{"dp_type": "Dataset", "free_text": "Amundsen Sea Sector"}
[{"awards": "2114839 Passchier, Sandra", "bounds_geometry": ["POLYGON((-109.05 -68.612,-108.8974 -68.612,-108.7448 -68.612,-108.59219999999999 -68.612,-108.4396 -68.612,-108.287 -68.612,-108.1344 -68.612,-107.98179999999999 -68.612,-107.8292 -68.612,-107.67660000000001 -68.612,-107.524 -68.612,-107.524 -68.62429999999999,-107.524 -68.6366,-107.524 -68.6489,-107.524 -68.6612,-107.524 -68.67349999999999,-107.524 -68.6858,-107.524 -68.6981,-107.524 -68.71039999999999,-107.524 -68.7227,-107.524 -68.735,-107.67660000000001 -68.735,-107.8292 -68.735,-107.98179999999999 -68.735,-108.1344 -68.735,-108.287 -68.735,-108.4396 -68.735,-108.59219999999999 -68.735,-108.7448 -68.735,-108.8974 -68.735,-109.05 -68.735,-109.05 -68.7227,-109.05 -68.71039999999999,-109.05 -68.6981,-109.05 -68.6858,-109.05 -68.67349999999999,-109.05 -68.6612,-109.05 -68.6489,-109.05 -68.6366,-109.05 -68.62429999999999,-109.05 -68.612))"], "date_created": "Mon, 24 Feb 2025 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene.", "east": -107.524, "geometry": ["POINT(-108.287 -68.67349999999999)"], "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "locations": "Antarctica; Amundsen Sea; Amundsen Sea Sector", "north": -68.612, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hemming, Sidney R.; Passchier, Sandra", "project_titles": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "projects": [{"proj_uid": "p0010252", "repository": "USAP-DC", "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.735, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "uid": "601907", "west": -109.05}, {"awards": "2114839 Passchier, Sandra", "bounds_geometry": ["POINT(-109.05 -68.735)"], "date_created": "Thu, 13 Feb 2025 00:00:00 GMT", "description": "This dataset contains measurements of particle-size distributions on sediment from International Ocean Discovery Program Site U1533. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles.", "east": -109.05, "geometry": ["POINT(-109.05 -68.735)"], "keywords": "Amundsen Sea Sector; Antarctica; Cryosphere; Glaciation; Grain Size; Pliocene; Sediment Core Data; Sedimentology", "locations": "Amundsen Sea Sector; Antarctica", "north": -68.735, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Passchier, Sandra; Mino-Moreira, Lisbeth", "project_titles": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "projects": [{"proj_uid": "p0010252", "repository": "USAP-DC", "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.735, "title": "Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea", "uid": "601900", "west": -109.05}, {"awards": "0732869 Holland, David; 1739003 Holland, David", "bounds_geometry": ["POLYGON((-100 -75,-99.9 -75,-99.8 -75,-99.7 -75,-99.6 -75,-99.5 -75,-99.4 -75,-99.3 -75,-99.2 -75,-99.1 -75,-99 -75,-99 -75.05,-99 -75.1,-99 -75.15,-99 -75.2,-99 -75.25,-99 -75.3,-99 -75.35,-99 -75.4,-99 -75.45,-99 -75.5,-99.1 -75.5,-99.2 -75.5,-99.3 -75.5,-99.4 -75.5,-99.5 -75.5,-99.6 -75.5,-99.7 -75.5,-99.8 -75.5,-99.9 -75.5,-100 -75.5,-100 -75.45,-100 -75.4,-100 -75.35,-100 -75.3,-100 -75.25,-100 -75.2,-100 -75.15,-100 -75.1,-100 -75.05,-100 -75))"], "date_created": "Tue, 15 Oct 2019 00:00:00 GMT", "description": "Automatic Weather Station, located on Pine Island Glacier. Data set from 2008-2015.", "east": -99.0, "geometry": ["POINT(-99.5 -75.25)"], "keywords": "Antarctica; Atmosphere; Automated Weather Station; Flux; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Meteorology; Pine Island Glacier; Weather Station Data", "locations": "Antarctica; Pine Island Glacier", "north": -75.0, "nsf_funding_programs": null, "persons": "Mojica Moncada, Jhon F.; Holland, David", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Thwaites (ITGC)", "south": -75.5, "title": "Automatic Weather Station Pine Island Glacier", "uid": "601216", "west": -100.0}, {"awards": "0732730 Truffer, Martin", "bounds_geometry": ["POINT(-100.5 -75.1)"], "date_created": "Fri, 31 Jul 2015 00:00:00 GMT", "description": "This data set is a time series of borehole temperatures at different depths from three thermistor strings deployed in three boreholes drilled through the Pine Island Glacier ice shelf, Antarctica.", "east": -100.5, "geometry": ["POINT(-100.5 -75.1)"], "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Pine Island Glacier; Temperature", "locations": "Pine Island Glacier; Antarctica", "north": -75.1, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Truffer, Martin; Stanton, Timothy", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -75.1, "title": "Borehole Temperatures at Pine Island Glacier, Antarctica", "uid": "609627", "west": -100.5}, {"awards": "0732804 McPhee, Miles", "bounds_geometry": ["POINT(166.25 -77.42)"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. \n\nBroader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the \u0027Multidisciplinary Study of the Amundsen Sea Embayment\u0027 proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded \u0027Polar Palooza\u0027 education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project.