{"dp_type": "Dataset", "free_text": "40Ar/39Ar"}
[{"awards": "2114839 Passchier, Sandra", "bounds_geometry": ["POLYGON((-109.05 -68.612,-108.8974 -68.612,-108.7448 -68.612,-108.59219999999999 -68.612,-108.4396 -68.612,-108.287 -68.612,-108.1344 -68.612,-107.98179999999999 -68.612,-107.8292 -68.612,-107.67660000000001 -68.612,-107.524 -68.612,-107.524 -68.62429999999999,-107.524 -68.6366,-107.524 -68.6489,-107.524 -68.6612,-107.524 -68.67349999999999,-107.524 -68.6858,-107.524 -68.6981,-107.524 -68.71039999999999,-107.524 -68.7227,-107.524 -68.735,-107.67660000000001 -68.735,-107.8292 -68.735,-107.98179999999999 -68.735,-108.1344 -68.735,-108.287 -68.735,-108.4396 -68.735,-108.59219999999999 -68.735,-108.7448 -68.735,-108.8974 -68.735,-109.05 -68.735,-109.05 -68.7227,-109.05 -68.71039999999999,-109.05 -68.6981,-109.05 -68.6858,-109.05 -68.67349999999999,-109.05 -68.6612,-109.05 -68.6489,-109.05 -68.6366,-109.05 -68.62429999999999,-109.05 -68.612))"], "date_created": "Mon, 24 Feb 2025 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene.", "east": -107.524, "geometry": ["POINT(-108.287 -68.67349999999999)"], "keywords": "40Ar/39Ar; Amundsen Sea; Amundsen Sea Sector; Antarctica; Cryosphere; Ice-Rafted Detritus; IODP; Paleoclimate; Pliocene; Provenance; Sedimentology", "locations": "Antarctica; Amundsen Sea; Amundsen Sea Sector", "north": -68.612, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Hemming, Sidney R.; Passchier, Sandra", "project_titles": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum", "projects": [{"proj_uid": "p0010252", "repository": "USAP-DC", "title": "West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -68.735, "title": "Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector", "uid": "601907", "west": -109.05}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": ["POLYGON((-50 -62,-49 -62,-48 -62,-47 -62,-46 -62,-45 -62,-44 -62,-43 -62,-42 -62,-41 -62,-40 -62,-40 -62.3,-40 -62.6,-40 -62.9,-40 -63.2,-40 -63.5,-40 -63.8,-40 -64.1,-40 -64.4,-40 -64.7,-40 -65,-41 -65,-42 -65,-43 -65,-44 -65,-45 -65,-46 -65,-47 -65,-48 -65,-49 -65,-50 -65,-50 -64.7,-50 -64.4,-50 -64.1,-50 -63.8,-50 -63.5,-50 -63.2,-50 -62.9,-50 -62.6,-50 -62.3,-50 -62))"], "date_created": "Mon, 05 Oct 2020 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus from sediment core PS1575-1 in the NW Weddell Sea. The depositional age of the sediments is approx. 0 to 300 ka. ", "east": -40.0, "geometry": ["POINT(-45 -63.5)"], "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Geoscience; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "locations": "Weddell Sea; Antarctica", "north": -62.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Williams, Trevor", "project_titles": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "projects": [{"proj_uid": "p0010128", "repository": "USAP-DC", "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -65.0, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "uid": "601379", "west": -50.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": ["POLYGON((-65 -74,-61 -74,-57 -74,-53 -74,-49 -74,-45 -74,-41 -74,-37 -74,-33 -74,-29 -74,-25 -74,-25 -74.6,-25 -75.2,-25 -75.8,-25 -76.4,-25 -77,-25 -77.6,-25 -78.2,-25 -78.8,-25 -79.4,-25 -80,-29 -80,-33 -80,-37 -80,-41 -80,-45 -80,-49 -80,-53 -80,-57 -80,-61 -80,-65 -80,-65 -79.4,-65 -78.8,-65 -78.2,-65 -77.6,-65 -77,-65 -76.4,-65 -75.8,-65 -75.2,-65 -74.6,-65 -74))"], "date_created": "Mon, 05 Oct 2020 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from subglacial till and proximal glacimarine sediment from nine sediment cores along the front of the Filchner and Ronne Ice Shelves. ", "east": -25.0, "geometry": ["POINT(-45 -77)"], "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "locations": "Antarctica; Weddell Sea", "north": -74.