{"dp_type": "Project", "free_text": "thermal conductivity"}
[{"awards": "1932876 Ball, Becky", "bounds_geometry": "POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15))", "dataset_titles": null, "datasets": null, "date_created": "Thu, 14 Apr 2022 00:00:00 GMT", "description": "Part I: Non-technical summary\u003cbr/\u003eThe Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the \u201cgreening\u201d of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as \u201cplant-soil\u201d interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.\u003cbr/\u003e\u003cbr/\u003ePart II: Technical summary\u003cbr/\u003eIn this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": -58.133333, "geometry": "POINT(-58.8997245 -62.265751)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; FIELD SURVEYS; ECOLOGICAL DYNAMICS; USA/NSF; SOIL CHEMISTRY; 25 De Mayo/King George Island; Antarctic Peninsula; PLANTS; Amd/Us; FUNGI; ANIMALS/INVERTEBRATES; USAP-DC; TERRESTRIAL ECOSYSTEMS; BACTERIA/ARCHAEA", "locations": "25 De Mayo/King George Island; Antarctic Peninsula", "north": -62.15, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Ball, Becky", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -62.381502, "title": "Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession", "uid": "p0010315", "west": -59.666116}, {"awards": "1142085 Alley, Richard", "bounds_geometry": null, "dataset_titles": "Firn-temperature time series in Dronning Maud Land, East Antarctica", "datasets": [{"dataset_uid": "601050", "doi": "10.15784/601050", "keywords": "Antarctica; Borehole Logging; Dronning Maud Land; Firn; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Physical Properties; Snow; Temperature", "people": "Muto, Atsu", "repository": "USAP-DC", "science_program": null, "title": "Firn-temperature time series in Dronning Maud Land, East Antarctica", "url": "https://www.usap-dc.org/view/dataset/601050"}], "date_created": "Mon, 11 Sep 2017 00:00:00 GMT", "description": "Alley/1142085\u003cbr/\u003e\u003cbr/\u003eThis award supports a project to continue the collection and analyses of firn temperature data from three automated firn thermal profiling units deployed in Dronning Maud Land sector of East Antarctica as part of the Norway-US IPY Traverse project between 2007 and 2009. The intellectual merits of this project are as follows: 1) to constrain and improve the parameterization of firn thermal properties (thermal conductivity and specific heat capacity) that are required for the borehole paleothermometry, 2) to study the change in firn temperature since the deployment of thermal profiling units ~5 years ago and derive the surface temperature trend for that time period, and 3) to compare and contrast the surface temperatures and their trends derived from the measured firn temperatures and satellite thermal infrared data for the past three decades. The project also involves acquiring and deploying an automated system to record transient temperatures at multiple depths in the top 16 meters of the shallow borehole at Dome Fuji, to provide useful data and to prepare for the possibility of conducting temperature-logging in the existing deep (3035 m) and shallow (112 m) boreholes at Dome Fuji in the near future. The preparation of the shallow borehole and the installation of the automated system will be carried out by collaborators from the Japanese Antarctic Research Expedition (JARE) in 2012-13 Antarctic field season. The data collected by this automated system will be used to constrain the thermal properties of upper firn layer at Dome Fuji, as well as comparing with data from other sites, increasing the geographic extent of these studies. The broader impacts of the project include presentation of results at scientific conferences and publication of results in peer-reviewed journals. Public outreach will include targeted work with science teachers and middle school students.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Alley, Richard", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Revealing Late Holocence Climate Variability in Antarctica from Borehole Paleothermometry", "uid": "p0000440", "west": null}, {"awards": "9316767 Jeffries, Martin", "bounds_geometry": "POLYGON((-180 -43.56571,-144 -43.56571,-108 -43.56571,-72 -43.56571,-36 -43.56571,0 -43.56571,36 -43.56571,72 -43.56571,108 -43.56571,144 -43.56571,180 -43.56571,180 -46.304308,180 -49.042906,180 -51.781504,180 -54.520102,180 -57.2587,180 -59.997298,180 -62.735896,180 -65.474494,180 -68.213092,180 -70.95169,144 -70.95169,108 -70.95169,72 -70.95169,36 -70.95169,0 -70.95169,-36 -70.95169,-72 -70.95169,-108 -70.95169,-144 -70.95169,-180 -70.95169,-180 -68.213092,-180 -65.474494,-180 -62.735896,-180 -59.997298,-180 -57.2587,-180 -54.520102,-180 -51.781504,-180 -49.042906,-180 -46.304308,-180 -43.56571))", "dataset_titles": "Expedition