\n", "east": 166.25, "geometry": ["POINT(166.25 -77.42)"], "keywords": "Antarctica; Atmosphere; McMurdo; Meteorology; Oceans; Ross Island; Southern Ocean", "locations": "Ross Island; Antarctica; McMurdo; Southern Ocean", "north": -77.42, "nsf_funding_programs": null, "persons": "McPhee, Miles G.", "project_titles": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica", "projects": [{"proj_uid": "p0000043", "repository": "USAP-DC", "title": "Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -77.42, "title": "Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica", "uid": "600072", "west": 166.25}, {"awards": "0230197 Holt, John", "bounds_geometry": ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"], "date_created": "Mon, 01 Jan 2007 00:00:00 GMT", "description": "This data set includes a nested model, that starts at low resolution for the whole Antarctic Ice Sheet, and then embeds higher resolution data at limited domains. There are at least three levels of nesting: whole, regional, and specific ice streams. Investigators focused on the Thwaites Glacier and the Pine Island Glacier. The model was produced using data from (Holt et al. 2006) and (Vaughan et al. 2006). Data are in Network Common Data Form (NetCDF) format and are available via FTP.", "east": 180.0, "geometry": ["POINT(0 -89.999)"], "keywords": "Amundsen Sea; Antarctica; Elevation; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology", "locations": "Antarctica; Amundsen Sea", "north": -60.0, "nsf_funding_programs": "Antarctic Glaciology", "persons": "Fastook, James L.", "project_titles": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)", "projects": [{"proj_uid": "p0000243", "repository": "USAP-DC", "title": "Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA)"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Amundsen Sea Sector Data Set", "uid": "609312", "west": -180.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector
|
2114839 |
2025-02-24 | Hemming, Sidney R.; Passchier, Sandra |
West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene. | ["POLYGON((-109.05 -68.612,-108.8974 -68.612,-108.7448 -68.612,-108.59219999999999 -68.612,-108.4396 -68.612,-108.287 -68.612,-108.1344 -68.612,-107.98179999999999 -68.612,-107.8292 -68.612,-107.67660000000001 -68.612,-107.524 -68.612,-107.524 -68.62429999999999,-107.524 -68.6366,-107.524 -68.6489,-107.524 -68.6612,-107.524 -68.67349999999999,-107.524 -68.6858,-107.524 -68.6981,-107.524 -68.71039999999999,-107.524 -68.7227,-107.524 -68.735,-107.67660000000001 -68.735,-107.8292 -68.735,-107.98179999999999 -68.735,-108.1344 -68.735,-108.287 -68.735,-108.4396 -68.735,-108.59219999999999 -68.735,-108.7448 -68.735,-108.8974 -68.735,-109.05 -68.735,-109.05 -68.7227,-109.05 -68.71039999999999,-109.05 -68.6981,-109.05 -68.6858,-109.05 -68.67349999999999,-109.05 -68.6612,-109.05 -68.6489,-109.05 -68.6366,-109.05 -68.62429999999999,-109.05 -68.612))"] | ["POINT(-108.287 -68.67349999999999)"] | false | false |
Grain-size data for the Pliocene section at IODP Site U1533, Amundsen Sea
|
2114839 |
2025-02-13 | Passchier, Sandra; Mino-Moreira, Lisbeth |
West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum |
This dataset contains measurements of particle-size distributions on sediment from International Ocean Discovery Program Site U1533. Carbonate, and organic matter were removed through addition of 10mL aliquots of 30% H2O2 and 2mL aliquots of 10% HCl to ~50-100mL suspension on a hot plate. Dispersion was through heating with sodium pyrophosphate. Samples were measured on a Malvern Mastersizer 2000 with a Hydro 2000MU (A) accessory, using a Refractive index of 1.6 (Illite) and an absorption coefficient of 0.9. Results are in (vol. %) per size class, with diameter range equivalent to the diameter of spheres with the same volume as measured particles. | ["POINT(-109.05 -68.735)"] | ["POINT(-109.05 -68.735)"] | false | false |
Automatic Weather Station Pine Island Glacier
|
0732869 1739003 |
2019-10-15 | Mojica Moncada, Jhon F.; Holland, David |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
Automatic Weather Station, located on Pine Island Glacier. Data set from 2008-2015. | ["POLYGON((-100 -75,-99.9 -75,-99.8 -75,-99.7 -75,-99.6 -75,-99.5 -75,-99.4 -75,-99.3 -75,-99.2 -75,-99.1 -75,-99 -75,-99 -75.05,-99 -75.1,-99 -75.15,-99 -75.2,-99 -75.25,-99 -75.3,-99 -75.35,-99 -75.4,-99 -75.45,-99 -75.5,-99.1 -75.5,-99.2 -75.5,-99.3 -75.5,-99.4 -75.5,-99.5 -75.5,-99.6 -75.5,-99.7 -75.5,-99.8 -75.5,-99.9 -75.5,-100 -75.5,-100 -75.45,-100 -75.4,-100 -75.35,-100 -75.3,-100 -75.25,-100 -75.2,-100 -75.15,-100 -75.1,-100 -75.05,-100 -75))"] | ["POINT(-99.5 -75.25)"] | false | false |
