{"dp_type": "Project", "free_text": "Reanalyses"}
[{"awards": "1745097 Cassano, John; 1744878 Lazzara, Matthew", "bounds_geometry": "POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 06 Jul 2021 00:00:00 GMT", "description": "An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet (WAIS), is planned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower (TT) at the WAIS divide field camp (WAIS TT). An unmanned aerial system (UAS) field campaign will be conducted and will supplement the WAIS TT observations by sampling the entire depth of the boundary layer.\r\nThe proposed work will create a unique dataset of year-round atmospheric boundary layer measurements from a portion of the Antarctic continent that has not previously been observed in this manner. The newly acquired dataset will be used to elucidate the processes that modulate the exchange of energy between the ice sheet surface and the overlying atmosphere, to assess the relationships\r\nbetween near surface stability, winds, and radiative forcing, and to compare these relationships observed at the WAIS TT to those described for other portions of the Antarctic continent. The dataset will also be used to assess the ability of the Antarctic Mesoscale Prediction System (AMPS) operational weather forecasting model and current generation reanalyses to accurately represent surface and boundary layer processes in this region of Antarctica.\r\nIntellectual Merit\r\nThe near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet and this atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and rising sea levels. Recent reports from the National Research Council and the Scientific Committee on Antarctic Research have highlighted the critical nature of these aspects of the West Antarctic climate system.\r\nThe proposed research will advance our understanding of how the atmosphere exchanges heat, moisture, and momentum with the ice sheet surface in West Antarctica and will assess our ability to represent these processes in current generation numerical weather prediction and reanalysis products, by addressing the following scientific questions:\r\n- How does the surface layer and lower portion of the atmospheric boundary layer in West Antarctica compare to that over the low elevation ice shelves and the high elevation East Antarctic plateau?\r\n- What are the dominant factors that lead to warm episodes, and potentially periods of melt, over the West Antarctic ice sheet?\r\n- How well do operational forecast models (AMPS) and reanalyses reproduce the observed near surface stability in West Antarctica?\r\n- What are the sources of errors in the modeled near surface atmospheric stability of West Antarctica?\r\nBroader Impacts:\r\nAtmospheric warming and associated melting of the West Antarctic ice sheet has the potential to raise sea level by many meters. The proposed research will explore the processes that control this warming, and as such has broad societal relevance by providing improved understanding of the processes that could lead to large sea level rise.\r\nEducational outreach activities will include classroom visits to K-12 schools and Skype sessions from Antarctica with students at these schools. Photographs, videos, and instrumentation used during this project will be brought to the classrooms. At the college and university level data from the project will be used in classes being developed as part of a new undergraduate atmospheric and oceanic science major at the University of Colorado and a graduate student will be support on this project.\r\nPublic outreach will be in the form of field blogs, media interviews, and either an article for a general interest scientific magazine, such as Scientific American, or as an electronically published book of Antarctic fieldwork photographs.", "east": -109.0, "geometry": "POINT(-112 -79.5)", "instruments": null, "is_usap_dc": true, "keywords": "AMD; Amd/Us; HUMIDITY; ATMOSPHERIC TEMPERATURE; West Antarctic Ice Sheet; BOUNDARY LAYER TEMPERATURE; USAP-DC; ATMOSPHERIC PRESSURE MEASUREMENTS; FIELD SURVEYS; BOUNDARY LAYER WINDS; USA/NSF", "locations": "West Antarctic Ice Sheet", "north": -79.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences; Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Cassano, John; Lazzara, Matthew", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": -80.0, "title": "Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet", "uid": "p0010225", "west": -115.0}, {"awards": "1043580 Reusch, David", "bounds_geometry": "POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47))", "dataset_titles": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "datasets": [{"dataset_uid": "600166", "doi": "10.15784/600166", "keywords": "Antarctica; Atmosphere; Climate Model; Meteorology; Surface Melt", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600166"}, {"dataset_uid": "600386", "doi": "10.15784/600386", "keywords": "Antarctica; Atmosphere; Atmospheric Model; Climate Model; Meteorology; Paleoclimate", "people": "Reusch, David", "repository": "USAP-DC", "science_program": null, "title": "Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "url": "https://www.usap-dc.org/view/dataset/600386"}], "date_created": "Thu, 28 Jul 2016 00:00:00 GMT", "description": "The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. \u003cbr/\u003e\u003cbr/\u003eUsing contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. \u003cbr/\u003e\u003cbr/\u003eThe previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here.", "east": 180.0, "geometry": "POINT(0 -89.999)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -47.0, "nsf_funding_programs": "Antarctic Ocean and Atmospheric Sciences", "paleo_time": null, "persons": "Reusch, David; Lampkin, Derrick", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -90.0, "title": "Collaborative