Data", "datasets": [{"dataset_uid": "002231", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9505"}, {"dataset_uid": "002234", "doi": "", "keywords": null, "people": null, "repository": "R2R", "science_program": null, "title": "Expedition Data", "url": "https://www.rvdata.us/search/cruise/NBP9503"}], "date_created": "Tue, 04 May 2010 00:00:00 GMT", "description": "The goal of this investigation is to understand the role of snow in sea ice development processes and air-ice-ocean heat exchange interactions in the seasonal and perennial sea ice zones of the Ross Sea, the Amundsen Sea, and the Bellingshausen Sea. Observations and measurements of the characteristics of sea ice and snow will be combined with numerical models of sea-ice flooding and the entrainment of snow into the ice cover in order to gain an understanding of the sea-ice heat and mass balance, and to quantify the energy exchange within the antarctic sea-ice cover. The snow measurement program, using the RVIB Nathaniel B. Palmer, will include depth, grain size and morphology, density, temperature, thermal conductivity, water content, and stable isotope ratio. The ice measurement program will include thickness, salinity, temperature, density, brine content, and included gas volume, as well as such structural properties as the fraction of frazil, platelet, and congelation ice in the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The numerical models will involve the thermodynamics of phase changes from liquid water to ice, along with the resulting energy transfer, brine expulsion, and the modulating effect of a snow cover. The results are expected to have broad relevance and application to understanding the effects of sea-ice processes in global change, and atmospheric, oceanographic, and remote sensing investigations of the Southern Ocean.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e MAGNETIC/MOTION SENSORS \u003e GRAVIMETERS \u003e GRAVIMETERS", "is_usap_dc": false, "keywords": "R/V NBP", "locations": null, "north": -43.56571, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Jeffries, Martin", "platforms": "WATER-BASED PLATFORMS \u003e VESSELS \u003e SURFACE \u003e R/V NBP", "repo": "R2R", "repositories": "R2R", "science_programs": null, "south": -70.95169, "title": "The Role of Snow in Antarctic Sea Ice Development and Ocean-Atmosphere Energy Exchange", "uid": "p0000642", "west": -180.0}, {"awards": "0125570 Scambos, Ted; 0125276 Albert, Mary", "bounds_geometry": null, "dataset_titles": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.; AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation; GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation; The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "datasets": [{"dataset_uid": "609283", "doi": "10.7265/N5K935F3", "keywords": "Antarctica; Atmosphere; East Antarctic Plateau; Glaciers/ice Sheet; Glaciers/Ice Sheet; Meteorology; Snow/ice; Snow/Ice", "people": "Bauer, Rob; Haran, Terry; Fahnestock, Mark; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "AWS Data: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609283"}, {"dataset_uid": "001669", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "Access AGDC data online by navigating to Data Sets. Data sets are arranged by Principal Investigators. Access data that are combined into multiple data sets, or compiled products.", "url": "http://nsidc.org/data/agdc_investigators.html"}, {"dataset_uid": "001343", "doi": "", "keywords": null, "people": null, "repository": "NSIDC", "science_program": null, "title": "The Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) archives and distributes Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program.", "url": "https://nsidc.org/data/agdc/"}, {"dataset_uid": "609282", "doi": "10.7265/N5Q23X5F", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; GPR; GPS; Navigation; Paleoclimate; Snow/ice; Snow/Ice", "people": "Bauer, Rob; Scambos, Ted", "repository": "USAP-DC", "science_program": null, "title": "GPR and GPS Data: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609282"}, {"dataset_uid": "609299", "doi": "10.7265/N5639MPD", "keywords": "Antarctica; East Antarctic Plateau; Glaciology; Physical Properties; Snow/ice; Snow/Ice", "people": "Courville, Zoe; Cathles, Mac; Albert, Mary R.", "repository": "USAP-DC", "science_program": null, "title": "Snow and Firn Permeability: Characteristics of Snow Megadunes and their Potential Effects on Ice Core Interpretation", "url": "https://www.usap-dc.org/view/dataset/609299"}], "date_created": "Wed, 04 Jan 2006 00:00:00 GMT", "description": "This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e RECORDERS/LOGGERS \u003e AWS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e ICE AUGERS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOWPACK TEMPERATURE PROBE; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e PERMEAMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS RECEIVERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e