Borehole Temperatures at Pine Island Glacier, Antarctica
|
0732730 |
2015-07-31 | Truffer, Martin; Stanton, Timothy |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
This data set is a time series of borehole temperatures at different depths from three thermistor strings deployed in three boreholes drilled through the Pine Island Glacier ice shelf, Antarctica. | ["POINT(-100.5 -75.1)"] | ["POINT(-100.5 -75.1)"] | false | false |
Ocean-Ice Interaction in the Amundsen Sea Sector of West Antarctica
|
0732804 |
2014-01-01 | McPhee, Miles G. |
Collaborative Research; IPY: Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica |
The Office of Polar Programs, Antarctic Integrated and System Science Program has made this award to support an interdisciplinary study of the effects of the ocean on the stability of glacial ice in the most dynamic region the West Antarctic Ice Sheet, namely the Pine Island Glacier in the Amundsen Sea Embayment. The collaborative project builds on the knowledge gained by the highly successful West Antarctic Ice Sheet program and is being jointly sponsored with NASA. Recent observations indicate a significant ice loss, equivalent to 10% of the ongoing increase in sea-level rise, in this region. These changes are largest along the coast and propagate rapidly inland, indicating the critical impact of the ocean on ice sheet stability in the region. While a broad range of remote sensing and ground-based instrumentation is available to characterize changes of the ice surface and internal structure (deformation, ice motion, melt) and the shape of the underlying sediment and rock bed, instrumentation has yet to be successfully deployed for observing boundary layer processes of the ocean cavity which underlies the floating ice shelf and where rapid melting is apparently occurring. Innovative, mini ocean sensors that can be lowered through boreholes in the ice shelf (about 500 m thick) will be developed and deployed to automatically provide ocean profiling information over at least three years. Their data will be transmitted through a conducting cable frozen in the borehole to the surface where it will be further transmitted via satellite to a laboratory in the US. Geophysical and remote sensing methods (seismic, GPS, altimetry, stereo imaging, radar profiling) will be applied to map the geometry of the ice shelf, the shape of the sub ice-shelf cavity, the ice surface geometry and deformations within the glacial ice. To integrate the seismic, glaciological and oceanographic observations, a new 3-dimensional coupled ice-ocean model is being developed which will be the first of its kind. NASA is supporting satellite based research and the deployment of a robotic-camera system to explore the environment in the ocean cavity underlying the ice shelf and NSF is supporting all other aspects of this study. Broader impacts: This project is motivated by the potential societal impacts of rapid sea level rise and should result in critically needed improvements in characterizing and predicting the behavior of coupled ocean-ice systems. It is a contribution to the International Polar Year and was endorsed by the International Council for Science as a component of the 'Multidisciplinary Study of the Amundsen Sea Embayment' proposal #258 of the honeycomb of endorsed IPY activities. The research involves substantial international partnerships with the British Antarctic Survey and the University of Bristol in the UK. The investigators will partner with the previously funded 'Polar Palooza' education and outreach program in addition to undertaking a diverse set of outreach activities of their own. Eight graduate students and one undergraduate as well as one post doc will be integrated into this research project. | ["POINT(166.25 -77.42)"] | ["POINT(166.25 -77.42)"] | false | false |
Amundsen Sea Sector Data Set
|
0230197 |
2007-01-01 | Fastook, James L. |
Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) |
This data set includes a nested model, that starts at low resolution for the whole Antarctic Ice Sheet, and then embeds higher resolution data at limited domains. There are at least three levels of nesting: whole, regional, and specific ice streams. Investigators focused on the Thwaites Glacier and the Pine Island Glacier. The model was produced using data from (Holt et al. 2006) and (Vaughan et al. 2006). Data are in Network Common Data Form (NetCDF) format and are available via FTP. | ["POLYGON((-180 -60,-144 -60,-108 -60,-72 -60,-36 -60,0 -60,36 -60,72 -60,108 -60,144 -60,180 -60,180 -63,180 -66,180 -69,180 -72,180 -75,180 -78,180 -81,180 -84,180 -87,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87,-180 -84,-180 -81,-180 -78,-180 -75,-180 -72,-180 -69,-180 -66,-180 -63,-180 -60))"] | ["POINT(0 -89.999)"] | false | false |