{"dp_type": "Project", "free_text": "RIVERS/STREAM"}
[{"awards": "2420219 Chignell, Stephen", "bounds_geometry": "POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5))", "dataset_titles": null, "datasets": null, "date_created": "Tue, 13 Aug 2024 00:00:00 GMT", "description": "Geodiversity is the variety of non-living elements like rocks, landforms, and processes in a given area, and plays an especially critical role in Antarctica. Geodiversity provides the conditions in which life can develop and underpins all ecosystems on Earth. It also provides tangible services to people (like construction materials) as well as intangible benefits (such as scientific knowledge from ice cores and artistic inspiration from glaciers). Despite its importance, Antarctic geodiversity remains under-explored, under-described, and inadequately mapped. This knowledge gap is particularly concerning given the threats posed by increasing human activity and environmental and climate change. This project uses a variety of datasets to map Antarctic geodiversity, assess its benefits to people, and help identify priority locations for conservation. \u003cbr/\u003e\u003cbr/\u003eThrough an interdisciplinary and mixed-method approach, this research will fill a major gap in the current understanding and representations of the Antarctic. Using the McMurdo Dry Valleys as a case study, the researcher will combine geospatial data on geology, geomorphology, glaciology, and hydrology to map geodiversity of the region. This project will identify sites of key geosystem services by analyzing geospatial data on placenames, scientific samples, and a web-based participatory mapping survey. The geodiversity and geosystem services data will then be overlaid and combined to identify hotspots of geo-social diversity. The resulting maps will be compared with the region\u2019s protected area boundaries to assess the fit-for-purpose of current environmental management and identify priority locations for future research and conservation. The fellow will promote Antarctic geodiversity broadly, including at UNESCO International Geodiversity Day.\u003cbr/\u003e\u003cbr/\u003eThis award reflects NSF\u0027\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027\u0027s intellectual merit and broader impacts review criteria.", "east": 164.5, "geometry": "POINT(162.25 -77.5)", "instruments": null, "is_usap_dc": true, "keywords": "McMurdo Dry Valleys; LANDSCAPE; ROCKS/MINERALS/CRYSTALS; LANDFORMS; GIS; GLACIAL LANDFORMS; RIVERS/STREAMS", "locations": "McMurdo Dry Valleys", "north": -76.5, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Chignell, Stephen", "platforms": null, "repositories": null, "science_programs": null, "south": -78.5, "title": "Postdoctoral Fellowship: OPP-PRF: Mapping Antarctic Geodiversity: Assessing People, Place, and Abiotic Nature in the McMurdo Dry Valleys", "uid": "p0010476", "west": 160.0}, {"awards": "2224760 Gooseff, Michael", "bounds_geometry": "POINT(162.87 -77)", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER", "datasets": [{"dataset_uid": "200379", "doi": "", "keywords": null, "people": null, "repository": "Environmental Data Initiative (EDI)", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}], "date_created": "Tue, 14 Nov 2023 00:00:00 GMT", "description": "In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world\u0027s critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education \u0026 Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6.", "east": 162.87, "geometry": "POINT(162.87 -77)", "instruments": null, "is_usap_dc": true, "keywords": "COMMUNITY DYNAMICS; ABLATION ZONES/ACCUMULATION ZONES; SOIL TEMPERATURE; DIATOMS; FIELD INVESTIGATION; PERMANENT LAND SITES; BUOYS; GROUND-BASED OBSERVATIONS; SEDIMENTS; SNOW WATER EQUIVALENT; SPECIES/POPULATION INTERACTIONS; WATER-BASED PLATFORMS; FIXED OBSERVATION STATIONS; VIRUSES; PHYTOPLANKTON; ACTIVE LAYER; FIELD SURVEYS; RADIO TRANSMITTERS; DATA COLLECTIONS; ECOLOGICAL DYNAMICS; LANDSCAPE; GROUND WATER; SNOW/ICE CHEMISTRY; LAND-BASED PLATFORMS; ANIMALS/INVERTEBRATES; ECOSYSTEM FUNCTIONS; HUMIDITY; GEOCHEMISTRY; SURFACE WINDS; RIVERS/STREAM; GLACIER MASS BALANCE/ICE SHEET MASS BALANCE; SNOW; LAND RECORDS; ATMOSPHERIC PRESSURE; SURFACE TEMPERATURE; ATMOSPHERIC RADIATION; BACTERIA/ARCHAEA; AIR TEMPERATURE; GLACIERS; SNOW/ICE TEMPERATURE; SOIL CHEMISTRY; METEOROLOGICAL STATIONS; WATER QUALITY/WATER CHEMISTRY; TERRESTRIAL ECOSYSTEMS; MOORED; PROTISTS; STREAMFLOW STATION; Dry Valleys; LAKE/POND; LAKE ICE; SNOW DEPTH; AQUATIC ECOSYSTEMS; SNOW DENSITY; FIELD SITES", "locations": "Dry Valleys", "north": -77.0, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H.", "platforms": "LAND-BASED PLATFORMS; LAND-BASED PLATFORMS \u003e FIELD SITES; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e DATA COLLECTIONS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS; LAND-BASED PLATFORMS \u003e FIELD SITES \u003e RADIO