{"dp_type": "Project", "free_text": "Volcanic Deposits"}
[{"awards": "1543361 Kurbatov, Andrei; 1543454 Dunbar, Nelia", "bounds_geometry": "POINT(0 -90)", "dataset_titles": "Cryptotephra in SPC-14 ice core; SPICEcore visable tephra", "datasets": [{"dataset_uid": "601667", "doi": "10.15784/601667", "keywords": "Antarctica; Electron Microprobe; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; Tephra", "people": "Iverson, Nels", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "SPICEcore visable tephra", "url": "https://www.usap-dc.org/view/dataset/601667"}, {"dataset_uid": "601666", "doi": "10.15784/601666", "keywords": "Antarctica; Cryptotephra; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; South Pole; SPICEcore; Tephra", "people": "Hartman, Laura; Yates, Martin; Helmick, Meredith; Kurbatov, Andrei V.", "repository": "USAP-DC", "science_program": "SPICEcore", "title": "Cryptotephra in SPC-14 ice core", "url": "https://www.usap-dc.org/view/dataset/601666"}], "date_created": "Fri, 01 Apr 2022 00:00:00 GMT", "description": "Antarctic ice core tephra records tend to be dominated by proximal volcanism and infrequently contain tephra from distal volcanoes within and off of the continent. Tephra layers in East Antarctic ice cores are largely derived from Northern Victoria Land volcanoes. For example, 43 out of 55 tephra layers in Talos Dome ice core are from local volcanoes. West Antarctic ice cores are dominated by tephra from Marie Byrd Land volcanoes. Thirty-six out of the 52 tephra layers in WAIS are from Mt. Berlin or Mt.Takahe. It would be expected that the majority of the tephra layers found in cores on and adjacent to the Antarctic Peninsula and Weddell Sea should be from Sub-Antarctic islands (e.g., South Sandwich and South Shetland Islands). Unfortunately, these records are poorly characterized, making correlations to the source volcanoes very unlikely.\r\n\r\nThe South Pole ice core (SPICEcore) is uniquely situated to capture the volcanic records from all of these regions of the continent, as well as sub-tropical eruptions with significant global climate signatures. Twelve visible tephra layers have been characterized in SPICEcore and represent tephra produced by volcanoes from the Sub-Antarctic Islands (6), Marie Byrd Land (5), and one from an unknown sub-tropical eruption, likely from South America. Three of these tephra layers correlate to other ice core tephra providing important \u201cpinning points\u201d for timescale calibrations, recently published (Winski et al, 2019). Two tephra layers from Marie Byrd Land correlate to WAIS Divide ice core tephra (15.226ka and 44.864ka), and one tephra eruptive from the South Sandwich Island can be correlated EPICA Dome C, Vostok, and RICE (3.559ka). An additional eight cryptotephra have been characterized, and one layer geochemically correlates with the 1257 C.E. eruption of Samalas volcano in Indonesia.\r\n\r\nSPICEcore does not have a tephra record dominated by one volcanic region. Instead, it contains more of the tephra layers derived from off-continent volcanic sources. The far-travelled tephra layers from non-Antarctic sources improve our understanding of tephra transport to the interior of Antarctica. The location in the middle of the continent along with the longer transport distances from the local volcanoes has allowed for a unique tephra record to be produced that begins to link more of future ice core records together.\r\n\r\n", "east": 0.0, "geometry": "POINT(0 -90)", "instruments": null, "is_usap_dc": true, "keywords": "VOLCANIC DEPOSITS; South Pole", "locations": "South Pole", "north": -90.0, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V.", "platforms": null, "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "SPICEcore", "south": -90.0, "title": "Collaborative Research: Tephrochronology of a South Pole Ice Core", "uid": "p0010311", "west": 0.0}, {"awards": "1643394 Buizert, Christo", "bounds_geometry": "POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65))", "dataset_titles": "Antarctica 40,000 Year Temperature and Elevation Reconstructions; GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions; WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "datasets": [{"dataset_uid": "200256", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "WAIS Divide 67-6ka nssS Data and EDML, EDC and TALDICE Volcanic Tie Points", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/24530"}, {"dataset_uid": "200255", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "Antarctica 40,000 Year Temperature and Elevation Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/32632"}, {"dataset_uid": "200257", "doi": "", "keywords": null, "people": null, "repository": "NCEI", "science_program": null, "title": "GISP2 and WAIS Divide Ice Cores 60,000 Year Surface Temperature Reconstructions", "url": "https://www.ncei.noaa.gov/access/paleo-search/study/34133"}], "date_created": "Wed, 10 Nov 2021 00:00:00 GMT", "description": "This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles.\r\n\r\nThe project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "ISOTOPES; Antarctica; USA/NSF; AMD; ICE CORE RECORDS; USAP-DC; VOLCANIC DEPOSITS; MODELS; Amd/Us", "locations": "Antarctica", "north": -65.0, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Buizert, Christo; Wettstein, Justin", "platforms": "OTHER \u003e MODELS \u003e MODELS", "repo": "NCEI", "repositories": "NCEI", "science_programs": null, "south": -90.0, "title": "Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores", "uid": "p0010279", "west": -180.0}, {"awards": "1543313 VanTongeren, Jill", "bounds_geometry": null, "dataset_titles": "U-Pb ages and mineral compositions from Dufek Intrusion", "datasets": [{"dataset_uid": "601132", "doi": "10.15784/601132", "keywords": "Antarctica; Chemical Composition; Chemistry:rock; Chemistry:Rock; Crystallization; Dufek Complex; Geochemistry; Magma Chamber Procesess; Mass Spectrometry; Rocks; Snow/ice; Snow/Ice; Solid Earth; TIMS; Volcanic Deposits", "people": "VanTongeren, Jill", "repository": "USAP-DC", "science_program": null, "title": "U-Pb ages and mineral compositions from Dufek Intrusion", "url": "https://www.usap-dc.org/view/dataset/601132"}], "date_created": "Mon, 29 Oct 2018 00:00:00 GMT", "description": "The solidified remnants of large magma bodies within the continental crust hold the key to understanding the chemical and physical evolution of volcanic provinces through time. These deposits also commonly contain some of the world\u0027s most important ore deposits. Exposed deposits in South Africa, Greenland, USA, Canada, and Antarctica have led researchers to propose that the bigger the magma body, the faster it will crystallize. While this might seem counter-intuitive (typically it is thought that more magma = hotter = harder to cool), the comparison of these exposures show that bigger magma chambers maintain a molten top that is always in contact with the colder crust; whereas smaller magma chambers insulate themselves by crystallizing at the margins. The process is similar to the difference between a large cup of coffee with no lid, and a smaller cup of coffee held in a thermos. The large unprotected cup of coffee will cool down much faster than that held in the thermos. This research project of VanTongeren and Schoene will use previously collected rocks from the large (~8-9 km thick) Dufek Intrusion in Antarctica to precisely quantify how fast the magma chamber crystallized, and compare that rate to the much smaller magma chamber exposed in the Skaergaard Intrusion of E. Greenland. The work is an important step towards improving our understanding of time-scales associated with the thermal and chemical evolution of nearly all magma chambers on Earth, which will ultimately lead to better predictions of volcanic hazards globally. The work will also yield important insights into the timescales and conditions necessary for developing vast magmatic ore deposits, which is essential to the platinum and steel industries in the USA and abroad.\u003cbr/\u003e\u003cbr/\u003eBased on observations of solidification fronts in six of the world\u0027s most completely exposed layered mafic intrusions, it was recently proposed that bigger magma chambers must crystallize faster than small magma chambers. While this is initially counter-intuitive, the hypothesis falls out of simple heat balance equations and the observation that the thickness of cumulates at the roofs of such intrusions is negatively proportional to the size of the intrusion. In this study, VanTongeren and Schoene will directly test the hypothesis that bigger magma chambers crystallize faster by applying high precision U-Pb zircon geochronology on 5-10 samples throughout the large Dufek Intrusion of Antarctica. Due to uncertainties in even the highest-precision ID-TIMS analyses, the Dufek Intrusion of Antarctica is the only large layered mafic intrusion on Earth where this research can be accomplished. VanTongeren and Schoene will place the geochronological measurements of the Dufek Intrusion into a comprehensive petrologic framework by linking zircon crystallization to other liquidus phases using mineral geochemistry, zircon saturation models, and petrologic models for intrusion crystallization. The research has the potential to radically change the way that we understand the formation and differentiation of large magma bodies within the shallow crust. Layered intrusions are typically thought to cool and crystallize over very long timescales allowing for significant differentiation of the magmas and reorganization of the cumulate rocks. If the \u0027bigger magma chambers crystallize faster hypothesis\u0027 holds this could reduce the calculated solidification time scales of the early earth and lunar magma oceans and have important implications for magma chamber dynamics of active intraplate volcanism and long-lived continental arcs. Furthermore, while the Dufek Intrusion is one of only two large