{"dp_type": "Project", "free_text": "Sublimation Rate"}
[{"awards": "1445205 Putkonen, Jaakko", "bounds_geometry": "POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2))", "dataset_titles": "Cosmogenic-Nuclide data at ICE-D; Old Ice, Ong Valley, Transantarctic Mountains", "datasets": [{"dataset_uid": "200295", "doi": "", "keywords": null, "people": null, "repository": "ICE-D", "science_program": null, "title": "Cosmogenic-Nuclide data at ICE-D", "url": "https://version2.ice-d.org/antarctica/nsf/"}, {"dataset_uid": "601665", "doi": "10.15784/601665", "keywords": "Antarctica; Buried Ice; Cosmogenic Isotopes; Glaciers/ice Sheet; Glaciers/Ice Sheet; Glaciology; Ice Core Records; Old Ice; Ong Valley", "people": "Bergelin, Marie; Putkonen, Jaakko", "repository": "USAP-DC", "science_program": null, "title": "Old Ice, Ong Valley, Transantarctic Mountains", "url": "https://www.usap-dc.org/view/dataset/601665"}], "date_created": "Fri, 16 Jul 2021 00:00:00 GMT", "description": "Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica.", "east": 157.8, "geometry": "POINT(157.7 -83.25)", "instruments": null, "is_usap_dc": true, "keywords": "USAP-DC; USA/NSF; FIELD SURVEYS; Transantarctic Mountains; GLACIERS/ICE SHEETS; AMD; Amd/Us", "locations": "Transantarctic Mountains", "north": -83.2, "nsf_funding_programs": "Antarctic Glaciology; Antarctic Earth Sciences", "paleo_time": null, "persons": "putkonen, jaakko; Balco, Gregory; Morgan, Daniel", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repo": "ICE-D", "repositories": "ICE-D; USAP-DC", "science_programs": null, "south": -83.3, "title": "Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains", "uid": "p0010231", "west": 157.6}, {"awards": "0338008 Wemple, Beverley", "bounds_geometry": null, "dataset_titles": "Laboratory Studies of Isotopic Exchange in Snow; Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "datasets": [{"dataset_uid": "609445", "doi": "10.7265/N51834DX", "keywords": "Atmosphere; Chemistry:ice; Chemistry:Ice; Snow/ice; Snow/Ice; Snow Sublimation Rate", "people": "Neumann, Thomas A.", "repository": "USAP-DC", "science_program": null, "title": "Laboratory Studies of Isotopic Exchange in Snow", "url": "https://www.usap-dc.org/view/dataset/609445"}, {"dataset_uid": "609441", "doi": "10.7265/N54X55R2", "keywords": "Snow/ice; Snow/Ice", "people": "Wemple, Beverley C.", "repository": "USAP-DC", "science_program": null, "title": "Snow Accumulation and Snow Melt in a Mixed Northern Hardwood-Conifer Forest", "url": "https://www.usap-dc.org/view/dataset/609441"}], "date_created": "Fri, 01 Jan 2010 00:00:00 GMT", "description": "This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars.", "east": null, "geometry": null, "instruments": "EARTH REMOTE SENSING INSTRUMENTS \u003e PASSIVE REMOTE SENSING \u003e PHOTON/OPTICAL DETECTORS \u003e CAMERAS \u003e CAMERAS; IN SITU/LABORATORY INSTRUMENTS \u003e PROBES \u003e SNOW TUBE; IN SITU/LABORATORY INSTRUMENTS \u003e TEMPERATURE/HUMIDITY SENSORS \u003e HYGROMETERS \u003e HYGROMETERS", "is_usap_dc": true, "keywords": "Snow Accumulation; Snow Chemistry; Snow Melt; Snowfall; Snow Water Equivalent; LABORATORY; Seasonal Snow Cover; Not provided; Snow; Sublimation Rate; FIELD SURVEYS; FIELD INVESTIGATION", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Neumann, Thomas A.; Wemple, Beverley C.", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; Not provided; OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": null, "title": "Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn", "uid": "p0000132", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Long Term Sublimation/Preservation of Two Separate, Buried Glacier Ice Masses, Ong Valley, Southern Transantarctic Mountains
|
1445205 |
2021-07-16 | putkonen, jaakko; Balco, Gregory; Morgan, Daniel |
|
Putkonen/1445205 This award supports the study of a large body of ice that is buried beneath approximately a meter of debris in the Ong Valley of the Transantarctic Mountains of East Antarctica. Preliminary analyses of this material suggest that it could be over a million years old. Most glacial ice contains tiny air bubbles that have trapped the atmospheric gases and other atmospherically transported materials existing at the time that the ice was deposited such as plant pollen, microbes and mineral dust. Samples will be collected from this buried ice mass, down to a depth of 10 meters, and cosmogenic nuclide concentrations both in the overlying debris and in the till contained in the ice will be measured. This site could contain some of the oldest ice on Earth and studies of the material contained within it may help researchers to better understand the processes involved in its survival for such long periods of time. This work will also help inform scientists about the processes involved in the development of landforms here on earth as well as those on Mars where similar dirt covered glaciers are found today. Samples of the buried ice will be collected in Ong Valley and analyzed to