TRANSMITTERS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e FIXED OBSERVATION STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e GROUND-BASED OBSERVATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e METEOROLOGICAL STATIONS; LAND-BASED PLATFORMS \u003e PERMANENT LAND SITES \u003e STREAMFLOW STATION; WATER-BASED PLATFORMS; WATER-BASED PLATFORMS \u003e BUOYS; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED; WATER-BASED PLATFORMS \u003e BUOYS \u003e MOORED \u003e BUOYS", "repo": "Environmental Data Initiative (EDI)", "repositories": "Environmental Data Initiative (EDI)", "science_programs": "LTER", "south": -77.0, "title": "LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem", "uid": "p0010440", "west": 162.87}, {"awards": "1644187 Tulaczyk, Slawek", "bounds_geometry": "POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9))", "dataset_titles": "ANTAEM project airborne EM resistivity data from McMurdo Region", "datasets": [{"dataset_uid": "601373", "doi": "10.15784/601373", "keywords": "Antarctica; Dry Valleys; Hydrology; Ice Shelf; McMurdo; Permafrost", "people": "Tulaczyk, Slawek", "repository": "USAP-DC", "science_program": null, "title": "ANTAEM project airborne EM resistivity data from McMurdo Region", "url": "https://www.usap-dc.org/view/dataset/601373"}], "date_created": "Sun, 13 Sep 2020 00:00:00 GMT", "description": "In Antarctica, millions of years of freezing have led to the development of hundreds of meters of thick permafrost (i.e., frozen ground). Recent research demonstrated that this slow freezing has trapped and concentrated water into local and regional briny aquifers, many times more salty than seawater. Because salt depresses the freezing point of water, these saline brines are able to persist as liquid water at temperatures well below the normal freezing point of freshwater. Such unusual groundwater systems may support microbial life, supply nutrients to coastal ocean and ice-covered lakes, and influence motion of glaciers. These briny aquifers also represent potential terrestrial analogs for deep life habitats on other planets, such as Mars, and provide a testing ground for the search for extraterrestrial water. Whereas much effort has been invested in understanding the physics, chemistry, and biology of surface and near-surface waters in cold polar regions, it has been comparably difficult to investigate deep subsurface aquifers in such settings. Airborne ElectroMagnetics (AEM) subsurface imaging provides an efficient way for mapping salty groundwater. An international collaboration with the University of Aarhus in Denmark will enable knowledge and skill transfer in AEM techniques that will enhance US polar research capabilities and provide US undergraduates and graduate students with unique training experiences. This project will survey over 1000 km2 of ocean and land near McMurdo Station in Antarctica, and will reveal if cold polar deserts hide a subsurface pool of liquid water. This will have significant implications for understanding cold polar glaciers, ice-covered lakes, frozen ground, and polar microbiology as well as for predictions of their response to future change. Improvements in permafrost mapping techniques and understanding of permafrost and of underlying groundwaters will benefit human use of high polar regions in the Antarctic and the Arctic.\u003cbr/\u003e\u003cbr/\u003eThe project will provide the first integrative system-scale overview of subsurface water distribution and hydrological connectivity in a partly ice-free coastal region of Antarctica, the McMurdo Dry Valleys. Liquid water is relatively scarce in this environment but plays an outsized role by influencing, and integrating, biological, biogeochemical, glaciological, and geological processes. Whereas surface hydrology and its role in ecosystem processes has been thoroughly studied over the last several decades, it has been difficult to map out and characterize subsurface water reservoirs and to understand their interactions with regional lakes, glaciers, and coastal waters. The proposed project builds on the \"proof-of-concept\" use of AEM technology in 2011. Improvements in sensor and data processing capabilities will result in about double the depth of penetration of the subsurface during the new data collection when compared to the 2011 proof-of-concept survey, which reached depths of 300-400m. The first field season will focus on collecting deep soundings with a ground-based system in key locations where: (i) independent constraints on subsurface structure exist from past drilling projects, and (ii) the 2011 resistivity dataset indicates the need for deeper penetration and high signal-to-noise ratios achievable only with a ground-based system. The regional airborne survey will take place during the second field season and will yield subsurface electrical resistivity data from across several valleys of different sizes and different ice cover fractions.", "east": 