Research: Decoding \u0026 Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs", "uid": "p0000447", "west": -180.0}, {"awards": "1066348 Reusch, David", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Thu, 29 Sep 2011 00:00:00 GMT", "description": "This award supports a three-year effort to use nonlinear techniques to improve understanding of Antarctic climate through studies of observational and forecast model data sets; improve and extend reconstructions of past Antarctic climate from ice-core data; and reconstruct data missing from the observational records, potentially into the pre-instrumental era. The intellectual merit of the proposed activity arises from the opportunity to improve understanding of the past, present and future climate of the Antarctic, a key component in the global climate system. Self-organizing maps (SOMs), an emerging, powerful nonlinear tool, will be used to classify free-atmosphere reanalysis data into archetypal patterns (SOM states). Feed-forward artificial neural networks (FF-ANNs) will then be trained to predict the preferred SOM states from ice-core data covering the instrumental era. The trained FF-ANNs will extend the reconstructions of SOM states to the full length of the ice core data, leading to long-term reconstruction of climate. Histories of surface conditions will be improved by filling data gaps in observational records using FF-ANNs and free-atmosphere reanalysis data. These records may also be extended into the pre-instrumental era using the above ice-core based reconstructions of the atmospheric circulation. The broader impacts of the project relate to activities with the Earth and Mineral Sciences Museum (co-located in the Geosciences building) which will bring project results/tools to a wider audience through development of interactive graphical visualizations/presentations for the Museum\u0027s fixed and traveling GeoWall displays. One or more undergraduates from the College will be involved in the project with an option to also present project results at a national meeting/workshop. The work will also contribute to the continuing development of an \"early career\" investigator, including the opportunity to continue building (and refining) relevant and useful skills in teaching, outreach, collaboration, etc.", "east": null, "geometry": null, "instruments": null, "is_usap_dc": false, "keywords": "LABORATORY; Climate; Reanalyses; Model; Forecast Model; Model Output", "locations": null, "north": null, "nsf_funding_programs": "Antarctic Glaciology", "paleo_time": null, "persons": "Reusch, David", "platforms": "OTHER \u003e PHYSICAL MODELS \u003e LABORATORY", "repositories": null, "science_programs": null, "south": null, "title": "Observations, Reanalyses and Ice Cores: A Synthesis of West Antarctic Climate", "uid": "p0000098", "west": null}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet
|
1745097 1744878 |
2021-07-06 | Cassano, John; Lazzara, Matthew | No dataset link provided | An observational campaign, focused on the atmospheric boundary layer over the West Antarctic ice sheet (WAIS), is planned. A robust set of year-round, autonomous, atmospheric and surface measurements, will be made using an instrumented 30-m tall tower (TT) at the WAIS divide field camp (WAIS TT). An unmanned aerial system (UAS) field campaign will be conducted and will supplement the WAIS TT observations by sampling the entire depth of the boundary layer. The proposed work will create a unique dataset of year-round atmospheric boundary layer measurements from a portion of the Antarctic continent that has not previously been observed in this manner. The newly acquired dataset will be used to elucidate the processes that modulate the exchange of energy between the ice sheet surface and the overlying atmosphere, to assess the relationships between near surface stability, winds, and radiative forcing, and to compare these relationships observed at the WAIS TT to those described for other portions of the Antarctic continent. The dataset will also be used to assess the ability of the Antarctic Mesoscale Prediction System (AMPS) operational weather forecasting model and current generation reanalyses to accurately represent surface and boundary layer processes in this region of Antarctica. Intellectual Merit The near surface atmosphere over West Antarctica is one of the fastest warming locations on the planet and this atmospheric warming, along with oceanic forcing, is contributing to ice sheet melt and rising sea levels. Recent reports from the National Research Council and the Scientific Committee on Antarctic Research have highlighted the critical nature of these aspects of the West Antarctic climate system. The proposed research will advance our understanding of how the atmosphere exchanges heat, moisture, and momentum with the ice sheet surface in West Antarctica and will assess our ability to represent these processes in current generation numerical weather prediction and reanalysis products, by addressing the following scientific questions: - How does the surface layer and lower portion of the atmospheric boundary layer in West Antarctica compare to that over the low elevation ice shelves and the high elevation East Antarctic plateau? - What are the dominant factors that lead to warm episodes, and potentially periods of melt, over the West Antarctic ice sheet? - How well do operational forecast models (AMPS) and reanalyses reproduce the observed near surface stability in West Antarctica? - What are the sources of errors in the modeled near surface atmospheric stability of West Antarctica? Broader Impacts: Atmospheric warming and associated melting of the West Antarctic ice sheet has the potential