layered intrusions exposed on Earth, very little is known about its petrologic evolution. The detailed geochemical and petrologic work of VanTongeren and Schoene based on analyses of previously collected samples will provide important observations with which to compare the Dufek and other large magma chambers.", "east": null, "geometry": null, "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; USAP-DC", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "VanTongeren, Jill", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster", "uid": "p0000135", "west": null}, {"awards": "0538033 Panter, Kurt", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 14 Sep 2011 00:00:00 GMT", "description": "This project studies glaciovolcanic deposits at Minna Bluff in the western Ross Embayment of Antarctica. Its goal is to determine the history of the Ross Ice Shelf, which is fed by the major ice sheets from both East and West Antarctica. Apart from determining how these ice sheets waxed and waned during a period of dynamic climate change, glaciovolcanic sequences may constrain ice sheet parameters that are critical to numerical models such as thickness, hydrology, and basal thermal regime. This three-year study would map, analyze, and determine the age of key units using 40Ar/39Ar dating. Pilot studies would also be conducted for 36Cl dating of glacial deposits and stable isotope evaluations of alteration. The project offers a complementary record of Ross Ice Shelf behavior to that sampled by ANDRILL. It also improves the general record of McMurdo area volcanostratigraphy, which is important to interpreting landforms, glacial deposits, and ancient ice found in the Dry Valleys.\u003cbr/\u003e\u003cbr/\u003eThe broader impacts of this project include improving society\u0027s understanding of global climate change, sea level rise, and graduate and undergraduate student education. Outreach efforts include educational programs for public schools and community groups, exhibits for a local science museum, and a project website.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "Not provided", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": null, "persons": "Panter, Kurt", "platforms": "Not provided", "repositories": null, "science_programs": null, "south": null, "title": "Collaborative Proposal: Late Cenozoic Volcanism and Glaciation at Minna Bluff, Antarctica: Implications for Antarctic Cryosphere History", "uid": "p0000252", "west": null}, {"awards": "9615554 Fitzpatrick, Joan", "bounds_geometry": null, "dataset_titles": "Digital Images of Thin Sections from Siple Dome; Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "datasets": [{"dataset_uid": "609413", "doi": "10.7265/N5XG9P2G", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core", "people": "Fitzpatrick, Joan; Spencer, Matthew; Alley, Richard", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Imaging for Siple Dome Ice Core Analysis, Antarctica", "url": "https://www.usap-dc.org/view/dataset/609413"}, {"dataset_uid": "609127", "doi": "10.7265/N59Z92T4", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Fitzpatrick, Joan", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Digital Images of Thin Sections from Siple Dome", "url": "https://www.usap-dc.org/view/dataset/609127"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Antarctica; Glaciology; Ice Sheet; Siple; Ice Core; Stratigraphy; GROUND STATIONS; Siple Dome; WAISCORES; Trapped Air Bubbles; Photo; Snow; Density; Volcanic Deposits; Not provided; Ice Core Data; GROUND-BASED OBSERVATIONS; Siple Coast; Chemical Composition", "locations": "Siple Dome; Antarctica; Siple; Siple Coast", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Digital Imaging for Ice Core Analysis", "uid": "p0000011", "west": null}, {"awards": "9527262 Gow, Anthony", "bounds_geometry": null, "dataset_titles": "Physical and Structural Properties of the Siple Dome Ice Cores", "datasets": [{"dataset_uid": "609128", "doi": "10.7265/N5668B34", "keywords": "Antarctica; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Photo/video; Photo/Video; Siple Dome; Siple Dome Ice Core; WAISCORES", "people": "Meese, Deb; Gow, Tony", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Physical and Structural Properties of the Siple Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609128"}], "date_created": "Wed, 14 May 2003 00:00:00 GMT", "description": "This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES", "is_usap_dc": true, "keywords": "Siple Dome; Antarctica; Stratigraphy; Ice Sheet; GROUND-BASED OBSERVATIONS; Density; Siple; Chemical Composition; Volcanic Deposits; Siple Coast; WAISCORES; Not provided; GROUND STATIONS; Pico; Ice Core; Tephra; Fabric; Glaciology; Snow", "locations": "Antarctica; Siple; Siple Coast; Siple Dome", "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Gow, Tony; Meese, Deb", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Siple Dome Ice Core", "south": null, "title": "Physical and Structural