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Williams, Trevor", "project_titles": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "projects": [{"proj_uid": "p0010128", "repository": "USAP-DC", "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -80.0, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "uid": "601378", "west": -65.0}, {"awards": "1724670 Williams, Trevor", "bounds_geometry": ["POLYGON((-70 -80,-65 -80,-60 -80,-55 -80,-50 -80,-45 -80,-40 -80,-35 -80,-30 -80,-25 -80,-20 -80,-20 -80.6,-20 -81.2,-20 -81.8,-20 -82.4,-20 -83,-20 -83.6,-20 -84.2,-20 -84.8,-20 -85.4,-20 -86,-25 -86,-30 -86,-35 -86,-40 -86,-45 -86,-50 -86,-55 -86,-60 -86,-65 -86,-70 -86,-70 -85.4,-70 -84.8,-70 -84.2,-70 -83.6,-70 -83,-70 -82.4,-70 -81.8,-70 -81.2,-70 -80.6,-70 -80))"], "date_created": "Mon, 05 Oct 2020 00:00:00 GMT", "description": "This dataset contains 40Ar/39Ar measurements on detrital mineral grains from till in modern moraines at the edges of the Institute, Foundation, Academy, Recovery, and the Slessor glaciers / ice streams.", "east": -20.0, "geometry": ["POINT(-45 -83)"], "keywords": "40Ar/39Ar Thermochronology; Antarctica; Argon; Chemistry:sediment; Chemistry:Sediment; Detrital Minerals; Glaciers/ice Sheet; Glaciers/Ice Sheet; Marine Sediments; Mass Spectrometer; Provenance; R/v Polarstern; Sediment Core Data; Subglacial Till; Till; Weddell Sea", "locations": "Antarctica; Weddell Sea", "north": -80.0, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Williams, Trevor", "project_titles": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance", "projects": [{"proj_uid": "p0010128", "repository": "USAP-DC", "title": "Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -86.0, "title": "Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment", "uid": "601377", "west": -70.0}, {"awards": "1443576 Panter, Kurt", "bounds_geometry": ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"], "date_created": "Fri, 05 Jun 2020 00:00:00 GMT", "description": "Mt. Early and Sheridan Bluff (87\u00b0S) are the above ice expression of Earth\u2019s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method.", "east": -153.4, "geometry": ["POINT(-153.75 -87)"], "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochronology; Glacial Volcanism; Magma Differentiation; Major Elements; Mantle Melting; Solid Earth; Trace Elements; Transantarctic Mountains", "locations": "Transantarctic Mountains; Antarctica", "north": -86.9, "nsf_funding_programs": "Antarctic Earth Sciences", "persons": "Panter, Kurt", "project_titles": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province", "projects": [{"proj_uid": "p0010105", "repository": "USAP-DC", "title": "Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -87.1, "title": "Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica ", "uid": "601331", "west": -154.1}, {"awards": "0944489 Williams, Trevor", "bounds_geometry": ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"], "date_created": "Wed, 01 Jan 2014 00:00:00 GMT", "description": "Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences\n", "east": 163.0, "geometry": ["POINT(54 -68)"], "keywords": "Geochronology; George V Land; IODP U1356; IODP U1361; Marine Sediments; ODP1165; Prydz Bay; Solid Earth; Southern Ocean; Wilkes Land", "locations": "Southern Ocean; Wilkes Land; Prydz Bay; George V Land", "north": -58.0, "nsf_funding_programs": null, "persons": "Williams, Trevor; Hemming, Sidney R.", "project_titles": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "projects": [{"proj_uid": "p0000353", "repository": "USAP-DC", "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.0, "title": "History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris", "uid": "600116", "west": -55.0}, {"awards": "0838722 Reiners, Peter", "bounds_geometry": ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"], "date_created": "Sun, 01 Jan 2012 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.