{"dp_type": "Project", "free_text": "crystal-orientation fabric"}
[{"awards": "0440847 Raymond, Charles", "bounds_geometry": null, "dataset_titles": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica; Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "datasets": [{"dataset_uid": "609503", "doi": "10.7265/N5222RQ8", "keywords": "Antarctica; Cryosphere; Geology/Geophysics - Other; Glaciers/Ice Sheet; Glaciology; GPS; Ice Flow Velocity; Ross-Amundsen Divide; Strain", "people": "Power, Donovan; Rasmussen, Al; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": null, "title": "GPS-Measured Ice Velocities and Strain Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609503"}, {"dataset_uid": "609496", "doi": "10.7265/N5TH8JNG", "keywords": "Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Ground Penetrating Radar; Radar; Ross-Amundsen Divide", "people": "Power, Donovan; Matsuoka, Kenichi; Raymond, Charles; Fujita, Shuji", "repository": "USAP-DC", "science_program": null, "title": "Polarimetric Radar Data from the Ross and Amundsen Sea Ice Flow Divide, West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609496"}], "date_created": "Mon, 29 Aug 2011 00:00:00 GMT", "description": "This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR; EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e POSITIONING/NAVIGATION \u003e GPS \u003e GPS", "is_usap_dc": true, "keywords": "GPS; FIELD SURVEYS; Antarctic; Radar; Antarctica; FIELD INVESTIGATION; Ice Sheet; Not provided; Ross-Amundsen Divide; West Antarctica; West Antarctic Ice Sheet", "locations": "Antarctica; Ross-Amundsen Divide; West Antarctica; Antarctic; West Antarctic Ice Sheet", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Matsuoka, Kenichi; Power, Donovan; Fujita, Shuji; Raymond, Charles; Rasmussen, Al", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e NAVIGATION SATELLITES \u003e GLOBAL POSITIONING SYSTEM (GPS) \u003e GPS", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Detection of Crystal Orientation Fabrics near the Ross/Amundsen Sea Ice-flow Divide and at the Siple Dome Ice Core Site using Polarimetric Radar Methods", "uid": "p0000024", "west": null}, {"awards": "0338151 Raymond, Charles", "bounds_geometry": "POINT(-112.086 -79.468)", "dataset_titles": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica; Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "datasets": [{"dataset_uid": "609470", "doi": "10.7265/N5416V0W", "keywords": "Airborne Radar; Antarctica; Cryosphere; Glaciers/Ice Sheet; Glaciology; Radar; WAIS divide", "people": "Raymond, Charles; Matsuoka, Kenichi", "repository": "USAP-DC", "science_program": "WAIS Divide Ice Core", "title": "Englacial Layers and Attenuation Rates across the Ross and Amundsen Sea Ice-Flow Divide (WAIS Divide), West Antarctica", "url": "https://www.usap-dc.org/view/dataset/609470"}, {"dataset_uid": "609119", "doi": "10.7265/N5BZ63ZH", "keywords": "Airborne Radar; Airplane; Antarctica; Bathymetry/Topography; Cryosphere; Glaciers/Ice Sheet; Marie Byrd Land", "people": "Wilson, Douglas S.; Luyendyk, Bruce P.", "repository": "USAP-DC", "science_program": null, "title": "Surface Elevation and Ice Thickness, Western Marie Byrd Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609119"}], "date_created": "Tue, 11 May 2010 00:00:00 GMT", "description": "This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project\u0027s web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change.", "east": -112.086, "geometry": "POINT(-112.086 -79.468)", "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e LIDAR/LASER SOUNDERS \u003e LASERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e ALTIMETERS \u003e RADAR ALTIMETERS \u003e RADAR ALTIMETERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR ECHO SOUNDERS; EARTH REMOTE SENSING INSTRUMENTS \u003e ACTIVE REMOTE SENSING \u003e PROFILERS/SOUNDERS \u003e RADAR SOUNDERS \u003e RADAR", "is_usap_dc": true, "keywords": "SOAR; Ice Sheet Elevation; Antarctic Ice Sheet; USAP-DC; layers; West Antarctic; FIELD INVESTIGATION; Amundsen; Ice Sheet; Airborne Laser Altimetry; Ice Surface; Not provided; radar echoes; NSF; Ice Sheet Thickness; Ice Extent; Ice Surface Elevation; Internal layering; Ice Cover; Ice Deformation; FIELD SURVEYS; Amundsen flow divide; Antarctica; Ground Ice; DEMs Antarctica-project; subglacial; Ross; West Antarctic Ice Sheet; Ice Surface Temperature; LABORATORY; crystal-orientation fabric; Radar Echo Sounding; Radar Altimetry; Ice; Englacial; reflection layers; ice radar; AGDC; DEMs-project; Ice Thickness; Altimetry; Radar Echo Sounders; Ice Temperature; Ice Thickness Distribution", "locations": "Antarctic Ice Sheet; Antarctica; West Antarctic Ice Sheet", "north": -79.468, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "WAIS Divide Ice Core", "south": -79.468, "title": "Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data", "uid": "p0000017", "west": -112.086}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