Properties of the Siple Dome Core", "uid": "p0000064", "west": null}, {"awards": "9527373 Dunbar, Nelia; 9615167 Dunbar, Nelia", "bounds_geometry": null, "dataset_titles": "Blue Ice Tephra II - Brimstone Peak; Blue Ice Tephra II - Mt. DeWitt; Tephra in Siple and Taylor Dome Ice Cores; Volcanic Records in the Siple and Taylor Dome Ice Cores", "datasets": [{"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609126", "doi": "10.7265/N5FQ9TJG", "keywords": "Antarctica; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Paleoclimate; Siple Dome Ice Core; Taylor Dome Ice Core; Tephra; WAIS; WAISCORES", "people": "Dunbar, Nelia; Zielinski, Gregory", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Volcanic Records in the Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609126"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Taylor Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}, {"dataset_uid": "609115", "doi": "10.7265/N5GQ6VPV", "keywords": "Antarctica; Blue Ice; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Mount Dewitt; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Mt. DeWitt", "url": "https://www.usap-dc.org/view/dataset/609115"}, {"dataset_uid": "609114", "doi": "10.7265/N5MG7MDK", "keywords": "Antarctica; Blue Ice; Brimstone Peak; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Petrography; Tephra", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": null, "title": "Blue Ice Tephra II - Brimstone Peak", "url": "https://www.usap-dc.org/view/dataset/609114"}, {"dataset_uid": "609110", "doi": "10.7265/N50P0WXF", "keywords": "Antarctica; Backscattered Electron Images; Chemistry:rock; Chemistry:Rock; Geochemistry; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Siple Dome; Siple Dome Ice Core; Taylor Dome Ice Core; WAIS", "people": "Dunbar, Nelia", "repository": "USAP-DC", "science_program": "Siple Dome Ice Core", "title": "Tephra in Siple and Taylor Dome Ice Cores", "url": "https://www.usap-dc.org/view/dataset/609110"}], "date_created": "Sat, 01 Jun 2002 00:00:00 GMT", "description": "Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records.", "east": null, "geometry": null, "instruments": "IN SITU/LABORATORY INSTRUMENTS \u003e CORERS \u003e CORING DEVICES; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e ELECTRON MICROPROBES", "is_usap_dc": true, "keywords": "USAP-DC; Siple Coast; Sulfur Dioxide; Siple Dome; Taylor Dome; Chlorine; WAISCORES; Ice Core; Tephra; Geochemistry; Volcanic Deposits; GROUND STATIONS; Brimstone Peak; GROUND-BASED OBSERVATIONS; Magnesium Oxide; Glaciology; Mount Dewitt; Silicon Dioxide; Glass Shards; Ice Sheet; Siple; Nickel Oxide; Potassium Dioxide; Not provided; Manganese Oxide; Volcanic; Snow; Nitrogen; Iron Oxide; Titanium Dioxide; Stratigraphy; Antarctica", "locations": "Antarctica; Siple; Siple Coast; Siple Dome; Taylor Dome; Brimstone Peak; Mount Dewitt", "north": null, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Glaciology", "paleo_time": null, "persons": "Dunbar, Nelia; Zielinski, Gregory", "platforms": "LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND STATIONS; Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": "Taylor Dome Ice Core", "south": null, "title": "Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region", "uid": "p0000065", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Tephrochronology of a South Pole Ice Core
|
1543361 1543454 |
2022-04-01 | Dunbar, Nelia; Iverson, Nels; Kurbatov, Andrei V. |
|
Antarctic ice core tephra records tend to be dominated by proximal volcanism and infrequently contain tephra from distal volcanoes within and off of the continent. Tephra layers in East Antarctic ice cores are largely derived from Northern Victoria Land volcanoes. For example, 43 out of 55 tephra layers in Talos Dome ice core are from local volcanoes. West Antarctic ice cores are dominated by tephra from Marie Byrd Land volcanoes. Thirty-six out of the 52 tephra layers in WAIS are from Mt. Berlin or Mt.Takahe. It would be expected that the majority of the tephra layers found in cores on and adjacent to the Antarctic Peninsula and Weddell Sea should be from Sub-Antarctic islands (e.g., South Sandwich and South Shetland Islands). Unfortunately, these records are poorly characterized, making correlations to the source volcanoes very unlikely. The South Pole ice core (SPICEcore) is uniquely situated to capture the volcanic records from all of these regions of the continent, as well as sub-tropical eruptions with significant global climate signatures. Twelve visible tephra layers have been characterized in SPICEcore and represent tephra produced by volcanoes from the Sub-Antarctic Islands (6), Marie Byrd Land (5), and one from an unknown sub-tropical eruption, likely from South America. Three of these tephra layers correlate to other ice core tephra providing important “pinning points” for timescale calibrations, recently published (Winski et al, 2019). Two tephra layers from Marie Byrd Land correlate to WAIS