\n", "east": 75.08, "geometry": ["POINT(68.49 -70.49)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; NBP0101; ODP1166; ODP739; Prydz Bay; Solid Earth; Southern Ocean", "locations": "Antarctica; Southern Ocean; Gamburtsev Mountains; Prydz Bay", "north": -67.28, "nsf_funding_programs": null, "persons": "Gehrels, George; Reiners, Peter; Thomson, Stuart", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -73.7, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600093", "west": 61.9}, {"awards": "0838729 Hemming, Sidney", "bounds_geometry": ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"], "date_created": "Sat, 01 Jan 2011 00:00:00 GMT", "description": "Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion.", "east": 165.0, "geometry": ["POINT(48.9 -64)"], "keywords": "Antarctica; Fission Track Thermochronology; Gamburtsev Mountains; Geochronology; Marine Sediments; Solid Earth; Southern Ocean", "locations": "Southern Ocean; Antarctica; Gamburtsev Mountains", "north": -58.0, "nsf_funding_programs": null, "persons": "Hemming, Sidney R.", "project_titles": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "projects": [{"proj_uid": "p0000506", "repository": "USAP-DC", "title": "Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology"}], "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -70.0, "title": "Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology", "uid": "600094", "west": -67.2}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Dataset Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Project Links | Abstract | Bounds Geometry | Geometry | Selected | Visible |
---|---|---|---|---|---|---|---|---|---|
Argon thermochronological data on Pliocene ice-rafted detrital mineral grains from IODP Expedition 379 in the Amundsen Sea sector
|
2114839 |
2025-02-24 | Hemming, Sidney R.; Passchier, Sandra |
West Antarctic Ice-sheet Change and Paleoceanography in the Amundsen Sea Across the Pliocene Climatic Optimum |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus at International Ocean Discovery Program Sites U1532 and U1533 in the Amundsen Sea sector. The depositional age of the sediments is early Pliocene. | ["POLYGON((-109.05 -68.612,-108.8974 -68.612,-108.7448 -68.612,-108.59219999999999 -68.612,-108.4396 -68.612,-108.287 -68.612,-108.1344 -68.612,-107.98179999999999 -68.612,-107.8292 -68.612,-107.67660000000001 -68.612,-107.524 -68.612,-107.524 -68.62429999999999,-107.524 -68.6366,-107.524 -68.6489,-107.524 -68.6612,-107.524 -68.67349999999999,-107.524 -68.6858,-107.524 -68.6981,-107.524 -68.71039999999999,-107.524 -68.7227,-107.524 -68.735,-107.67660000000001 -68.735,-107.8292 -68.735,-107.98179999999999 -68.735,-108.1344 -68.735,-108.287 -68.735,-108.4396 -68.735,-108.59219999999999 -68.735,-108.7448 -68.735,-108.8974 -68.735,-109.05 -68.735,-109.05 -68.7227,-109.05 -68.71039999999999,-109.05 -68.6981,-109.05 -68.6858,-109.05 -68.67349999999999,-109.05 -68.6612,-109.05 -68.6489,-109.05 -68.6366,-109.05 -68.62429999999999,-109.05 -68.612))"] | ["POINT(-108.287 -68.67349999999999)"] | false | false |
Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment
|
1724670 |
2020-10-05 | Williams, Trevor |
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from ice-rafted detritus from sediment core PS1575-1 in the NW Weddell Sea. The depositional age of the sediments is approx. 0 to 300 ka. | ["POLYGON((-50 -62,-49 -62,-48 -62,-47 -62,-46 -62,-45 -62,-44 -62,-43 -62,-42 -62,-41 -62,-40 -62,-40 -62.3,-40 -62.6,-40 -62.9,-40 -63.2,-40 -63.5,-40 -63.8,-40 -64.1,-40 -64.4,-40 -64.7,-40 -65,-41 -65,-42 -65,-43 -65,-44 -65,-45 -65,-46 -65,-47 -65,-48 -65,-49 -65,-50 -65,-50 -64.7,-50 -64.4,-50 -64.1,-50 -63.8,-50 -63.5,-50 -63.2,-50 -62.9,-50 -62.6,-50 -62.3,-50 -62))"] | ["POINT(-45 -63.5)"] | false | false |
Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment
|
1724670 |
2020-10-05 | Williams, Trevor |
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from subglacial till and proximal glacimarine sediment from nine sediment cores along the front of the Filchner and Ronne Ice Shelves. | ["POLYGON((-65 -74,-61 -74,-57 -74,-53 -74,-49 -74,-45 -74,-41 -74,-37 -74,-33 -74,-29 -74,-25 -74,-25 -74.6,-25 -75.2,-25 -75.8,-25 -76.4,-25 -77,-25 -77.6,-25 -78.2,-25 -78.8,-25 -79.4,-25 -80,-29 -80,-33 -80,-37 -80,-41 -80,-45 -80,-49 -80,-53 -80,-57 -80,-61 -80,-65 -80,-65 -79.4,-65 -78.8,-65 -78.2,-65 -77.6,-65 -77,-65 -76.4,-65 -75.8,-65 -75.2,-65 -74.6,-65 -74))"] | ["POINT(-45 -77)"] | false | false |