168.5, "geometry": "POINT(164.75 -77.6)", "instruments": null, "is_usap_dc": true, "keywords": "FROZEN GROUND; GLACIERS/ICE SHEETS; HELICOPTER; GROUND WATER; RIVERS/STREAMS; Dry Valleys", "locations": "Dry Valleys", "north": -76.9, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Integrated System Science", "paleo_time": null, "persons": "Tulaczyk, Slawek; Mikucki, Jill", "platforms": "AIR-BASED PLATFORMS \u003e ROTORCRAFT/HELICOPTER \u003e HELICOPTER", "repo": "USAP-DC", "repositories": "USAP-DC", "science_programs": null, "south": -78.3, "title": "Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica", "uid": "p0010129", "west": 161.0}, {"awards": "1745053 Salvatore, Mark; 1744785 Barrett, John; 1744849 Sokol, Eric", "bounds_geometry": "POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56))", "dataset_titles": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "datasets": [{"dataset_uid": "200344", "doi": "10.6073/pasta/9acbbde9abc1e013f8c9fd9c383327f4", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "McMurdo Dry Valleys LTER: Microbial mat biomass and Normalized Difference Vegetation Index (NDVI) values from Lake Fryxell Basin, Antarctica, January 2018", "url": "https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-mcm.263.1"}], "date_created": "Wed, 03 Jul 2019 00:00:00 GMT", "description": "Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys.\r\n\r\nThe goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal will be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures.\r\n\r\nThis award reflects NSF\u0027s statutory mission and has been deemed worthy of support through evaluation using the Foundation\u0027s intellectual merit and broader impacts review criteria.", "east": 163.43, "geometry": "POINT(163.175 -77.615)", "instruments": null, "is_usap_dc": true, "keywords": "RIVERS/STREAM; CYANOBACTERIA (BLUE-GREEN ALGAE); USAP-DC; Taylor Valley; INFRARED IMAGERY; WORLDVIEW-2; WORLDVIEW-3; Antarctica; FIELD INVESTIGATION; Amd/Us; ACTIVE LAYER", "locations": "Antarctica; Taylor Valley", "north": -77.56, "nsf_funding_programs": "Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems; Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Salvatore, Mark; Barrett, John; Sokol, Eric", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD INVESTIGATION; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-2; SPACE-BASED PLATFORMS \u003e EARTH OBSERVATION SATELLITES \u003e WORLDVIEW \u003e WORLDVIEW-3", "repo": "EDI", "repositories": "EDI", "science_programs": null, "south": -77.67, "title": "COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation", "uid": "p0010036", "west": 162.92}, {"awards": "1637708 Gooseff, Michael", "bounds_geometry": "POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25))", "dataset_titles": "EDI Data Portal: McMurdo Dry Valleys LTER; McMurdo Dry Valleys LTER Data Repository", "datasets": [{"dataset_uid": "200037", "doi": "", "keywords": null, "people": null, "repository": "EDI", "science_program": null, "title": "EDI Data Portal: McMurdo Dry Valleys LTER", "url": "https://portal.edirepository.org/nis/browseServlet?searchValue=MCM"}, {"dataset_uid": "200036", "doi": "", "keywords": null, "people": null, "repository": "LTER", "science_program": null, "title": "McMurdo Dry Valleys LTER Data Repository", "url": "http://mcm.lternet.edu/power-search/data-set"}], "date_created": "Fri, 31 May 2019 00:00:00 GMT", "description": "The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert. The McMurdo Long Term Ecological Research (LTER) project has been observing these ecosystems since 1993 and this award will support key long-term measurements, manipulation experiments, synthesis, and modeling to test current theories on ecosystem structure and function. Data collection is focused on meteorology and physical and biological dimensions of soils, streams, lakes, glaciers, and permafrost. The long-term measurements show that biological communities have adapted to the seasonally cold, dark, and arid conditions that prevail for all but a short period in the austral summer. Physical (climate and geological) drivers impart a dynamic connectivity among portions of the Dry Valley landscape over seasonal to millennial time scales. For instance, lakes and soils have been connected through cycles of lake-level rise and fall over the past 20,000 years while streams connect glaciers to lakes over seasonal time scales. Overlaid upon this physical system are biotic communities that are structured by the environment and by the movement of individual organisms within and between the glaciers, streams, lakes, and soils. The new work to be conducted at the McMurdo LTER site will explore how the layers of connectivity in the McMurdo Dry Valleys influence ecosystem structure and function. \r\n\r\nThis project will test the hypothesis that increased ecological connectivity following enhanced melt conditions within the McMurdo Dry Valleys ecosystem will amplify