Divide ice core tephra (15.226ka and 44.864ka), and one tephra eruptive from the South Sandwich Island can be correlated EPICA Dome C, Vostok, and RICE (3.559ka). An additional eight cryptotephra have been characterized, and one layer geochemically correlates with the 1257 C.E. eruption of Samalas volcano in Indonesia. SPICEcore does not have a tephra record dominated by one volcanic region. Instead, it contains more of the tephra layers derived from off-continent volcanic sources. The far-travelled tephra layers from non-Antarctic sources improve our understanding of tephra transport to the interior of Antarctica. The location in the middle of the continent along with the longer transport distances from the local volcanoes has allowed for a unique tephra record to be produced that begins to link more of future ice core records together. | POINT(0 -90) | POINT(0 -90) | false | false | |||||
Collaborative Research: The Timing and Spatial Expression of the Bipolar Seesaw in Antarctica from Synchronized Ice Cores
|
1643394 |
2021-11-10 | Buizert, Christo; Wettstein, Justin | This award supports a project to use ice cores to study teleconnections between the northern hemisphere, tropics, and Antarctica during very abrupt climate events that occurred during the last ice age (from 70,000 to 11,000 years ago). The observations can be used to test scientific theories about the role of the westerly winds on atmospheric carbon dioxide. In a warming world, snow fall in Antarctica is expected to increase, which can reduce the Antarctic contribution to sea level rise, all else being equal. The study will investigate how snow fall changed in the past in response to changes in temperature and atmospheric circulation, which can help improve projections of future sea level rise. Antarctica is important for the future evolution of our planet in several ways; it has the largest inventory of land-based ice, equivalent to about 58 m of global sea level and currently contributes about 0.3 mm per year to global sea level rise, which is expected to increase in the future due to global warming. The oceans surrounding Antarctica help regulate the uptake of human-produced carbon dioxide. Shifts in the position and strength of the southern hemisphere westerly winds could change the amount of carbon dioxide that is absorbed by the ocean, which will influence the rate of global warming. The climate and winds near and over Antarctica are linked to the rest of our planet via so-called climatic teleconnections. This means that climate changes in remote places can influence the climate of Antarctica. Understanding how these climatic teleconnections work in both the ocean and atmosphere is an important goal of climate research. The funds will further contribute towards training of a postdoctoral researcher and an early-career researcher; outreach to public schools; and the communication of research findings to the general public via the media, local events, and a series of Wikipedia articles. The project will help to fully characterize the timing and spatial pattern of millennial-scale Antarctic climate change during the deglaciation and Dansgaard-Oeschger (DO) cycles using multiple synchronized Antarctic ice cores. The phasing of Antarctic climate change relative to Greenland DO events can distinguish between fast atmospheric teleconnections on sub-decadal timescales, and slow oceanic ones on centennial time scales. Preliminary work suggests that the spatial pattern of Antarctic change can fingerprint specific changes to the atmospheric circulation; in particular, the proposed work will clarify past movements of the Southern Hemisphere westerly winds during the DO cycle, which have been hypothesized. The project will help resolve a discrepancy between two previous seminal studies on the precise timing of interhemispheric coupling between ice cores in both hemispheres. The study will further provide state-of-the-art, internally-consistent ice core chronologies for all US Antarctic ice cores, as well as stratigraphic ties that can be used to integrate them into a next-generation Antarctic-wide ice core chronological framework. Combined with ice-flow modeling, these chronologies will be used for a continent-wide study of the relationship between ice sheet accumulation and temperature during the last deglaciation. | POLYGON((-180 -65,-144 -65,-108 -65,-72 -65,-36 -65,0 -65,36 -65,72 -65,108 -65,144 -65,180 -65,180 -67.5,180 -70,180 -72.5,180 -75,180 -77.5,180 -80,180 -82.5,180 -85,180 -87.5,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -87.5,-180 -85,-180 -82.5,-180 -80,-180 -77.5,-180 -75,-180 -72.5,-180 -70,-180 -67.5,-180 -65)) | POINT(0 -89.999) | false | false | ||||||
Collaborative Research: Testing the Hypothesis that Bigger Magma Chambers Crystallize Faster
|
1543313 |
2018-10-29 | VanTongeren, Jill |
|