Argon thermochronological data on detrital mineral grains from the Weddell Sea embayment
|
1724670 |
2020-10-05 | Williams, Trevor |
Collaborative Research: Deglacial Ice Dynamics in the Weddell Sea Embayment using Sediment Provenance |
This dataset contains 40Ar/39Ar measurements on detrital mineral grains from till in modern moraines at the edges of the Institute, Foundation, Academy, Recovery, and the Slessor glaciers / ice streams. | ["POLYGON((-70 -80,-65 -80,-60 -80,-55 -80,-50 -80,-45 -80,-40 -80,-35 -80,-30 -80,-25 -80,-20 -80,-20 -80.6,-20 -81.2,-20 -81.8,-20 -82.4,-20 -83,-20 -83.6,-20 -84.2,-20 -84.8,-20 -85.4,-20 -86,-25 -86,-30 -86,-35 -86,-40 -86,-45 -86,-50 -86,-55 -86,-60 -86,-65 -86,-70 -86,-70 -85.4,-70 -84.8,-70 -84.2,-70 -83.6,-70 -83,-70 -82.4,-70 -81.8,-70 -81.2,-70 -80.6,-70 -80))"] | ["POINT(-45 -83)"] | false | false |
Volcanological and Petrological measurements on Mt. Early and Sheridan Bluff volcanoes, upper Scott Glacier, Antarctica
|
1443576 |
2020-06-05 | Panter, Kurt |
Investigating Early Miocene Sub-ice Volcanoes in Antarctica for Improved Modeling and understanding of a Large Magmatic Province |
Mt. Early and Sheridan Bluff (87°S) are the above ice expression of Earth’s southernmost volcanic field that lies approximately 300 km from the South Pole. The dataset supplies the locations and lithological descriptions of the units that the samples were collected from for dating and petrological study. Fundamental compositional information on the mafic volcanic rock samples include whole rock MgO concentrations (wt.%), the forsterite content of olivine and the oxygen isotopic composition of olivine. The dataset also provides a record of what samples have been analyzed for major and trace elements by XRF and ICP-MS, mineral chemistry by EMPA, radiogenic isotopes of Sr, Nd and Pb on whole rock powders by ICP-MS and dating by 40Ar/39Ar method. | ["POLYGON((-154.1 -86.9,-154.03 -86.9,-153.96 -86.9,-153.89 -86.9,-153.82 -86.9,-153.75 -86.9,-153.68 -86.9,-153.61 -86.9,-153.54 -86.9,-153.47 -86.9,-153.4 -86.9,-153.4 -86.92,-153.4 -86.94,-153.4 -86.96,-153.4 -86.98,-153.4 -87,-153.4 -87.02,-153.4 -87.04,-153.4 -87.06,-153.4 -87.08,-153.4 -87.1,-153.47 -87.1,-153.54 -87.1,-153.61 -87.1,-153.68 -87.1,-153.75 -87.1,-153.82 -87.1,-153.89 -87.1,-153.96 -87.1,-154.03 -87.1,-154.1 -87.1,-154.1 -87.08,-154.1 -87.06,-154.1 -87.04,-154.1 -87.02,-154.1 -87,-154.1 -86.98,-154.1 -86.96,-154.1 -86.94,-154.1 -86.92,-154.1 -86.9))"] | ["POINT(-153.75 -87)"] | false | false |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris
|
0944489 |
2014-01-01 | Williams, Trevor; Hemming, Sidney R. |
History of the East Antarctic Ice Sheet since the mid-Miocene: New Evidence from Provenance of Ice-rafted Debris |
Intellectual Merit: The PIs propose to study the stability and dynamics of the East Antarctic ice sheet during the Pliocene in the area of the Wilkes and Aurora subglacial basins. Models indicate the ice sheet is most sensitive to warming in these low-lying areas. This study is important as there is very little direct evidence about which parts of the East Antarctic ice sheet became unstable under warm conditions. In a pilot study the PIs have shown that the isotopic geochemical signature of downcore ice-rafted debris (IRD) can be linked to continental source areas indicating which parts of the ice sheet reached the coast and calved IRD-bearing icebergs. Their initial results suggest rapid iceberg discharge from the Wilkes Land and Adelie Land coastal areas at times in the late Miocene and early Pliocene. In this study the PIs will analyze IRD from IODP sediment cores collected on the continental rise off East Antarctica. By analyzing 40Ar/39Ar ages of hornblende IRD grains, U-Pb ages of zircons, and Sm-Nd isotopes of the fine fraction of several IRD-rich layers