoRDS) in a single flight line in 2013. A P-3 Orion operating from McMurdo Station collected these data as part of NASA Operation Ice Bridge. \r\n\r\nThe third set consists of a subset of the LDC ground-based radar survey, towed behind a PistenBully PB300 tractor, collected by the Beyond EPICA - Oldest Ice (BE-OI) European Consortium using the British Antarctic Survey\u2019s (BAS) Deep Looking Radio Echo Sounder (DELORES) radar system. Each IRH has been traced in all three radar sets and is published here as a single csv and netcdf file. Formats are self-documented in these csv/netcdf files. \r\n\r\nWhere HiCARS and MCoRDS radar transects are used, the IRH is provided at a 1 km spatial resolution, where DELORES radar transects are used, the IRH is provided at a 250 m spatial resolution. \r\n\r\nThe 26 IRHs published here were traced semi-automatically by first author Marie Cavitte, using Landmark\u0027s Decision Space Desktop software and its built-in picker. \r\n\r\nThe IRHs are dated at the EDC ice core using the AICC2012 timescale (Veres et al., 2013; Bazin et al., 2013). \r\n\r\nIce core ages are transferred onto the IRHs on radar transect MCM/JKB1a/EDMC01a at distance_m (column in the data sets) = 110.153 m along the transect. That radar point of closest approach is 94\u2009m away from the ice core site. Depth and age uncertainties associated to each IRH are quantified n the associated publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759\u20134777, 2021, https://doi.org/10.5194/essd-13-4759-2021. \r\n\n\r\n\r\nBesides NSF this dataset is the result of additional support from NERC grant - NE/D003733/1, NASA grants - NX08AN68G, NNX09AR52G, NNX11AD33G, NNX13AD53A, and funding from the G. Unger Vetlesen Foundation.\n\n\\nNote that the dataset was archived before the accompanying paper was officially published. The abstract and dataset description has been updated to cite the correct reference to the ESSD paper (Cavitte et al., 2021) after the paper was published. The headers of the actual data files contain only a placeholder to this reference.", "east": 126.0, "geometry": ["POINT(120 -75.5)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; ICECAP; Ice Penetrating Radar; Internal Reflecting Horizons", "locations": "Antarctica; East Antarctic Plateau", "north": -74.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences; Antarctic Earth Sciences", "persons": "Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D.", "project_titles": "Center for Remote Sensing of Ice Sheets (CReSIS); Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP); IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)", "projects": [{"proj_uid": "p0000719", "repository": "USAP-DC", "title": "IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP)"}, {"proj_uid": "p0000102", "repository": "USAP-DC", "title": "Center for Remote Sensing of Ice Sheets (CReSIS)"}, {"proj_uid": "p0010115", "repository": "USAP-DC", "title": "Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Dome C Ice Core", "south": -77.0, "title": "Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau", "uid": "601411", "west": 114.0}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Thu, 01 Nov 2007 00:00:00 GMT", "description": "This data set contains firn physical properties measured in two meter snow pits and from deeper, 12- to 30-meter firn cores. The physical properties measured in the snow pits include density, permeability and microstructure (grain size and pore size). The physical properties measured on firn cores include density, permeability, diffusivity and microstructure. Data are available in Microsoft Excel format and ADOBE PDF and are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "locations": "East Antarctic Plateau; Antarctica", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Albert, Mary R.; Courville, Zoe; Cathles, Mac", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609299", "west": 124.0218}, {"awards": "0230260 Bender, Michael", "bounds_geometry": ["POINT(106.8 -72.4667)"], "date_created": "Tue, 10 Jul 2007 00:00:00 GMT", "description": "This data set includes a time scale for the Vostok ice core, retrieved from Vostok Station on the East Antarctic