The solidified remnants of large magma bodies within the continental crust hold the key to understanding the chemical and physical evolution of volcanic provinces through time. These deposits also commonly contain some of the world's most important ore deposits. Exposed deposits in South Africa, Greenland, USA, Canada, and Antarctica have led researchers to propose that the bigger the magma body, the faster it will crystallize. While this might seem counter-intuitive (typically it is thought that more magma = hotter = harder to cool), the comparison of these exposures show that bigger magma chambers maintain a molten top that is always in contact with the colder crust; whereas smaller magma chambers insulate themselves by crystallizing at the margins. The process is similar to the difference between a large cup of coffee with no lid, and a smaller cup of coffee held in a thermos. The large unprotected cup of coffee will cool down much faster than that held in the thermos. This research project of VanTongeren and Schoene will use previously collected rocks from the large (~8-9 km thick) Dufek Intrusion in Antarctica to precisely quantify how fast the magma chamber crystallized, and compare that rate to the much smaller magma chamber exposed in the Skaergaard Intrusion of E. Greenland. The work is an important step towards improving our understanding of time-scales associated with the thermal and chemical evolution of nearly all magma chambers on Earth, which will ultimately lead to better predictions of volcanic hazards globally. The work will also yield important insights into the timescales and conditions necessary for developing vast magmatic ore deposits, which is essential to the platinum and steel industries in the USA and abroad.<br/><br/>Based on observations of solidification fronts in six of the world's most completely exposed layered mafic intrusions, it was recently proposed that bigger magma chambers must crystallize faster than small magma chambers. While this is initially counter-intuitive, the hypothesis falls out of simple heat balance equations and the observation that the thickness of cumulates at the roofs of such intrusions is negatively proportional to the size of the intrusion. In this study, VanTongeren and Schoene will directly test the hypothesis that bigger magma chambers crystallize faster by applying high precision U-Pb zircon geochronology on 5-10 samples throughout the large Dufek Intrusion of Antarctica. Due to uncertainties in even the highest-precision ID-TIMS analyses, the Dufek Intrusion of Antarctica is the only large layered mafic intrusion on Earth where this research can be accomplished. VanTongeren and Schoene will place the geochronological measurements of the Dufek Intrusion into a comprehensive petrologic framework by linking zircon crystallization to other liquidus phases using mineral geochemistry, zircon saturation models, and petrologic models for intrusion crystallization. The research has the potential to radically change the way that we understand the formation and differentiation of large magma bodies within the shallow crust. Layered intrusions are typically thought to cool and crystallize over very long timescales allowing for significant differentiation of the magmas and reorganization of the cumulate rocks. If the 'bigger magma chambers crystallize faster hypothesis' holds this could reduce the calculated solidification time scales of the early earth and lunar magma oceans and have important implications for magma chamber dynamics of active intraplate volcanism and long-lived continental arcs. Furthermore, while the Dufek Intrusion is one of only two large layered intrusions exposed on Earth, very little is known about its petrologic evolution. The detailed geochemical and petrologic work of VanTongeren and Schoene based on analyses of previously collected samples will provide important observations with which to compare the Dufek and other large magma chambers. | None | None | false | false | |||||
Collaborative Proposal: Late Cenozoic Volcanism and Glaciation at Minna Bluff, Antarctica: Implications for Antarctic Cryosphere History
|
0538033 |
2011-09-14 | Panter, Kurt | No dataset link provided | This project studies glaciovolcanic deposits at Minna Bluff in the western Ross Embayment of Antarctica. Its goal is to determine the history of the Ross Ice Shelf, which is fed by the major ice sheets from both East and West Antarctica. Apart from determining how these ice sheets waxed and waned during a period of dynamic climate change, glaciovolcanic sequences may constrain ice sheet parameters that are critical to numerical models such as thickness, hydrology, and basal thermal regime. This three-year study would map, analyze, and determine the age of key units using 40Ar/39Ar dating. Pilot studies would also be conducted for 36Cl dating of glacial deposits and stable isotope evaluations of alteration. The project offers a complementary record of Ross Ice Shelf behavior to that sampled by ANDRILL. It also improves the general record of McMurdo area volcanostratigraphy, which is important to interpreting landforms, glacial deposits, and ancient ice found in the Dry Valleys.<br/><br/>The broader impacts of this project include improving society's understanding of global climate change, sea level rise, and graduate and undergraduate student education. Outreach efforts include educational programs for public schools and community groups, exhibits for a local science museum, and a project website. | None | None | false | false | |||||