IMAGING RADARS \u003e SAR; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e GPR; IN SITU/LABORATORY INSTRUMENTS \u003e CHEMICAL METERS/ANALYZERS \u003e AIR PERMEAMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e CURRENT/WIND METERS \u003e ANEMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e RADIO \u003e ARGOS; IN SITU/LABORATORY INSTRUMENTS \u003e PRESSURE/HEIGHT METERS \u003e PRESSURE SENSORS; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e THERMOMETERS \u003e THERMOMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e WIND PROFILERS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PHOTON/OPTICAL DETECTORS \u003e DENSIOMETERS; IN SITU/LABORATORY INSTRUMENTS \u003e GAUGES \u003e BALANCE", "is_usap_dc": true, "keywords": "Internal Layering; ICESAT; Vapor-Redeposition; Antarctic; Wind Speed; FIELD INVESTIGATION; Surface Morphology; Antarctica; GROUND-BASED OBSERVATIONS; ARWS; Polar Firn Air; Microstructure; Gas Diffusivity; WEATHER STATIONS; Surface Temperatures; RADARSAT-2; Ice Core; Wind Direction; AWS; Ice Sheet; Snow Pit; Dunefields; Climate Record; Megadunes; GROUND STATIONS; METEOROLOGICAL STATIONS; Antarctic Ice Sheet; Density; Atmospheric Pressure; Firn Permeability; FIELD SURVEYS; Radar; Permeability; Field Survey; Firn Temperature Measurements; Snow Megadunes; Thermal Conductivity; LANDSAT; Firn; Ice Core Interpretation; East Antarctic Plateau; Not provided; Surface Winds; Sublimation; Snow Density; Ice Climate Record; Glaciology; Snow Permeability; Air Temperature; Paleoenvironment; Automated Weather Station", "locations": "Antarctica; Antarctic Ice Sheet; Antarctic; East Antarctic Plateau", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": "PHANEROZOIC \u003e CENOZOIC \u003e QUATERNARY \u003e HOLOCENE", "persons": "Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e ARWS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e WEATHER STATIONS; Not provided; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e ICE, CLOUD AND LAND ELEVATION SATELLITE (ICESAT) \u003e ICESAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e LANDSAT \u003e LANDSAT; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e RADARSAT \u003e RADARSAT-2", "repo": "USAP-DC", "repositories": "NSIDC; USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation", "uid": "p0000587", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Exploring the Functional Role of Antarctic Plants during Terrestrial Succession
|
1932876 |
2022-04-14 | Ball, Becky | No dataset link provided | Part I: Non-technical summary<br/>The Antarctic Peninsula warmed very rapidly in the late part of the 20th century, much faster than the global average, and this warming is predicted to resume and continue over the rest of the 21st century. One consequence of this rapid warming is the melting and subsequent retreat of glaciers, leading to an increase in newly-exposed land on the Peninsula that was previously covered with ice. Once new terrain is exposed, the process of ecological succession begins, with the arrival of early-colonizing plants, such as moss and lichens, and soil organisms - a process commonly referred to as the “greening” of Antarctica. Early stages of succession will be an increasingly common feature on the Antarctic Peninsula, but the mechanisms by which they occur on the Antarctic continent is not well understood. Once the plants have established on the newly-exposed soil, they can change many important properties, such as water dynamics, nutrient recycling, soil development, and habitat for microscopic organisms, which will ultimately determine the structure and functioning of the future ecosystem as it develops. These relationships between vegetation, soil, and the associated microorganisms, referred to as “plant-soil” interactions, are something we know virtually nothing about. This project will be the first to make a comprehensive study of how the type of colonizing plant, and the expansion of those plants from climate change, will influence terrestrial ecosystems in Antarctica. Understanding these processes is critical to understanding how the greening Antarctica is occurring and how soil communities and processes are influenced by these expanding plant communities. Through this work the research team, will also be intensively training undergraduate and graduate students, including training of students from underrepresented groups and collaborative training of students from Chile and the US. Additionally, the research groups will continue their focus on scientific outreach with K-12 schools and the general public to expand awareness of the effects of climate change in Antarctica.