Detection of Crystal Orientation Fabrics near the Ross/Amundsen Sea Ice-flow Divide and at the Siple Dome Ice Core Site using Polarimetric Radar Methods
|
0440847 |
2011-08-29 | Matsuoka, Kenichi; Power, Donovan; Fujita, Shuji; Raymond, Charles; Rasmussen, Al | This award supports a project to investigate fabrics with ground-based radar measurements near the Ross/Amundsen Sea ice-flow divide where a deep ice core will be drilled. The alignment of crystals in ice (crystal-orientation fabric) has an important effect on ice deformation. As ice deforms, anisotropic fabrics are produced, which, in turn, influence further deformation. Measurement of ice fabric variations can help reveal the deformation history of the ice and indicate how the ice will deform in the future. Ice cores provide opportunities to determine a vertical fabric profile, but horizontal variations of fabrics remain unknown. Remote sensing with ice-penetrating radar is the only way to do that over large areas. Preliminary results show that well-established polarimetric methods can detect the degree of horizontal anisotropy of fabrics and their orientation, even when they are nearly vertical-symmetric fabrics. In conjunction with ice deformation history, our first mapping of ice fabrics will contribute to modeling ice flow near the future ice core site. The project will train a graduate student and provide research experiences for two under graduate students both in field and laboratory. The project will contribute to ongoing West Antarctic ice sheet program efforts to better understand the impact of the ice sheet on global sea level rise. This project also supports an international collaboration between US and Japanese scientists. | None | None | false | false | ||
Glaciological Characteristics of the Ross/Amundsen Sea Ice-flow Divide Deduced by a New Analysis of Ice-penetrating Radar Data
|
0338151 |
2010-05-11 | Raymond, Charles; Matsuoka, Kenichi; Luyendyk, Bruce P.; Wilson, Douglas S. | This award supports an investigation of spatial variations of ice temperature and subglacial conditions using available ice-penetrating radar data around a future deep ice coring site near the Ross and Amundsen flow divide of West Antarctic Ice Sheet. Besides geometry of reflection layers the focus will be on intensities of radar echoes from within ice deeper than several hundred meters and will also examine echoes from the bed. Preliminary studies on theory and comparison with Japanese radar data from East Antarctica suggest that large spatial variations of the vertical gradient of radar echoes from within ice exist and are caused primarily by ice temperature and secondarily by crystal-orientation fabric. The hypothesis that the vertical gradient is a proxy of ice temperature will be tested. The project will utilize an existing data set from the Support Office for Aerogeophysical Research in Antarctica (SOAR) and will complement work already underway at University of Texas to analyze the radar data. The project will provide undergraduate research experience with an emphasis on computer analysis of time series and large data sets as well as development of web-based resource of results and methods and will support an international collaboration between US and Japan through discussions on the preliminary results from their study sites. Practical procedures developed through this study will be downloadable from the project's web site in the third year and will allow investigation of other ice sheets using existing radar data sets. This project will contribute to the interpretation of the future inland West Antarctic ice core and will help in the understanding of ice sheet history and climate change. | POINT(-112.086 -79.468) | POINT(-112.086 -79.468) | false | false |