exchange of biota, energy, and matter, homogenizing ecosystem structure and functioning. This hypothesis will be tested with new and continuing experiments that examine: 1) how climate variation alters connectivity among landscape units, and 2) how biota are connected across a heterogeneous landscape using state-of-the-science tools and methods including automated sensor networks, analysis of seasonal satellite imagery, biogeochemical analyses, and next-generation sequencing. McMurdo LTER education programs and outreach activities will be continued, and expanded with new programs associated with the 200th anniversary of the first recorded sightings of Antarctica. These activities will advance societal understanding of how polar ecosystems respond to change. McMurdo LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science, and lead the development of international environmental stewardship protocols for human activities in the region.", "east": 165.0, "geometry": "POINT(162.5 -77.875)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "ECOSYSTEM FUNCTIONS; NOT APPLICABLE; Antarctica; RIVERS/STREAM; USAP-DC; TERRESTRIAL ECOSYSTEMS; LAKE/POND; Polar", "locations": "Antarctica; Polar", "north": -77.25, "nsf_funding_programs": "Antarctic Integrated System Science", "paleo_time": null, "persons": "Gooseff, Michael N.; Takacs-Vesbach, Cristina; Howkins, Adrian; McKnight, Diane; Doran, Peter; Adams, Byron; Barrett, John; Morgan-Kiss, Rachael; Priscu, John", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "EDI", "repositories": "EDI; LTER", "science_programs": "LTER", "south": -78.5, "title": "LTER: Ecosystem Response to Amplified Landscape Connectivity in the McMurdo Dry Valleys, Antarctica", "uid": "p0010031", "west": 160.0}, {"awards": "1246292 Cary, Stephen", "bounds_geometry": "POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215))", "dataset_titles": "Carbon-fixation rates and associated microbial communities; Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils; Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ; Microbial community composition of transiently wetted Antarctic Dry Valley soils.; Microbial population dynamics along a terrestrial Antarctic moisture gradient; Microbial population dynamics along a terrestrial wetted gradient", "datasets": [{"dataset_uid": "002738", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities", "url": "https://www.ncbi.nlm.nih.gov/protein/?term=craig%20cary"}, {"dataset_uid": "002737", "doi": "", "keywords": null, "people": null, "repository": "KNB", "science_program": null, "title": "Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils", "url": "https://knb.ecoinformatics.org/view/knb.756.1"}, {"dataset_uid": "002736", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial Antarctic moisture gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB27415"}, {"dataset_uid": "200015", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Microbial community composition of transiently wetted Antarctic Dry Valley soils.", "url": "https://www.ncbi.nlm.nih.gov/popset/?term=KP836071%20to%20KP836108"}, {"dataset_uid": "200014", "doi": "", "keywords": null, "people": null, "repository": "EMBL", "science_program": null, "title": "Microbial population dynamics along a terrestrial wetted gradient", "url": "https://www.ebi.ac.uk/ena/data/view/PRJEB7939"}, {"dataset_uid": "200013", "doi": "", "keywords": null, "people": null, "repository": "NCBI GenBank", "science_program": null, "title": "Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys ", "url": "https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA505820"}], "date_created": "Wed, 14 Mar 2018 00:00:00 GMT", "description": "The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment.\u003cbr/\u003e\u003cbr/\u003eThe Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications.", "east": 163.85613, "geometry": "POINT(162.608375 -77.64779)", "instruments": "NOT APPLICABLE \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "is_usap_dc": true, "keywords": "NOT APPLICABLE; Antarctica; USAP-DC; RIVERS/STREAM", "locations": "Antarctica", "north": -77.20215, "nsf_funding_programs": "Antarctic Organisms and Ecosystems", "paleo_time": null, "persons": "Cary, Stephen", "platforms": "OTHER \u003e NOT APPLICABLE \u003e NOT APPLICABLE", "repo": "NCBI GenBank", "repositories": "EMBL; KNB; NCBI GenBank", "science_programs": null, "south": -78.09343, "title": "Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales", "uid": "p0000235", "west": 161.36062}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Postdoctoral Fellowship: OPP-PRF: Mapping Antarctic Geodiversity: Assessing People, Place, and Abiotic Nature in the McMurdo Dry Valleys
|
2420219 |