<br/><br/>Part II: Technical summary<br/>In this study, the researchers will use surveys across succession sites along the Antarctic Peninsula and Scotia Arc as well as a manipulative field experiment at glacier succession sites to test how species-specific plant functional traits impact soil properties and associated microbial and invertebrate communities in a greening Antarctica. In doing so, they will pursue three integrated aims to understand how Antarctic plant functional traits alter their soil environment and soil communities during succession after glacial retreat. AIM 1) Characterize six fundamental plant functional traits (thermal conductivity, water holding capacity, albedo, decomposability, tissue nutrient content, and secondary chemistry) among diverse Antarctica flora; AIM 2) Measure the relative effects of fundamental plant functional traits on soil physical properties and soil biogeochemistry across glacial succession gradients in Antarctica; and AIM 3) Measure the relative effects of fundamental plant functional traits on soil microbial and invertebrate communities across glacial succession gradients in Antarctica. They will explore how early-colonizing plants, especially mosses and lichens, alter soil physical, biogeochemical, and biological components, potentially impacting later patterns of succession. The researhcers will use intensive surveys of plant-soil interactions across succession sites and a manipulative transplant experiment in the South Shetland Islands, Antarctica to address their aims. The investigators will collect data on plant functional traits and their effects on soil physical properties, biogeochemistry, biotic abundance, and microbial metagenomics. The data collected will be the first comprehensive measures of the relative importance of plant functional types during glacial retreat and vegetative expansion from climate change in Antarctica, aiding our understanding of how plant functional group diversity and abundance are changing in a greening Antarctica.<br/><br/>This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((-59.666116 -62.15,-59.5128377 -62.15,-59.3595594 -62.15,-59.2062811 -62.15,-59.0530028 -62.15,-58.8997245 -62.15,-58.7464462 -62.15,-58.5931679 -62.15,-58.4398896 -62.15,-58.2866113 -62.15,-58.133333 -62.15,-58.133333 -62.1731502,-58.133333 -62.1963004,-58.133333 -62.2194506,-58.133333 -62.2426008,-58.133333 -62.265751,-58.133333 -62.2889012,-58.133333 -62.3120514,-58.133333 -62.3352016,-58.133333 -62.3583518,-58.133333 -62.381502,-58.2866113 -62.381502,-58.4398896 -62.381502,-58.5931679 -62.381502,-58.7464462 -62.381502,-58.8997245 -62.381502,-59.0530028 -62.381502,-59.2062811 -62.381502,-59.3595594 -62.381502,-59.5128377 -62.381502,-59.666116 -62.381502,-59.666116 -62.3583518,-59.666116 -62.3352016,-59.666116 -62.3120514,-59.666116 -62.2889012,-59.666116 -62.265751,-59.666116 -62.2426008,-59.666116 -62.2194506,-59.666116 -62.1963004,-59.666116 -62.1731502,-59.666116 -62.15)) | POINT(-58.8997245 -62.265751) | false | false | |||||
Revealing Late Holocence Climate Variability in Antarctica from Borehole Paleothermometry
|
1142085 |
2017-09-11 | Alley, Richard |
|
Alley/1142085<br/><br/>This award supports a project to continue the collection and analyses of firn temperature data from three automated firn thermal profiling units deployed in Dronning Maud Land sector of East Antarctica as part of the Norway-US IPY Traverse project between 2007 and 2009. The intellectual merits of this project are as follows: 1) to constrain and improve the parameterization of firn thermal properties (thermal conductivity and specific heat capacity) that are required for the borehole paleothermometry, 2) to study the change in firn temperature since the deployment of thermal profiling units ~5 years ago and derive the surface temperature trend for that time period, and 3) to compare and contrast the surface temperatures and their trends derived from the measured firn temperatures and satellite thermal infrared data for the past three decades. The project also involves acquiring and deploying an automated system to record transient temperatures at multiple depths in the top 16 meters of the shallow borehole at Dome Fuji, to provide useful data and to prepare for the possibility of conducting temperature-logging in the existing deep (3035 m) and shallow (112 m) boreholes at Dome Fuji in the near future. The preparation of the shallow borehole and the installation of the automated system will be carried out by collaborators from the Japanese Antarctic Research Expedition (JARE) in 2012-13 Antarctic field season. The data collected by this automated system will be used to constrain the thermal properties of upper firn layer at Dome Fuji, as well as comparing with data from other sites, increasing the geographic extent of these studies. The broader impacts of the project include presentation of results at scientific conferences and publication of results in peer-reviewed journals. Public outreach will include targeted work with science teachers and middle school students. | None | None | false | false | |||||
The Role of Snow in Antarctic Sea Ice Development and Ocean-Atmosphere Energy Exchange
