{"dp_type": "Project", "free_text": "Syowa Station"}
[{"awards": "2326960 Doddi, Abhiram", "bounds_geometry": "POLYGON((36 -68,36.9 -68,37.8 -68,38.7 -68,39.6 -68,40.5 -68,41.4 -68,42.3 -68,43.2 -68,44.1 -68,45 -68,45 -68.2,45 -68.4,45 -68.6,45 -68.8,45 -69,45 -69.2,45 -69.4,45 -69.6,45 -69.8,45 -70,44.1 -70,43.2 -70,42.3 -70,41.4 -70,40.5 -70,39.6 -70,38.7 -70,37.8 -70,36.9 -70,36 -70,36 -69.8,36 -69.6,36 -69.4,36 -69.2,36 -69,36 -68.8,36 -68.6,36 -68.4,36 -68.2,36 -68))", "dataset_titles": null, "datasets": null, "date_created": "Sat, 20 May 2023 00:00:00 GMT", "description": "This is an international collaboration between the University of Colorado, the University of Kyoto, and the National Institute of Polar Research (NIPR) in Tokyo, to carry out a 40-day observational field campaign as part of the Japanese Antarctic Research Expedition (JARE) to Syowa station (690S, 400E) located on the eastern Antarctic coast. This campaign will deploy 44 custom high-altitude in-situ instruments called HYFLITS (\u0027Hypersonic Flight in the Turbulent Stratosphere\u0027) to characterize turbulence in the troposphere and lower stratosphere, as well as conduct intercomparisons with the VHF PANSY radar (\u2018Program of the ANtarctic SYowa\u2019) observations and concurrently deployed LODEWAVE (LOng-Duration balloon Experiment of gravity WAVE over Antarctica) observations.\r\nThis research is motivated by the fact that the sources representing realistic multi-scale gravity wave (GW) drag, and Kelvin Helmholtz Instability (KHI) dynamics in enhanced shear flows, and their contributions to momentum/energy budgets due to turbulent transport/mixing, are largely missing in the current state-of-the-art General Circulation Model (GCM) parameterization schemes. This results in poor and unreliable model forecasts of flow features from local to synoptic scales at southern high latitudes. \r\nThe proposed research aims to utilize high-resolution in-situ turbulence instruments to characterize the multi-scale GW sources and breaking, KHI instabilities emerging in a wide range of scales, Reynolds and Richardson numbers, and background GW environments in the coastal Antarctic region and quantify their contributions to the momentum and turbulence energy budgets in the tropo-stratosphere. Specific research objectives include the following:\r\n1.\tCharacterize the large-scale dynamics of orographic GWs produced by katabatic forcing and non-orographic GWs produced by summer tropopause jets and low-pressure synoptic-scale events employing targeted HYFLITS and LODEWAVE measurements in conjunction with PANSY radar observations.\r\n2.\tQuantify the GW momentum fluxes using HYFLITS and LODEWAVE measurements, and the turbulence dissipation rates using HYFLITS and PANSY radar measurements for representative multi-scale GW and KHI events to assess the zonal and meridional energy and constituent transport, and the variability in turbulence intensities/mixing throughout the troposphere and lower stratosphere.\r\nThe project will deploy the low-cost HYFLITS systems equipped with custom in-situ turbulence and radiosonde instruments at Syowa station. These balloon payloads descend slowly from an apogee of 20 km to provide high-resolution, wake-free turbulence observations, with guidance from real-time PANSY radar echoes and in coordination with the LODEWAVE experiment, to profile the atmospheric states for representative dynamical events.", "east": 45.0, "geometry": "POINT(40.5 -69)", "instruments": null, "is_usap_dc": true, "keywords": "TURBULENCE; ATMOSPHERIC WINDS; VERTICAL PROFILES; ATMOSPHERIC PRESSURE; HUMIDITY; Syowa Station", "locations": "Syowa Station", "north": -68.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Doddi, Abhiram; Lawrence, Dale", "platforms": null, "repositories": null, "science_programs": null, "south": -70.0, "title": "RAPID: In-situ Observations to Characterize Multi-Scale Turbulent Atmospheric Processes Impacting Climate at Southern High Latitudes", "uid": "p0010420", "west": 36.0}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
RAPID: In-situ Observations to Characterize Multi-Scale Turbulent Atmospheric Processes Impacting Climate at Southern High Latitudes
|
2326960 |
2023-05-20 | Doddi, Abhiram; Lawrence, Dale | No dataset link provided | This is an international collaboration between the University of Colorado, the University of Kyoto, and the National Institute of Polar Research (NIPR) in Tokyo, to carry out a 40-day observational field campaign as part of the Japanese Antarctic Research Expedition (JARE) to Syowa station (690S, 400E) located on the eastern Antarctic coast. This campaign will deploy 44 custom high-altitude in-situ instruments called HYFLITS ('Hypersonic Flight in the Turbulent Stratosphere') to characterize turbulence in the troposphere and lower stratosphere, as well as conduct intercomparisons with the VHF PANSY radar (‘Program of the ANtarctic SYowa’) observations and concurrently deployed LODEWAVE (LOng-Duration balloon Experiment of gravity WAVE over Antarctica) observations. This research is motivated by the fact that the sources representing realistic multi-scale gravity wave (GW) drag, and Kelvin Helmholtz Instability (KHI) dynamics in enhanced shear flows, and their contributions to momentum/energy budgets due to turbulent transport/mixing, are largely missing in the current state-of-the-art General Circulation Model (GCM) parameterization schemes. This results in poor and unreliable model forecasts of flow features from local to synoptic scales at southern high latitudes. The proposed research aims to utilize high-resolution in-situ turbulence instruments to characterize the multi-scale GW sources and breaking, KHI instabilities emerging in a wide range of scales, Reynolds and Richardson numbers, and background GW environments in the coastal Antarctic region and quantify their contributions to the momentum and turbulence energy budgets in the tropo-stratosphere. Specific research objectives include the following: 1. Characterize the large-scale dynamics of orographic GWs produced by katabatic forcing and non-orographic GWs produced by summer tropopause jets and low-pressure synoptic-scale events employing targeted HYFLITS and LODEWAVE measurements in conjunction with PANSY radar observations. 2. Quantify the GW momentum fluxes using HYFLITS and LODEWAVE measurements, and the turbulence dissipation rates using HYFLITS and PANSY radar measurements for representative multi-scale GW and KHI events to assess the zonal and meridional energy and constituent transport, and the variability in turbulence intensities/mixing throughout the troposphere and lower stratosphere. The project will deploy the low-cost HYFLITS systems equipped with custom in-situ turbulence and radiosonde instruments at Syowa station. These balloon payloads descend slowly from an apogee of 20 km to provide high-resolution, wake-free turbulence observations, with guidance from real-time PANSY radar echoes and in coordination with the LODEWAVE experiment, to profile the atmospheric states for representative dynamical events. | POLYGON((36 -68,36.9 -68,37.8 -68,38.7 -68,39.6 -68,40.5 -68,41.4 -68,42.3 -68,43.2 -68,44.1 -68,45 -68,45 -68.2,45 -68.4,45 -68.6,45 -68.8,45 -69,45 -69.2,45 -69.4,45 -69.6,45 -69.8,45 -70,44.1 -70,43.2 -70,42.3 -70,41.4 -70,40.5 -70,39.6 -70,38.7 -70,37.8 -70,36.9 -70,36 -70,36 -69.8,36 -69.6,36 -69.4,36 -69.2,36 -69,36 -68.8,36 -68.6,36 -68.4,36 -68.2,36 -68)) | POINT(40.5 -69) | false | false |