Plateau. This chronology is derived by orbitally tuning to molecular oxygen to nitrogen (O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e) ratios in occluded air for depths deeper than 1550 m (greater than 112,000 years old), and by gas correlation to the Greenland Ice Sheet Project 2 (GISP2) chronology for the ice core section that is shallower than 1422 m (less than 102,000 years old). Because of poor gas preservation in air bubbles in shallower depths, investigators could only constrain the Vostok chronology for the section deeper than 1550 m by O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e. Thus for the shallower section of the core, they synchronized the Vostok delta oxygen-18 (\u0026delta;\u003csup\u003e18\u003c/sup\u003eO) and methane (CH\u003csub\u003e4\u003c/sub\u003e) measurements to those of the GISP2 to obtain the chronology (see Bender, et al. 2006). Note, CH\u003csub\u003e4\u003c/sub\u003e data are not included in this data set.\n\nInvestigators analyzed the O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e and the\u003cem\u003e\u003cstrong\u003e \u003c/strong\u003e\u003c/em\u003e\u0026delta;\u003csup\u003e18\u003c/sup\u003eO record ratios for approximately the past 115,000 to 400,000 years in the Vostok ice core. They combined new measurements for O\u003csub\u003e2\u003c/sub\u003e/N\u003csub\u003e2\u003c/sub\u003e and \u0026delta;\u003csup\u003e18\u003c/sup\u003eO with data from Bender (2002) and Petit, et al. (1999), respectively.\n\nData are in Microsoft Excel format and are available via FTP.", "east": 106.8, "geometry": ["POINT(106.8 -72.4667)"], "keywords": "Antarctica; Atmosphere; Chemistry:fluid; Chemistry:Fluid; Geochronology; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Lake Vostok; Paleoclimate; Vostok; Vostok Ice Core", "locations": "Lake Vostok; Antarctica; Vostok", "north": -72.4667, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Bender, Michael; Suwa, Makoto", "project_titles": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core", "projects": [{"proj_uid": "p0000257", "repository": "USAP-DC", "title": "Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -72.4667, "title": "Trapped Gas Composition and Chronology of the Vostok Ice Core", "uid": "609311", "west": 106.8}, {"awards": "0225992 Fahnestock, Mark; 0125570 Scambos, Ted", "bounds_geometry": ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"], "date_created": "Thu, 05 Oct 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP.", "east": 124.52668, "geometry": ["POINT(124.48059 -80.78277)"], "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.77546, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.79008, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "609283", "west": 124.4345}, {"awards": "0125276 Albert, Mary", "bounds_geometry": ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"], "date_created": "Sat, 10 Jun 2006 00:00:00 GMT", "description": "The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets.\n\nSnow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km\u003csup\u003e2\u003c/sup\u003e of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas.\n\nThis data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km\u003csup\u003e2\u003c/sup\u003e. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP.", "east": 126.0302, "geometry": ["POINT(125.026 -80.6553)"], "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "locations": "Antarctica; East Antarctic Plateau", "north": -80.5304, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Scambos, Ted; Bauer, Rob", "project_titles": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "projects": [{"proj_uid": "p0000587", "repository": "USAP-DC", "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.7802, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "uid": "609282", "west": 124.0218}, {"awards": "XXXXXXX Palais, Julie", "bounds_geometry": ["POINT(159.183333 -72.827778)"], "date_created": "Fri, 27 Aug 2004 00:00:00 GMT", "description": "This data set consists of deuterioum isotope data obtained from Talos Dome ice core. Talos Dome is located on the edge of the East Antarctic plateau \nadjacent to the Victoria Land mountain. The Talos Dome (TD) firn core is 89 m and was drilled during a traverse by an Italian team in 1996.", "east": 159.183333, "geometry": ["POINT(159.183333 -72.827778)"], "keywords": "Antarctica; Chemistry:ice; Chemistry:Ice; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Ice Core Records; Isotope; Paleoclimate; Talos Dome", "locations": "Antarctica; Talos Dome", "north": -72.827778, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Jouzel, Jean; Stenni, Barbara", "project_titles": null, "projects": null, "repositories": null, "science_programs": null, "south": -72.827778, "title": "Talos Dome Ice Core Deuterium Isotope Data", "uid": "609252", "west": 159.183333}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Basal Ice Unit Thickness Mapped by the NSF COLDEX MARFA Ice Penetrating Radar
|
2019719 |
2025-03-10 | Yan, Shuai; Young, Duncan A.; Vega Gonzalez, Alejandra; Singh, Shivangini; Kerr, Megan; Blankenship, Donald D. |
Center for Oldest Ice Exploration |
This dataset contains the basal ice unit thickness as measured by the NSF COLDEX MARFA ice-penetrating radar survey, which mainly focuses on the southern flank of Dome A. The "basal ice unit" is hereby defined as the bottom portion of the ice sheet where no clear and traceable englacial reflection is detected by the radar sounder. Raw radar data can be found at: https://doi.org/10.15784/601768. The basal ice unit is mapped using the DecisionSpace Geosciences 10ep software package. This dataset provides three data products: <br/>• Thickness of the basal ice unit <br/>• Thickness of the stratigraphic ice unit above the basal ice unit <br/>• The shape of the basal ice unit boundary, where rapid basal ice unit thinning is observed in the middle of the South Pole Basin. | ["POLYGON((50 -84,55 -84,60 -84,65 -84,70 -84,75 -84,80 -84,85 -84,90 -84,95 -84,100 -84,100 -84.6,100 -85.2,100 -85.8,100 -86.4,100 -87,100 -87.6,100 -88.2,100 -88.8,100 -89.4,100 -90,95 -90,90 -90,85 -90,80 -90,75 -90,70 -90,65 -90,60 -90,55 -90,50 -90,50 -89.4,50 -88.8,50 -88.2,50 -87.6,50 -87,50 -86.4,50 -85.8,50 -85.2,50 -84.6,50 -84))"] | ["POINT(75 -87)"] | false | false |
NSF COLDEX Raw MARFA Ice Penetrating Radar data
|
2019719 |
2024-02-19 | Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin; Kerr, Megan; Buhl, Dillon; Ng, Gregory; Kempf, Scott D.; Chan, Kristian |
Center for Oldest Ice Exploration |
This dataset constitutes the as-recorded echo data from the MARFA radar system. The data was recorded by a National Instruments acquisition system, simultaneously with GPS, magnetics, laser range data, outside air temperature and IMU data. The data was acquired using the Environment for Linked Serial Acquisition (ELSA). The data is provided in two forms: • Flight based and as recorded on the aircraft in raw packets • Transect based, reorganized into transects corresponding to the survey design, and demultiplexed into text tables and flat binary files. | ["POLYGON((50 -84,55 -84,60 -84,65 -84,70 -84,75 -84,80 -84,85 -84,90 -84,95 -84,100 -84,100 -84.6,100 -85.2,100 -85.8,100 -86.4,100 -87,100 -87.6,100 -88.2,100 -88.8,100 -89.4,100 -90,95 -90,90 -90,85 -90,80 -90,75 -90,70 -90,65 -90,60 -90,55 -90,50 -90,50 -89.4,50 -88.8,50 -88.2,50 -87.6,50 -87,50 -86.4,50 -85.8,50 -85.2,50 -84.6,50 -84))"] | ["POINT(75 -87)"] | false | false |
Common-era black carbon deposition and atmospheric modeling for 6 Antarctic ice cores
|
None | 2021-07-16 | McConnell, Joseph; Chellman, Nathan | No project link provided | This dataset includes: 1) rBC concentration and flux for 6 Antarctic ice core sites (JRI_2008, JRI_D98, NUS08_7, NUS07_7, B53, and B40). 2) FLEXPART backward-model emission sensitivities for 4 Antarctic ice core sites (JRI, B40, B53, NUS07_7). 3) FLEXPART forward-model deposition for simulated biomass burning emissions from New Zealand. 4) Tie points to constrain flow model used to develop JRI_2008 chronology. | ["POLYGON((-57.7 -64.2,-46.44 -64.2,-35.18 -64.2,-23.92 -64.2,-12.66 -64.2,-1.4 -64.2,9.86 -64.2,21.12 -64.2,32.38 -64.2,43.64 -64.2,54.9 -64.2,54.9 -65.99,54.9 -67.78,54.9 -69.57,54.9 -71.36,54.9 -73.15,54.9 -74.94,54.9 -76.73,54.9 -78.52,54.9 -80.31,54.9 -82.1,43.64 -82.1,32.38 -82.1,21.12 -82.1,9.86 -82.1,-1.4 -82.1,-12.66 -82.1,-23.92 -82.1,-35.18 -82.1,-46.44 -82.1,-57.7 -82.1,-57.7 -80.31,-57.7 -78.52,-57.7 -76.73,-57.7 -74.94,-57.7 -73.15,-57.7 -71.36,-57.7 -69.57,-57.7 -67.78,-57.7 -65.99,-57.7 -64.2))"] | ["POINT(-1.4 -73.15)"] | false | false |