2024-08-13 | Chignell, Stephen | No dataset link provided | Geodiversity is the variety of non-living elements like rocks, landforms, and processes in a given area, and plays an especially critical role in Antarctica. Geodiversity provides the conditions in which life can develop and underpins all ecosystems on Earth. It also provides tangible services to people (like construction materials) as well as intangible benefits (such as scientific knowledge from ice cores and artistic inspiration from glaciers). Despite its importance, Antarctic geodiversity remains under-explored, under-described, and inadequately mapped. This knowledge gap is particularly concerning given the threats posed by increasing human activity and environmental and climate change. This project uses a variety of datasets to map Antarctic geodiversity, assess its benefits to people, and help identify priority locations for conservation. <br/><br/>Through an interdisciplinary and mixed-method approach, this research will fill a major gap in the current understanding and representations of the Antarctic. Using the McMurdo Dry Valleys as a case study, the researcher will combine geospatial data on geology, geomorphology, glaciology, and hydrology to map geodiversity of the region. This project will identify sites of key geosystem services by analyzing geospatial data on placenames, scientific samples, and a web-based participatory mapping survey. The geodiversity and geosystem services data will then be overlaid and combined to identify hotspots of geo-social diversity. The resulting maps will be compared with the region’s protected area boundaries to assess the fit-for-purpose of current environmental management and identify priority locations for future research and conservation. The fellow will promote Antarctic geodiversity broadly, including at UNESCO International Geodiversity Day.<br/><br/>This award reflects NSF''s statutory mission and has been deemed worthy of support through evaluation using the Foundation''s intellectual merit and broader impacts review criteria. | POLYGON((160 -76.5,160.45 -76.5,160.9 -76.5,161.35 -76.5,161.8 -76.5,162.25 -76.5,162.7 -76.5,163.15 -76.5,163.6 -76.5,164.05 -76.5,164.5 -76.5,164.5 -76.7,164.5 -76.9,164.5 -77.1,164.5 -77.3,164.5 -77.5,164.5 -77.7,164.5 -77.9,164.5 -78.1,164.5 -78.3,164.5 -78.5,164.05 -78.5,163.6 -78.5,163.15 -78.5,162.7 -78.5,162.25 -78.5,161.8 -78.5,161.35 -78.5,160.9 -78.5,160.45 -78.5,160 -78.5,160 -78.3,160 -78.1,160 -77.9,160 -77.7,160 -77.5,160 -77.3,160 -77.1,160 -76.9,160 -76.7,160 -76.5)) | POINT(162.25 -77.5) | false | false | |||||
LTER: MCM6 - The Roles of Legacy and Ecological Connectivity in a Polar Desert Ecosystem
|
2224760 |
2023-11-14 | Gooseff, Michael N.; Adams, Byron; Barrett, John; Diaz, Melisa A.; Doran, Peter; Dugan, Hilary A.; Mackey, Tyler; Morgan-Kiss, Rachael; Salvatore, Mark; Takacs-Vesbach, Cristina; Zeglin, Lydia H. |
|
In this iteration of the McMurdo LTER project (MCM6), the project team will test ecological connectivity and stability theory in a system subject to strong physical drivers (geological legacies, extreme seasonality, and contemporary climate change) and driven by microbial organisms. Since microorganisms regulate most of the world's critical biogeochemical functions, these insights will be relevant far beyond polar ecosystems and will inform understanding and expectations of how natural and managed ecosystems respond to ongoing anthropogenic global change. MCM6 builds on previous foundational research, both in Antarctica and within the LTER network, to consider the temporal aspects of connectivity and how it relates to ecosystem stability. The project will examine how changes in the temporal variability of ecological connectivity interact with the legacies of the existing landscape that have defined habitats and biogeochemical cycling for millennia. The project team hypothesizes that the structure and functioning of the MDV ecosystem is dependent upon legacies and the contemporary frequency, duration, and magnitude of ecological connectivity. This hypothesis will be tested with new and continuing monitoring, experiments, and analyses of long-term datasets to examine: 1) the stability of these ecosystems as reflected by sentinel taxa, 2) the relationship between ecological legacies and ecosystem resilience, 3) the importance of material carryover during periods of low connectivity to maintaining biological activity and community stability, and 4) how changes in disturbance dynamics disrupt ecological cycles through the polar night. Tests of these hypotheses will occur in field and modeling activities using new and long-term datasets already collected. New datasets resulting from field activities will be made freely available via widely-known online databases (MCM LTER and EDI). The project team has also developed six Antarctic Core Ideas that encompass themes from data literacy to polar food webs and form a consistent thread across the education and outreach activities. Building on past success, collaborations will be established with teachers and artists embedded within the science teams, who will work to develop educational modules with science