IEDA
Project Information
Antarctic Notothenioid Fishes: Sentinel Taxa for Southern Ocean Warming
Short Title:
Sentinel Fish Taxa for SO Warming
Start Date:
2015-07-01
End Date:
2020-06-30
Description/Abstract
Antarctic fish and their early developmental stages are an important component of the food web that sustains life in the cold Southern Ocean (SO) that surrounds Antarctica. They feed on smaller organisms and in turn are eaten by larger animals, including seals and killer whales. Little is known about how rising ocean temperatures will impact the development of Antarctic fish embryos and their growth after hatching. This project will address this gap by assessing the effects of elevated temperatures on embryo viability, on the rate of embryo development, and on the gene "toolkits" that respond to temperature stress. One of the two species to be studied does not produce red blood cells, a defect that may make its embryos particularly vulnerable to heat. The outcomes of this research will provide the public and policymakers with "real world" data that are necessary to inform decisions and design strategies to cope with changes in the Earth's climate, particularly with respect to protecting life in the SO. The project will also further the NSF goals of training new generations of scientists, including providing scientific training for undergraduate and graduate students, and of making scientific discoveries available to the general public. This includes the unique educational opportunity for undergraduates to participate in research in Antarctica and engaging the public in several ways, including the development of professionally-produced educational videos with bi-lingual closed captioning. Since the onset of cooling of the SO about 40 million years ago, evolution of Antarctic marine organisms has been driven by the development of cold temperatures. Because body temperatures of Antarctic fishes fall in a narrow range determined by their habitat (-1.9 to +2.0 C), they are particularly attractive models for understanding how organismal physiology and biochemistry have been shaped to maintain life in a cooling environment. Yet these fishes are now threatened by rapid warming of the SO. The long-term objective of this project is to understand the capacities of Antarctic fishes to acclimatize and/or adapt to oceanic warming through analysis of their underlying genetic "toolkits." This objective will be accomplished through three Specific Aims: 1) assessing the effects of elevated temperatures on gene expression during development of embryos; 2) examining the effects of elevated temperatures on embryonic morphology and on the temporal and spatial patterns of gene expression; and 3) evaluating the evolutionary mechanisms that have led to the loss of the red blood cell genetic program by the white-blooded fishes. Aims 1 and 2 will be investigated by acclimating experimental embryos of both red-blooded and white-blooded fish to elevated temperatures. Differential gene expression will be examined through the use of high throughput RNA sequencing. The temporal and spatial patterns of gene expression in the context of embryonic morphology (Aim 2) will be determined by microscopic analysis of embryos "stained" with (hybridized to) differentially expressed gene probes revealed by Aim 1; other key developmental marker genes will also be used. The genetic lesions resulting from loss of red blood cells by the white-blooded fishes (Aim 3) will be examined by comparing genes and genomes in the two fish groups.
Personnel
Person Role
Detrich, H. William Investigator and contact
Funding
Antarctic Organisms and Ecosystems Award # 1444167
AMD - DIF Record(s)
Deployment
Deployment Type
LMG1603 ship expedition
LMG1604 ship expedition
LMG1605 ship expedition
LMG1803 ship expedition
LMG1804 ship expedition
LMG1805 ship expedition
Data Management Plan
None in the Database
Publications
  1. Desvignes, T., Detrich, H. W., III, & Postlethwait, J. H. (2016) Genomic Conservation of Erythropoietic MicroRNAs (ErythromiRs) in White-Blooded Antarctic Icefish. Mar. Genomics 30, 27-34. (doi:10.1016/j.margen.2016.04.013)
  2. Hu, Y., Ghigliotti, L., Vacchi, M., Pisano, E., Detrich, H. W., III, & Albertson, R.C. (2016) Evolution in an Extreme Environment: Developmental Biases and Phenotypic Integration in the Adaptive Radiation of Antarctic Notothenioids. BMC Evol. Biol. 16, 142. (doi:10.1186/s12862-016-0704-2)