Ice-penetrating radar internal stratigraphy over Dome C and the wider East Antarctic Plateau
|
0941678 0424589 0733025 1443690 |
2020-12-18 | Cavitte, Marie G. P; Young, Duncan A.; Mulvaney, Robert; Ritz, Catherine; Greenbaum, Jamin; Ng, Gregory; Kempf, Scott D.; Quartini, Enrica; Muldoon, Gail R.; Paden, John; Frezzotti, Massimo; Roberts, Jason; Tozer, Carly; Schroeder, Dustin; Blankenship, Donald D. |
IPY Research: Investigating the Cryospheric Evolution of the Central Antarctic Plate (ICECAP) Center for Remote Sensing of Ice Sheets (CReSIS) Collaborative Research: Southern Plateau Ice-sheet Characterization and Evolution of the Central Antarctic Plate (SPICECAP) |
The data set published here consists of 26 ice-penetrating radar IRHs (internal reflecting horizons) which were traced across multiple ice-penetrating radar surveys that deployed several generations of modern ice-penetrating radar sounders over a decade, between 2008 and 2018, over the Dome C region of the East Antarctic Plateau. The data set is associated to publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, 2021, https://doi.org/10.5194/essd-13-4759-2021. We can subdivide the radar sounders used into three sets. The primary set was collected by the University of Texas at Austin Institute for Geophysics (UTIG) and the Australian Antarctic Division (AAD) as part of the ICECAP project) between 2008 and 2015. This includes the Oldest Ice candidate A (OIA) survey flown by ICECAP in January 2016. Data were collected with the High Capacity Airborne Radar Sounder (HiCARS) 1 & 2 and its Multifrequency Airborne Radar-sounder for Full-phase Assessment (MARFA) descendant. The data was collected from a DC-3T Basler which operated from Concordia Station. The second set consists of the Vostok-Dome C airborne radar transect was flown by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas using the Multi-Channel Coherent Radar Depth Sounder (MCoRDS) in a single flight line in 2013. A P-3 Orion operating from McMurdo Station collected these data as part of NASA Operation Ice Bridge. The third set consists of a subset of the LDC ground-based radar survey, towed behind a PistenBully PB300 tractor, collected by the Beyond EPICA - Oldest Ice (BE-OI) European Consortium using the British Antarctic Survey’s (BAS) Deep Looking Radio Echo Sounder (DELORES) radar system. Each IRH has been traced in all three radar sets and is published here as a single csv and netcdf file. Formats are self-documented in these csv/netcdf files. Where HiCARS and MCoRDS radar transects are used, the IRH is provided at a 1 km spatial resolution, where DELORES radar transects are used, the IRH is provided at a 250 m spatial resolution. The 26 IRHs published here were traced semi-automatically by first author Marie Cavitte, using Landmark's Decision Space Desktop software and its built-in picker. The IRHs are dated at the EDC ice core using the AICC2012 timescale (Veres et al., 2013; Bazin et al., 2013). Ice core ages are transferred onto the IRHs on radar transect MCM/JKB1a/EDMC01a at distance_m (column in the data sets) = 110.153 m along the transect. That radar point of closest approach is 94 m away from the ice core site. Depth and age uncertainties associated to each IRH are quantified n the associated publication: Cavitte, M. G. P, Young, D. A, Mulvaney, R., Ritz, C., Greenbaum, J. S., Ng, G., Kempf, S. D., Quartini, E., Muldoon, G. R., Paden, J., Frezzotti, M., Roberts, J. L. , Tozer, C. R. , Schroeder, D. M. and Blankenship, D. D. A detailed radiostratigraphic data set for the central East Antarctic Plateau spanning from the Holocene to the mid-Pleistocene, Earth Syst. Sci. Data, 13, 4759–4777, 2021, https://doi.org/10.5194/essd-13-4759-2021. Besides NSF this dataset is the result of additional support from NERC grant - NE/D003733/1, NASA grants - NX08AN68G, NNX09AR52G, NNX11AD33G, NNX13AD53A, and funding from the G. Unger Vetlesen Foundation. \nNote that the dataset was archived before