|
9316767 |
2010-05-04 | Jeffries, Martin |
|
The goal of this investigation is to understand the role of snow in sea ice development processes and air-ice-ocean heat exchange interactions in the seasonal and perennial sea ice zones of the Ross Sea, the Amundsen Sea, and the Bellingshausen Sea. Observations and measurements of the characteristics of sea ice and snow will be combined with numerical models of sea-ice flooding and the entrainment of snow into the ice cover in order to gain an understanding of the sea-ice heat and mass balance, and to quantify the energy exchange within the antarctic sea-ice cover. The snow measurement program, using the RVIB Nathaniel B. Palmer, will include depth, grain size and morphology, density, temperature, thermal conductivity, water content, and stable isotope ratio. The ice measurement program will include thickness, salinity, temperature, density, brine content, and included gas volume, as well as such structural properties as the fraction of frazil, platelet, and congelation ice in the seasonal antarctic pack ice. Differences in ice types are the result of differences in the environment in which the ice forms: frazil ice is formed in supercooled sea water, normally through wind or wave-induced turbulence, while platelet and congelation ice is formed under quiescent conditions. The fraction of frazil ice is an important variable in the energy budget of the upper ocean, and contributes significantly to the stabilization of the surface layers. The numerical models will involve the thermodynamics of phase changes from liquid water to ice, along with the resulting energy transfer, brine expulsion, and the modulating effect of a snow cover. The results are expected to have broad relevance and application to understanding the effects of sea-ice processes in global change, and atmospheric, oceanographic, and remote sensing investigations of the Southern Ocean. | POLYGON((-180 -43.56571,-144 -43.56571,-108 -43.56571,-72 -43.56571,-36 -43.56571,0 -43.56571,36 -43.56571,72 -43.56571,108 -43.56571,144 -43.56571,180 -43.56571,180 -46.304308,180 -49.042906,180 -51.781504,180 -54.520102,180 -57.2587,180 -59.997298,180 -62.735896,180 -65.474494,180 -68.213092,180 -70.95169,144 -70.95169,108 -70.95169,72 -70.95169,36 -70.95169,0 -70.95169,-36 -70.95169,-72 -70.95169,-108 -70.95169,-144 -70.95169,-180 -70.95169,-180 -68.213092,-180 -65.474494,-180 -62.735896,-180 -59.997298,-180 -57.2587,-180 -54.520102,-180 -51.781504,-180 -49.042906,-180 -46.304308,-180 -43.56571)) | POINT(0 -89.999) | false | false | |||||
Collaborative Research: Characteristics of Snow Megadunes and Their Potential Effect on Ice Core Interpretation
|
0125570 0125276 |
2006-01-04 | Courville, Zoe; Cathles, Mac; Scambos, Ted; Bauer, Rob; Fahnestock, Mark; Haran, Terry; Shuman, Christopher A.; Albert, Mary R. | This award supports a program of field surveys of an area within the large, well-developed megadune field southeast of Vostok station. The objectives are to determine the physical characteristics of the firn across the dunes, including typical climate indicators such as stable isotopes and major chemical species, and to install instruments to measure the time variation of near-surface wind and temperature with depth, to test and refine hypotheses for megadune formation. Field study will consist of surface snowpit and shallow core sampling, ground penetrating radar (GPR) profiling, GPS topographic and ice motion surveys, AWS installation, accumulation/ ablation measurements, subsurface temperature, and firn permeability studies. Field work in two successive seasons is proposed. Continent-wide remote sensing studies of the dunes will be continued, using the new group of instruments that are now, or will shortly be available (e.g., MODIS, MISR, GLAS, AMSR). The earlier study of topographic, passive microwave, and SAR characteristics will be extended, with the intent of determining the relationships of dune amplitude and wavelength to climate parameters, and further development of models of dune formation. Diffusion, ventilation, and vapor transport processes within the dune firn will be modeled as well. A robust program of outreach is planned and reporting to inform both the public and scientists of the fundamental in-situ and remote sensing characteristics of these uniquely Antarctic features will be an important part of the work. Because of their extreme nature, their broad extent, and their potential impact on the climate record, it is important to improve our current understanding of these. Megadunes are a manifestation of an extreme terrestrial climate and may provide insight on past terrestrial climate, or to processes active on other planets. Megadunes are likely to represent an end-member in firn diagenesis, and as such, may have much to teach us about the processes involved. | None | None | false | false |