  3. Voskoboinikova, O., Detrich, H. W., III, Albertson, R. C., Postlethwait, J. H., Ghigliotti, L., & Pisano, E. (2017) Evolution Reshaped Life for the Water Column: The Skeleton of the Antarctic Silverfish Pleuragramma antarctica (Boulenger 1902). In: The Antarctic Silverfish. A Keystone Species in a Changing Ecosystem (Vacchi, M., Pisano, E., & Ghigliotti, L., Eds.), Advances in Polar Ecology 3, Springer International Publishing, pp. 3-26. (doi:10.1007/978-3-319-55893-6_1)
  4. Peters, M. J., Parker, S. K., Grim, J., Allard, C. A. H., Levin, J., & Detrich, H. W., III. (2018) Divergent hemogen Genes of Teleosts and Mammals Share Conserved Roles in Erythropoiesis: Analysis Using Transgenic and Mutant Zebrafish. Biology Open (BiO) 7, bio035576. (doi:10.1242/bio.035576)
  5. Kim, B.-M., Amores, A., Kang, S., Ahn, D.-H., Kim, J.-H., Kim, I.-C., Lee, J. H., Lee, S. G., Lee, H., Lee, J., Kim, H.-W., Desvignes, T., Batzel, P., Sydes, J., Titus, T., Wilson, C., Catchen, J. M., Warren, W. C., Schartl, M., Detrich, H. W., III, Postlethwait, J. H., & Park, H. (2019) Antarctic Blackfin Icefish Genome Reveals Adaptations to Extreme Environments. Nat. Ecol. Evol. 3, 469-478. (doi:10.1038/s41559-019-0812-7)
  6. Amores, A., Wilson, C. A., Allard, C. A. H., Detrich, H. W., III, & Postlethwait, J. H. (2017) Cold Fusion: Massive Karyotype Evolution in the Antarctic Bullhead Notothen Notothenia coriiceps. G3: Genes, Genomes, Genetics 7, 2195-2207. (doi:10.1534/g3.117.040063)
  7. Postlethwait, J. H., Yan, Y.-L., Desvignes, T., Allard, C., Titus, T., Le François, N. R., & Detrich, H. W., III. (2016) Embryogenesis and Early Skeletogenesis in the Antarctic Bullhead Notothen, Notothenia coriiceps. Dev. Dyn. 245, 1066-1080. (doi:10.1002/DVDY.24437)
  8. Le François N. R., Sheehan, E., Desvignes, T., Belzile, C., Postlethwait, J. H., Detrich, H. W., III. (2017) Characterization and Husbandry of Wild Broodstock of the Blackfin Icefish Chaenocephalus aceratus (Lönnberg 1906) from the Palmer Archipelago (Southern Ocean) for Breeding Purposes. Polar Biol. 40, 2499-2516. (doi:10.1007/s00300-017-2161-9)
  9. Auvinet, J., Graça, P., Belkady, L., Petit, L., Bonnivard, E., Dettaï, A., Detrich, H. W., III, Ozouf-Costaz, C., & Higuet, D. (2018) Mobilization of Retrotransposons as a Cause of Chromosomal Diversification and Rapid Speciation: The Case for the Antarctic Teleost Genus Trematomus. BMC Genomics 19, 339. (doi:10.1186/s12864-018-4714-x)
  10. Berthelot, C., Clarke, J., Desvignes, T., Detrich, H. W., III, Flicek, P., Peck, L. S., Peters, M., Postlethwait, J. H., & Clark, M. S. (2018) Global Analysis of Protein Cold Adaptation in Antarctic Fish: An Important Role for Methionine? Genome Biol. Evol., evy262. (doi:10.1093/gbe/evy262)
  11. Daane, J. M., Dornburg, A., Smits, P., MacGuigan, D. J., Hawkins, M. B., Near, T. J., Detrich, H. W., III, & Harris, M. P. (2019) Historical Contingency Shapes Adaptive Radiation in Antarctic Fishes. Nat. Ecol. Evol. 3, 1102–1109. (doi:10.1038/s41559-019-0914-2)
  12. Desvignes, T., Le François, N. R., Goetz, L. C., Smith, S. S., Shusdock, K. A., Parker, S. K., Postlethwait, J. H., & Detrich, H. W., III. (2019) Intergeneric Hybrids Inform Reproductive Isolating Barriers in the Antarctic Icefish Radiation. Sci. Rep. 9, 5989. (doi:10.1038/s41598-019-42354-z)
  13. Hunter-Manseau, F., Desrosiers, V., Le François, N. R., Dufresne, F., Detrich, H. W., III, Nozais, C. & Blier, P. U. (2019) From Africa to Antarctica: Exploring the Metabolism of Fish Heart Mitochondria Across a Wide Thermal Range. Front. Physiol. 10, 1220. (doi:10.3389/fphys.2019.01220)
  14. Daane, J. M., Giordano, D., Coppola, D., di Prisco, G., Detrich, H. W., III, & Verde, C. (2019) Adaptations to Environmental Change: Globin Superfamily Evolution in Antarctic Fishes. Mar. Genomics. (doi:10.1016/j.margen.2019.100724)
  15. Damsgaard, C., Lauridsen, H., Funder, A. M. D., Thomsen, J. S., Desvignes, T., Crossley, D. A., II, Møller, P. R., Huong, D. T. T., Phuong, N. T., Detrich, H. W., III, Brüel, A., Wilkens, H., Warrant, E., Wang, T., Nyengaard, J. R., Berenbrink, M., & Bayley, M. (2019) Retinal Oxygen Supply Shaped the Functional Evolution of the Vertebrate Eye. eLife 8, e52153. (doi:10.7554/eLife.52153)