content informed by direct experience and artistic expression. Undergraduate mentoring efforts will incorporate computational methods through a new data-intensive scientific training program for MCM REU students. The project will also establish an Antarctic Research Experience for Community College Students at CU Boulder, to provide an immersive educational and research experience for students from diverse backgrounds in community colleges. MCM LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science and stewardship. Historically underrepresented participation will be expanded at each level of the project. To aid in these efforts, the project has established Education & Outreach and Diversity, Equity, and Inclusion committees to lead, coordinate, support, and integrate these activities through all aspects of MCM6. | POINT(162.87 -77) | POINT(162.87 -77) | false | false | |||||
Collaborative Research: Antarctic Airborne ElectroMagnetics (ANTAEM) - Revealing Subsurface Water in Coastal Antarctica
|
1644187 |
2020-09-13 | Tulaczyk, Slawek; Mikucki, Jill |
|
In Antarctica, millions of years of freezing have led to the development of hundreds of meters of thick permafrost (i.e., frozen ground). Recent research demonstrated that this slow freezing has trapped and concentrated water into local and regional briny aquifers, many times more salty than seawater. Because salt depresses the freezing point of water, these saline brines are able to persist as liquid water at temperatures well below the normal freezing point of freshwater. Such unusual groundwater systems may support microbial life, supply nutrients to coastal ocean and ice-covered lakes, and influence motion of glaciers. These briny aquifers also represent potential terrestrial analogs for deep life habitats on other planets, such as Mars, and provide a testing ground for the search for extraterrestrial water. Whereas much effort has been invested in understanding the physics, chemistry, and biology of surface and near-surface waters in cold polar regions, it has been comparably difficult to investigate deep subsurface aquifers in such settings. Airborne ElectroMagnetics (AEM) subsurface imaging provides an efficient way for mapping salty groundwater. An international collaboration with the University of Aarhus in Denmark will enable knowledge and skill transfer in AEM techniques that will enhance US polar research capabilities and provide US undergraduates and graduate students with unique training experiences. This project will survey over 1000 km2 of ocean and land near McMurdo Station in Antarctica, and will reveal if cold polar deserts hide a subsurface pool of liquid water. This will have significant implications for understanding cold polar glaciers, ice-covered lakes, frozen ground, and polar microbiology as well as for predictions of their response to future change. Improvements in permafrost mapping techniques and understanding of permafrost and of underlying groundwaters will benefit human use of high polar regions in the Antarctic and the Arctic.<br/><br/>The project will provide the first integrative system-scale overview of subsurface water distribution and hydrological connectivity in a partly ice-free coastal region of Antarctica, the McMurdo Dry Valleys. Liquid water is relatively scarce in this environment but plays an outsized role by influencing, and integrating, biological, biogeochemical, glaciological, and geological processes. Whereas surface hydrology and its role in ecosystem processes has been thoroughly studied over the last several decades, it has been difficult to map out and characterize subsurface water reservoirs and to understand their interactions with regional lakes, glaciers, and coastal waters. The proposed project builds on the "proof-of-concept" use of AEM technology in 2011. Improvements in sensor and data processing capabilities will result in about double the depth of penetration of the subsurface during the new data collection when compared to the 2011 proof-of-concept survey, which reached depths of 300-400m. The first field season will focus on collecting deep soundings with a ground-based system in key locations where: (i) independent constraints on subsurface structure exist from past drilling projects, and (ii) the 2011 resistivity dataset indicates the need for deeper penetration and high signal-to-noise ratios achievable only with a ground-based system. The regional airborne survey will take place during the second field season and will yield subsurface electrical resistivity data from across several valleys of different sizes and different ice cover fractions. | POLYGON((161 -76.9,161.75 -76.9,162.5 -76.9,163.25 -76.9,164 -76.9,164.75 -76.9,165.5 -76.9,166.25 -76.9,167 -76.9,167.75 -76.9,168.5 -76.9,168.5 -77.04,168.5 -77.18,168.5 -77.32,168.5 -77.46,168.5 -77.6,168.5 -77.74,168.5 -77.88,168.5 -78.02,168.5 -78.16,168.5 -78.3,167.75 -78.3,167 -78.3,166.25 -78.3,165.5 -78.3,164.75 -78.3,164 -78.3,163.25 -78.3,162.5 -78.3,161.75 -78.3,161 -78.3,161 -78.16,161 -78.02,161 -77.88,161 -77.74,161 -77.6,161 -77.46,161 -77.32,161 -77.18,161 -77.04,161 -76.9)) | POINT(164.75 -77.6) | false | false | |||||