the accompanying paper was officially published. The abstract and dataset description has been updated to cite the correct reference to the ESSD paper (Cavitte et al., 2021) after the paper was published. The headers of the actual data files contain only a placeholder to this reference. | ["POLYGON((114 -74,115.2 -74,116.4 -74,117.6 -74,118.8 -74,120 -74,121.2 -74,122.4 -74,123.6 -74,124.8 -74,126 -74,126 -74.3,126 -74.6,126 -74.9,126 -75.2,126 -75.5,126 -75.8,126 -76.1,126 -76.4,126 -76.7,126 -77,124.8 -77,123.6 -77,122.4 -77,121.2 -77,120 -77,118.8 -77,117.6 -77,116.4 -77,115.2 -77,114 -77,114 -76.7,114 -76.4,114 -76.1,114 -75.8,114 -75.5,114 -75.2,114 -74.9,114 -74.6,114 -74.3,114 -74))"] | ["POINT(120 -75.5)"] | false | false |
Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2007-11-01 | Albert, Mary R.; Courville, Zoe; Cathles, Mac |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
This data set contains firn physical properties measured in two meter snow pits and from deeper, 12- to 30-meter firn cores. The physical properties measured in the snow pits include density, permeability and microstructure (grain size and pore size). The physical properties measured on firn cores include density, permeability, diffusivity and microstructure. Data are available in Microsoft Excel format and ADOBE PDF and are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
Trapped Gas Composition and Chronology of the Vostok Ice Core
|
0230260 |
2007-07-10 | Bender, Michael; Suwa, Makoto |
Collaborative Research: Trapped Gas Composition and the Chronology of the Vostok Ice Core |
This data set includes a time scale for the Vostok ice core, retrieved from Vostok Station on the East Antarctic Plateau. This chronology is derived by orbitally tuning to molecular oxygen to nitrogen (O<sub>2</sub>/N<sub>2</sub>) ratios in occluded air for depths deeper than 1550 m (greater than 112,000 years old), and by gas correlation to the Greenland Ice Sheet Project 2 (GISP2) chronology for the ice core section that is shallower than 1422 m (less than 102,000 years old). Because of poor gas preservation in air bubbles in shallower depths, investigators could only constrain the Vostok chronology for the section deeper than 1550 m by O<sub>2</sub>/N<sub>2</sub>. Thus for the shallower section of the core, they synchronized the Vostok delta oxygen-18 (δ<sup>18</sup>O) and methane (CH<sub>4</sub>) measurements to those of the GISP2 to obtain the chronology (see Bender, et al. 2006). Note, CH<sub>4</sub> data are not included in this data set. Investigators analyzed the O<sub>2</sub>/N<sub>2</sub> and the<em><strong> </strong></em>δ<sup>18</sup>O record ratios for approximately the past 115,000 to 400,000 years in the Vostok ice core. They combined new measurements for O<sub>2</sub>/N<sub>2</sub> and δ<sup>18</sup>O with data from Bender (2002) and Petit, et al. (1999), respectively. Data are in Microsoft Excel format and are available via FTP. | ["POINT(106.8 -72.4667)"] | ["POINT(106.8 -72.4667)"] | false | false |
AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0225992 0125570 |
2006-10-05 | Fahnestock, Mark; Scambos, Ted; Haran, Terry; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other during the period of December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are 1) to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and 2) to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on the past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glazed surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains automated weather station (AWS) data from two sites. The Mac site was oriented on the rough sastrugi-covered windward face and the Zoe site was on the glazed leeward face. The AWSs collected data throughout the year from 16 January 2004 to 17 November 2004. Investigators received data from the two field sites via the ARGOS Satellite System (http://www.argosinc.com/). Data are provided in space-delimited ASCII text format and are available via FTP. | ["POLYGON((124.4345 -80.77546,124.443718 -80.77546,124.452936 -80.77546,124.462154 -80.77546,124.471372 -80.77546,124.48059 -80.77546,124.489808 -80.77546,124.499026 -80.77546,124.508244 -80.77546,124.517462 -80.77546,124.52668 -80.77546,124.52668 -80.776922,124.52668 -80.778384,124.52668 -80.779846,124.52668 -80.781308,124.52668 -80.78277,124.52668 -80.784232,124.52668 -80.785694,124.52668 -80.787156,124.52668 -80.788618,124.52668 -80.79008,124.517462 -80.79008,124.508244 -80.79008,124.499026 -80.79008,124.489808 -80.79008,124.48059 -80.79008,124.471372 -80.79008,124.462154 -80.79008,124.452936 -80.79008,124.443718 -80.79008,124.4345 -80.79008,124.4345 -80.788618,124.4345 -80.787156,124.4345 -80.785694,124.4345 -80.784232,124.4345 -80.78277,124.4345 -80.781308,124.4345 -80.779846,124.4345 -80.778384,124.4345 -80.776922,124.4345 -80.77546))"] | ["POINT(124.48059 -80.78277)"] | false | false |
GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation
|
0125276 |
2006-06-10 | Scambos, Ted; Bauer, Rob |
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation |
The Antarctic megadune research was conducted during two field seasons, one in November 2002 and the other in December 2003 through January 2004. The megadune field site is located on the East Antarctic Plateau, southeast of Vostok station. The objectives of this multi-facetted research are to determine the physical characteristics of the firn across the dunes including typical climate indicators such as stable isotopes and major chemical species and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. It is important to improve our current understanding of the megadunes because of their extreme nature, their broad extent, and their potential impact on the climate record. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate or on processes active on other planets. Snow megadunes are undulating variations in accumulation and surface texture with wavelengths of 2 to 5 km and amplitudes up to 5 meters. The features cover 500,000 km<sup>2</sup> of the East Antarctic plateau, occurring in areas of moderate regional slope and low accumulation on the flanks of the ice sheet between 2500 and 3800 meters elevation. Landsat images and aerial photography indicate the dunes consist of alternating surfaces of glaze and rough sastrugi, with gradational boundaries. This pattern is oriented perpendicular to the mean wind direction, as modeled in katabatic wind studies. Glaze surfaces cover the leeward faces and troughs; rough sastrugi cover the windward faces and crests. The megadune pattern is crossed by smooth to eroded wind-parallel longitudinal dunes. Wind-eroded longitudinal dunes form spectacular 1-meter-high sastrugi in nearby areas. This data set contains ground penetrating radar (GPR) data showing surface morphology and internal layering structure along with global positioning system (GPS) data collected within an area of 60 km<sup>2</sup>. GPS data are provided in space-delimited ASCII text Microsoft Excel formats, while GPR data are in JPEG format. Data are available via FTP. | ["POLYGON((124.0218 -80.5304,124.22264 -80.5304,124.42348 -80.5304,124.62432 -80.5304,124.82516 -80.5304,125.026 -80.5304,125.22684 -80.5304,125.42768 -80.5304,125.62852 -80.5304,125.82936 -80.5304,126.0302 -80.5304,126.0302 -80.55538,126.0302 -80.58036,126.0302 -80.60534,126.0302 -80.63032,126.0302 -80.6553,126.0302 -80.68028,126.0302 -80.70526,126.0302 -80.73024,126.0302 -80.75522,126.0302 -80.7802,125.82936 -80.7802,125.62852 -80.7802,125.42768 -80.7802,125.22684 -80.7802,125.026 -80.7802,124.82516 -80.7802,124.62432 -80.7802,124.42348 -80.7802,124.22264 -80.7802,124.0218 -80.7802,124.0218 -80.75522,124.0218 -80.73024,124.0218 -80.70526,124.0218 -80.68028,124.0218 -80.6553,124.0218 -80.63032,124.0218 -80.60534,124.0218 -80.58036,124.0218 -80.55538,124.0218 -80.5304))"] | ["POINT(125.026 -80.6553)"] | false | false |
Talos Dome Ice Core Deuterium Isotope Data
|
None | 2004-08-27 | Jouzel, Jean; Stenni, Barbara | No project link provided | This data set consists of deuterioum isotope data obtained from Talos Dome ice core. Talos Dome is located on the edge of the East Antarctic plateau adjacent to the Victoria Land mountain. The Talos Dome (TD) firn core is 89 m and was drilled during a traverse by an Italian team in 1996. | ["POINT(159.183333 -72.827778)"] | ["POINT(159.183333 -72.827778)"] | false | false |