determine the cosmogenic nuclide concentrations in both the overlying debris and in the mineral matter suspended in the ice. The combined analysis of the target cosmogenic nuclides (Beryllium-10, Aluminum-26, and Neon-21) will allow the age of the ice to be uniquely determined and will enable determination of the rate that the ice is sublimating. The intellectual merit of this research is to unequivocally determine the age of the ice and the sublimation rate of the ice in Ong Valley, Antarctica and to better understand if this an uniquely Antarctic process or whether it could exist elsewhere on earth or on other planets. The work may also lead to the recognition of the oldest buried ice ever found on Earth and would provide a source from which direct information about the atmospheric chemistry, ancient life forms, and geology of that time could be measured. The broader impacts of this work are that it will be relevant to researchers in a number of different fields including glaciology, paleoclimatology, planetary geology, and biology. Several students will also participate in the project, conducting Antarctic field work, making measurements in the lab, attending meetings, participating in outreach activities, and producing videos. A graduate student will also write a thesis on this research. The results will be published in scientific journals and presented at conferences. The project requires field work in Antarctica. | POLYGON((157.6 -83.2,157.62 -83.2,157.64 -83.2,157.66 -83.2,157.68 -83.2,157.7 -83.2,157.72 -83.2,157.74 -83.2,157.76 -83.2,157.78 -83.2,157.8 -83.2,157.8 -83.21,157.8 -83.22,157.8 -83.23,157.8 -83.24,157.8 -83.25,157.8 -83.26,157.8 -83.27,157.8 -83.28,157.8 -83.29,157.8 -83.3,157.78 -83.3,157.76 -83.3,157.74 -83.3,157.72 -83.3,157.7 -83.3,157.68 -83.3,157.66 -83.3,157.64 -83.3,157.62 -83.3,157.6 -83.3,157.6 -83.29,157.6 -83.28,157.6 -83.27,157.6 -83.26,157.6 -83.25,157.6 -83.24,157.6 -83.23,157.6 -83.22,157.6 -83.21,157.6 -83.2)) | POINT(157.7 -83.25) | false | false | |||||
Collaborative Research: Laboratory Studies of Isotopic Exchange in Snow and Firn
|
0338008 |
2010-01-01 | Neumann, Thomas A.; Wemple, Beverley C. |
|
This award supports a project to develop a quantitative understanding of the processes active in isotopic exchange between snow/firn and water vapor, which is of paramount importance to ice core interpretation. Carefully controlled laboratory studies will be conducted at a variety of temperatures to empirically measure the mass transfer coefficient (the rate at which water moves from the solid to the vapor phase) for sublimating snow and to determine the time scale for isotopic equilibration between water vapor and ice. In addition the isotopic fractionation coefficient for vapor derived from sublimating ice will be determined and the results will be used to update existing models of mass transfer and isotopic evolution in firn. It is well known that water vapor moves through firn due to diffusion, free convection and forced convection. Although vapor movement through variably-saturated firn due to these processes has been modeled, because of a lack of laboratory data the mass transfer coefficient had to be estimated. Field studies have documented the magnitudes of post-depositional changes, but field studies do not permit rigorous analysis of the relative importance of the many processes which are likely to act in natural snow packs. The results of these laboratory investigations will be broadly applicable to a number of studies and will allow for improvement of existing physically-based models of post-depositional isotopic change, isotopic diffusion in firn, and vapor motion in firn. A major component of this project will be the design and fabrication of the necessary, novel experimental apparatus, which will be facilitated by existing technical expertise, cold room facilities, and laboratory equipment at CRREL. This project is a necessary step toward a quantitative understanding of the isotopic effects of water vapor movement in firn. The proposed work has broader impacts in several different areas. The modeling results will be applicable to a wide range of studies of water in the polar environment, including studies of wind-blown or drifting snow. The proposed collaborative study will partially support a Dartmouth graduate student for three years. This project will also provide support for a young first-time NSF investigator at the University of Vermont. Undergraduate students from Dartmouth will be involved in the research through the Women in Science Project and undergraduate students at the University of Vermont will be supported through the Research Experiences for Undergraduates program. The principal investigators and graduate student will continue their tradition of k-12 school outreach by giving science lessons and talks in local schools each year. Research results will be disseminated through scientific conferences, journal publications, and institutional seminars. | None | None | false | false |