COLLABORATIVE RESEARCH: Remote Characterization of Microbial Mats in Taylor Valley, Antarctica, through In Situ Sampling and Spectral Validation
|
1745053 1744785 1744849 |
2019-07-03 | Salvatore, Mark; Barrett, John; Sokol, Eric |
|
Microbial mats are found throughout the McMurdo Dry Valleys where summer snowmelt provides liquid water that allows these mats to flourish. Researchers have long studied the environmental conditions microbial mats need to grow. Despite these efforts, it has been difficult to develop a broad picture of these unique ecosystems. Recent advances in satellite technology now provide researchers an exciting new tool to study these special Antarctic ecosystems from space using the unique spectral signatures associated with microbial mats. This new technology not only offers the promise that microbial mats can be mapped and studied from space, this research will also help protect these delicate environments from potentially harmful human impacts that can occur when studying them from the ground. This project will use satellite imagery and spectroscopic techniques to identify and map microbial mat communities and relate their properties and distributions to both field and lab-based measurements. This research provides an exciting new tool to help document and understand the distribution of a major component of the Antarctic ecosystem in the McMurdo Dry Valleys. The goal of this project is to establish quantitative relationships between spectral signatures derived from orbit and the physiological status and biogeochemical properties of microbial mat communities in Taylor Valley, Antarctica, as measured by field and laboratory analyses on collected samples. The goal will be met by (1) refining atmospheric correction techniques using in situ radiometric rectification to derive accurate surface spectra; (2) collecting multispectral orbital images concurrent with in situ sampling and spectral measurements in the field to ensure temporal comparability; (3) measuring sediment, water, and microbial mat samples for organic and inorganic carbon content, essential biogeochemical nutrients, and chlorophyll-a to determine relevant mat characteristics; and (4) quantitatively associating these laboratory-derived characteristics with field-derived and orbital spectral signatures and parameters. The result of this work will be a more robust quantitative link between the distribution of microbial mat communities and their biogeochemical properties to landscape-scale spectral signatures. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. | POLYGON((162.92 -77.56,162.971 -77.56,163.022 -77.56,163.073 -77.56,163.124 -77.56,163.175 -77.56,163.226 -77.56,163.277 -77.56,163.328 -77.56,163.379 -77.56,163.43 -77.56,163.43 -77.571,163.43 -77.582,163.43 -77.593,163.43 -77.604,163.43 -77.615,163.43 -77.626,163.43 -77.637,163.43 -77.648,163.43 -77.659,163.43 -77.67,163.379 -77.67,163.328 -77.67,163.277 -77.67,163.226 -77.67,163.175 -77.67,163.124 -77.67,163.073 -77.67,163.022 -77.67,162.971 -77.67,162.92 -77.67,162.92 -77.659,162.92 -77.648,162.92 -77.637,162.92 -77.626,162.92 -77.615,162.92 -77.604,162.92 -77.593,162.92 -77.582,162.92 -77.571,162.92 -77.56)) | POINT(163.175 -77.615) | false | false | |||||
LTER: Ecosystem Response to Amplified Landscape Connectivity in the McMurdo Dry Valleys, Antarctica
|
1637708 |
2019-05-31 | Gooseff, Michael N.; Takacs-Vesbach, Cristina; Howkins, Adrian; McKnight, Diane; Doran, Peter; Adams, Byron; Barrett, John; Morgan-Kiss, Rachael; Priscu, John |
|
The McMurdo Dry Valleys, Antarctica, are a mosaic of terrestrial and aquatic ecosystems in a cold desert. The McMurdo Long Term Ecological Research (LTER) project has been observing these ecosystems since 1993 and this award will support key long-term measurements, manipulation experiments, synthesis, and modeling to test current theories on ecosystem structure and function. Data collection is focused on meteorology and physical and biological dimensions of soils, streams, lakes, glaciers, and permafrost. The long-term measurements show that biological communities have adapted to the seasonally cold, dark, and arid conditions that prevail for all but a short period in the austral summer. Physical (climate and geological) drivers impart a dynamic connectivity among portions of the Dry Valley landscape over seasonal to millennial time scales. For instance, lakes and soils have been connected through cycles of lake-level rise and fall over the past 20,000 years while streams connect glaciers to lakes over seasonal time scales. Overlaid upon this physical system are biotic communities that are structured by the environment and by the movement of individual organisms within and between