{"dp_type": "Project", "free_text": "Sublimation Rate"}
[{"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Putkonen, Jaakko; Bergelin, Marie", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}, {"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past\r\n\r\nRecently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth\u2019s history with samples that are unavailable anywhere else. Ice survives poorly on Earth\u2019s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today.\r\n\r\nWe propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications.\r\n", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "USAP-DC", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}, {"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains
|
1445205 |
2021-07-16 | putkonen, jaakko; Balco, Gregory; Morgan, Daniel |
|
Finding the oldest ice on Earth can tell us about the climate and life forms in the distant past Recently we discovered a mile wide and hundreds of feet thick ice body in Antarctica that is buried under just a few feet of dirt. Thus far our analyses of the dirt suggest that the ice is over million years old. Generally, glacial ice contains tiny bubbles and dirt that was deposited and locked in the ice by the ancient snowfall and today still holds small samples of the atmospheric gases and everything else that was carried by the winds in the past. Such samples may include the amount of greenhouse gases, plant pollen, microbes, and mineral dust. Therefore the glaciers are like archives where we can access and study the Earth’s history with samples that are unavailable anywhere else. Ice survives poorly on Earth’s surface and therefore currently only few ice samples are known that are approximately million years old. Our site has a high potential to harbor perhaps the oldest ice on Earth. However, first we need to sample and date the ice. Our research will also help us understand how these pockets of buried ice can survive such unusually long periods of time. Such understanding will help us study the landforms and history of not only Antarctica but also the Mars where similar dirt covered glaciers are found today. We propose to collect regolith samples through the approximately 1 m thick cover and to core the buried ice in Ong Valley down to 10 m depth to determine the cosmogenic nuclide concentrations both in the regolith and in the embedded mineral matter suspended in the ice. The systematics of the target cosmogenic nuclides (10Be, 26Al, and 21Ne) such as half-lives, isotope production rates, production pathways, and related attenuation lengths allow us to uniquely determine the age of the ice and the rate the ice is sublimating. Our existing samples and analyses reveal accumulation of mineral matter at the base of surficial debris layer and the surface erosion of this debris by eolian processes. The intellectual merit of the proposed activity: Our main objective is to unequivocally determine the age and sublimation rate of two buried massive ice bodies in time scale of thousands to millions of years. The slow sublimation is a fundamentally Antarctic process, and may have altered most of the currently ice-free areas throughout the continent. Similar large, debris covered ice bodies have been recently discovered in Mars as well. Our results may transform the understanding of the longevity of the buried ice bodies and potentially reveal the oldest ice ever found in the interior of the Antarctica. If proven old and slowly sublimating, this buried ice can potentially yield direct information about the atmospheric chemistry, ancient life forms, and geology of greater antiquity than the currently available and sampled ice bodies. The broader impacts resulting from the proposed activity: The results will be relevant to researchers in glaciology, paleoclimatology, planetary geology, and biology. Several students will participate in the project and do field work in Antarctica, work in lab, attend meetings, attend outreach activities, and produce videos. A graduate student will prepare his/her thesis on a topic closely related to the objectives of the proposed research. The results of the research will be published in scientific meetings and publications. | POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2)) | POINT(157.7 -83.25) | false | false | |||||
Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn
|
0338008 |
2010-01-01 | Neumann, Thomas A.; Wemple, Beverley C. |
|
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars. | None | None | false | false |