Digital Imaging for Ice Core Analysis
|
9615554 |
2003-05-14 | Fitzpatrick, Joan; Alley, Richard; Spencer, Matthew |
|
This award is for support for two years to develop the technology and methodology for digitizing the photographs and analyzing the thin sections from ice cores. In addition, the application of digital technology for whole-core stratigraphy, using digital photography, image enhancement and image processing will be investigated. The thin section analysis will be piloted with samples already in hand from the Taylor Dome ice core. If successful, these techniques will be applied to samples from the Siple Dome ice core, in cooperation with Principal Investigators already funded to retrieve and examine these sections. The original digital images with all original data annotation files will be distributed to Siple Dome principal investigators for their use in the interpretation of their own data. All software and hardware acquired for this project will become part of the permanent equipment inventory at the U.S. National Ice Core Laboratory and will be available for use by clients at the facility. | None | None | false | false | |||||
Physical and Structural Properties of the Siple Dome Core
|
9527262 |
2003-05-14 | Gow, Tony; Meese, Deb |
|
This award is for support for a program to investigate the visual stratigraphy, index physical properties, relaxation characteristics and crystalline structure of ice cores from Siple Dome, West Antarctica. This investigation will include measurements of a time-priority nature that must be initiated at the drill site on freshly-drilled cores. This will be especially true of cores from the brittle ice zone, which is expected to comprise a significant fraction of the ice core. The brittle zone includes ice in which relaxation , resulting from the release of confining pressure is maximized and leads to significant changes in the mechanical condition of the core that must be considered in relation to the processing and analysis of ice samples for entrapped gas and chemical studies. This relaxation will be monitored via precision density measurements made initially at the drill site and repeated at intervals back in the U.S. Other studies will include measurement of the annual layering in the core to as great a depth as visual stratigraphy can be deciphered, crystal size measurements as a function of depth and age, c-axis fabric studies, and analysis of the physical properties of any debris-bearing basal ice and its relationship to the underlying bedrock. Only through careful documentation and analysis of these key properties can we hope to accurately assess the dynamic state of the ice and the age-depth relationships essential to deciphering the paleoclimate record at this location. | None | None | false | false | |||||
Collaborative Research: Volcanic Record in Antarctic Ice: Implications for Climatic and Eruptive History and Ice Sheet Dynamics of the South Polar Region
|
9527373 9615167 |
2002-06-01 | Dunbar, Nelia; Zielinski, Gregory | Dunbar/Kyle OPP 9527373 Zielinski OPP 9527824 Abstract The Antarctic ice sheets are ideal places to preserve a record the volcanic ash (tephra) layers and chemical aerosol signatures of volcanic eruptions. This record, which is present both in areas of bare blue ice, as well as in deep ice cores, consists of a combination of local eruptions, as well as eruptions from more distant volcanic sources from which glassy shards can be chemically fingerprinted and related to a source volcano. Field work carried out during the 1994/1995 Antarctic field season in the Allan Hills area of Antarctica, and subsequent microbeam chemical analysis and 40Ar/39Ar dating has shown that tephra layers in deep Antarctic ice preserve a coherent, systematic stratigraphy, and can be successfully mapped, dated, chemically fingerprinted and tied to source volcanoes. The combination of chemical fingerprinting of glass shards, and chemical analysis of volcanic aerosols associated with ash layers will allow establishment of a high-resolution chronology of local and distant volcanism that can help understand patterns of significant explosive volcanisms and atmospheric loading and climactic effects associated with volcanic eruptions. Correlation of individual tephra layers, or sets of layers, in blue ice areas, which have been identified in many places the Transantarctic Mountains, will allow the geometry of ice flow in these areas to be better understood and will provide a useful basis for interpreting ice core records. | None | None | false | false |