to raise sea level by many meters. The proposed research will explore the processes that control this warming, and as such has broad societal relevance by providing improved understanding of the processes that could lead to large sea level rise. Educational outreach activities will include classroom visits to K-12 schools and Skype sessions from Antarctica with students at these schools. Photographs, videos, and instrumentation used during this project will be brought to the classrooms. At the college and university level data from the project will be used in classes being developed as part of a new undergraduate atmospheric and oceanic science major at the University of Colorado and a graduate student will be support on this project. Public outreach will be in the form of field blogs, media interviews, and either an article for a general interest scientific magazine, such as Scientific American, or as an electronically published book of Antarctic fieldwork photographs. | POLYGON((-115 -79,-114.4 -79,-113.8 -79,-113.2 -79,-112.6 -79,-112 -79,-111.4 -79,-110.8 -79,-110.2 -79,-109.6 -79,-109 -79,-109 -79.1,-109 -79.2,-109 -79.3,-109 -79.4,-109 -79.5,-109 -79.6,-109 -79.7,-109 -79.8,-109 -79.9,-109 -80,-109.6 -80,-110.2 -80,-110.8 -80,-111.4 -80,-112 -80,-112.6 -80,-113.2 -80,-113.8 -80,-114.4 -80,-115 -80,-115 -79.9,-115 -79.8,-115 -79.7,-115 -79.6,-115 -79.5,-115 -79.4,-115 -79.3,-115 -79.2,-115 -79.1,-115 -79)) | POINT(-112 -79.5) | false | false | |
Collaborative Research: Decoding & Predicting Antarctic Surface Melt Dynamics with Observations, Regional Atmospheric Modeling and GCMs
|
1043580 |
2016-07-28 | Reusch, David; Lampkin, Derrick | The presence of ice ponds from surface melting of glacial ice can be a significant threshold in assessing the stability of ice sheets, and their overall response to a warming climate. Snow melt has a much reduced albedo, leading to additional seasonal melting from warming insolation. Water run-off not only contributes to the mass loss of ice sheets directly, but meltwater reaching the glacial ice bed may lubricate faster flow of ice sheets towards the ocean. Surficial meltwater may also reach the grounding lines of glacial ice through the wedging open of existing crevasses. The occurrence and amount of meltwater refreeze has even been suggested as a paleo proxy of near-surface atmospheric temperature regimes. <br/><br/>Using contemporary remote sensing (microwave) satellite assessment of surface melt occurrence and extent, the predictive skill of regional meteorological models and reanalyses (e.g. WRF, ERA-Interim) to describe the synoptic conditions favourable to surficial melt is to be investigated. Statistical approaches and pattern recognition techniques are argued to provide a context for projecting future ice sheet change. <br/><br/>The previous Intergovernmental Panel on Climate Change (IPCC AR4) commented on our lack of understanding of ice-sheet mass balance processes in polar regions and the potential for sea-level change. The IPPC suggested that the forthcoming AR5 efforts highlight regional cryosphere modeling efforts, such as is proposed here. | POLYGON((-180 -47,-144 -47,-108 -47,-72 -47,-36 -47,0 -47,36 -47,72 -47,108 -47,144 -47,180 -47,180 -51.3,180 -55.6,180 -59.9,180 -64.2,180 -68.5,180 -72.8,180 -77.1,180 -81.4,180 -85.7,180 -90,144 -90,108 -90,72 -90,36 -90,0 -90,-36 -90,-72 -90,-108 -90,-144 -90,-180 -90,-180 -85.7,-180 -81.4,-180 -77.1,-180 -72.8,-180 -68.5,-180 -64.2,-180 -59.9,-180 -55.6,-180 -51.3,-180 -47)) | POINT(0 -89.999) | false | false | ||
Observations, Reanalyses and Ice Cores: A Synthesis of West Antarctic Climate
|
1066348 |
2011-09-29 | Reusch, David | No dataset link provided | This award supports a three-year effort to use nonlinear techniques to improve understanding of Antarctic climate through studies of observational and forecast model data sets; improve and extend reconstructions of past Antarctic climate from ice-core data; and reconstruct data missing from the observational records, potentially into the pre-instrumental era. The intellectual merit of the proposed activity arises from the opportunity to improve understanding of the past, present and future climate of the Antarctic, a key component in the global climate system. Self-organizing maps (SOMs), an emerging, powerful nonlinear tool, will be used to classify free-atmosphere reanalysis data into archetypal patterns (SOM states). Feed-forward artificial neural networks (FF-ANNs) will then be trained to predict the preferred SOM states from ice-core data covering the instrumental era. The trained FF-ANNs will extend the reconstructions of SOM states to the full length of the ice core data, leading to long-term reconstruction of climate. Histories of surface conditions will be improved by filling data gaps in observational records using FF-ANNs and free-atmosphere reanalysis data. These records may also be extended into the pre-instrumental era using the above ice-core based reconstructions of the atmospheric circulation. The broader impacts of the project relate to activities with the Earth and Mineral Sciences Museum (co-located in the Geosciences building) which will bring project results/tools to a wider audience through development of interactive graphical visualizations/presentations for the Museum's fixed and traveling GeoWall displays. One or more undergraduates from the College will be involved in the project with an option to also present project results at a national meeting/workshop. The work will also contribute to the continuing development of an "early career" investigator, including the opportunity to continue building (and refining) relevant and useful skills in teaching, outreach, collaboration, etc. | None | None | false | false |