for each core, they will be able to fingerprint continental source areas that indicate ice extent and dynamics on East Antarctica. The PIs will also carry out detailed studies across a few of these layers to characterize the anatomy of the ice-rafting event and better understand the mechanism of ice destabilization. Broader impacts: The data collected will be important for scientists in a broad variety of fields. The project will involve one undergraduate student and one summer intern at LDEO, and a graduate student at Imperial College London. The project will expose to cutting edge methodologies as well as an international research team. Data from the project will be deposited in the online databases (SedDB) and all results and methods will be made available to the scientific community through publications in peer-reviewed journals and attendance at international conferences | ["POLYGON((-55 -58,-33.2 -58,-11.4 -58,10.4 -58,32.2 -58,54 -58,75.8 -58,97.6 -58,119.4 -58,141.2 -58,163 -58,163 -60,163 -62,163 -64,163 -66,163 -68,163 -70,163 -72,163 -74,163 -76,163 -78,141.2 -78,119.4 -78,97.6 -78,75.8 -78,54 -78,32.2 -78,10.4 -78,-11.4 -78,-33.2 -78,-55 -78,-55 -76,-55 -74,-55 -72,-55 -70,-55 -68,-55 -66,-55 -64,-55 -62,-55 -60,-55 -58))"] | ["POINT(54 -68)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838722 |
2012-01-01 | Gehrels, George; Reiners, Peter; Thomson, Stuart |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((61.9 -67.28,63.218 -67.28,64.536 -67.28,65.854 -67.28,67.172 -67.28,68.49 -67.28,69.808 -67.28,71.126 -67.28,72.444 -67.28,73.762 -67.28,75.08 -67.28,75.08 -67.922,75.08 -68.564,75.08 -69.206,75.08 -69.848,75.08 -70.49,75.08 -71.132,75.08 -71.774,75.08 -72.416,75.08 -73.058,75.08 -73.7,73.762 -73.7,72.444 -73.7,71.126 -73.7,69.808 -73.7,68.49 -73.7,67.172 -73.7,65.854 -73.7,64.536 -73.7,63.218 -73.7,61.9 -73.7,61.9 -73.058,61.9 -72.416,61.9 -71.774,61.9 -71.132,61.9 -70.49,61.9 -69.848,61.9 -69.206,61.9 -68.564,61.9 -67.922,61.9 -67.28))"] | ["POINT(68.49 -70.49)"] | false | false |
Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology
|
0838729 |
2011-01-01 | Hemming, Sidney R. |
Collaborative Research: Erosion History and Sediment Provenance of East Antarctica from Multi-method Detrital Geo- and Thermochronology |
Much of the inventory of East Antarctic bedrock geochronology, as well as a record of its erosional history, is preserved in Cenozoic sediments around its margin. This project is to use these sediments to understand their sub-ice provenance and the erosional history of the shield by measuring ages of multiple geo- and thermochronometers on single detrital crystals and on multiple crystals in detrital clasts (U/Pb, fission-track, and (U-Th)/He dating of zircon and apatite, and 40Ar/39Ar dating of hornblende, mica, and feldspar). The combination of multi-chronometer ages in single grains and clasts provides a powerful fingerprint of bedrock sources, allowing us to trace provenance in Eocene fluvial sandstones through Quaternary diamicts around the margin. Multiple thermochronometric (cooling) ages in the same grains and clasts also allows us to interpret the timing and rates of erosion from these bedrock sources. Delineating a distribution of bedrock age units, their sediment transport connections, and their erosional histories over the Cenozoic, will in turn allow us to test tectonic models bearing on: (1) the origin of the Gamburtsev Subglacial Mountains, (2) fluvial and topographic evolution, and (3) the history of glacial growth and erosion. | ["POLYGON((-67.2 -58,-43.98 -58,-20.76 -58,2.46 -58,25.68 -58,48.9 -58,72.12 -58,95.34 -58,118.56 -58,141.78 -58,165 -58,165 -59.2,165 -60.4,165 -61.6,165 -62.8,165 -64,165 -65.2,165 -66.4,165 -67.6,165 -68.8,165 -70,141.78 -70,118.56 -70,95.34 -70,72.12 -70,48.9 -70,25.68 -70,2.46 -70,-20.76 -70,-43.98 -70,-67.2 -70,-67.2 -68.8,-67.2 -67.6,-67.2 -66.4,-67.2 -65.2,-67.2 -64,-67.2 -62.8,-67.2 -61.6,-67.2 -60.4,-67.2 -59.2,-67.2 -58))"] | ["POINT(48.9 -64)"] | false | false |