the glaciers, streams, lakes, and soils. The new work to be conducted at the McMurdo LTER site will explore how the layers of connectivity in the McMurdo Dry Valleys influence ecosystem structure and function. This project will test the hypothesis that increased ecological connectivity following enhanced melt conditions within the McMurdo Dry Valleys ecosystem will amplify exchange of biota, energy, and matter, homogenizing ecosystem structure and functioning. This hypothesis will be tested with new and continuing experiments that examine: 1) how climate variation alters connectivity among landscape units, and 2) how biota are connected across a heterogeneous landscape using state-of-the-science tools and methods including automated sensor networks, analysis of seasonal satellite imagery, biogeochemical analyses, and next-generation sequencing. McMurdo LTER education programs and outreach activities will be continued, and expanded with new programs associated with the 200th anniversary of the first recorded sightings of Antarctica. These activities will advance societal understanding of how polar ecosystems respond to change. McMurdo LTER will continue its mission of training and mentoring students, postdocs, and early career scientists as the next generation of leaders in polar ecosystem science, and lead the development of international environmental stewardship protocols for human activities in the region. | POLYGON((160 -77.25,160.5 -77.25,161 -77.25,161.5 -77.25,162 -77.25,162.5 -77.25,163 -77.25,163.5 -77.25,164 -77.25,164.5 -77.25,165 -77.25,165 -77.375,165 -77.5,165 -77.625,165 -77.75,165 -77.875,165 -78,165 -78.125,165 -78.25,165 -78.375,165 -78.5,164.5 -78.5,164 -78.5,163.5 -78.5,163 -78.5,162.5 -78.5,162 -78.5,161.5 -78.5,161 -78.5,160.5 -78.5,160 -78.5,160 -78.375,160 -78.25,160 -78.125,160 -78,160 -77.875,160 -77.75,160 -77.625,160 -77.5,160 -77.375,160 -77.25)) | POINT(162.5 -77.875) | false | false | |||||
Collaborative Research: Importance of Heterotrophic and Phototrophic N2 Fixation in the McMurdo Dry Valleys on Local, Regional and Landscape Scales
|
1246292 |
2018-03-14 | Cary, Stephen | The McMurdo Dry Valleys in Antarctica are recognized as being the driest, coldest and probably one of the harshest environments on Earth. In addition to the lack of water, the biota in the valleys face a very limited supply of nutrients such as nitrogen compounds - necessary for protein synthesis. The glacial streams of the Dry Valleys have extensive cyanobacterial (blue green algae) mats that are a major source of carbon and nitrogen compounds to biota in this region. While cyanobacteria in streams are important as a source of these compounds, other non-photosynthetic bacteria also contribute a significant fraction (~50%) of fixed nitrogen compounds to valley biota. This research effort will involve an examination of exactly which non-phototrophic bacteria are involved in nitrogen fixation and what environmental factors are responsible for controlling nitrogen fixation by these microbes. This work will resolve the environmental factors that control the activity, abundance and diversity of nitrogen-fixing microbes across four of the McMurdo Dry Valleys. This will allow for comparisons among sites of differing latitude, temperature, elevation and exposure to water. These results will be integrated into a landscape wetness model that will help determine the impact of both cyanobacterial and non-photosynthetic nitrogen fixing microorganisms in this very harsh environment.<br/><br/>The Dry Valleys in many ways resemble the Martian environment, and understanding the primitive life and very simple nutrient cycling in the Dry Valleys has relevance for understanding how life might have once existed on other planets. Furthermore, the study of microbes from extreme environments has resulted in numerous biotechnological applications such as the polymerase chain reaction for amplifying DNA and mechanisms for freeze resistance in agricultural crops. Thus, this research should yield insights into how biota survive in extreme environments, and these insights could lead to other commercial applications. | POLYGON((161.36062 -77.20215,161.610171 -77.20215,161.859722 -77.20215,162.109273 -77.20215,162.358824 -77.20215,162.608375 -77.20215,162.857926 -77.20215,163.107477 -77.20215,163.357028 -77.20215,163.606579 -77.20215,163.85613 -77.20215,163.85613 -77.291278,163.85613 -77.380406,163.85613 -77.469534,163.85613 -77.558662,163.85613 -77.64779,163.85613 -77.736918,163.85613 -77.826046,163.85613 -77.915174,163.85613 -78.004302,163.85613 -78.09343,163.606579 -78.09343,163.357028 -78.09343,163.107477 -78.09343,162.857926 -78.09343,162.608375 -78.09343,162.358824 -78.09343,162.109273 -78.09343,161.859722 -78.09343,161.610171 -78.09343,161.36062 -78.09343,161.36062 -78.004302,161.36062 -77.915174,161.36062 -77.826046,161.36062 -77.736918,161.36062 -77.64779,161.36062 -77.558662,161.36062 -77.469534,161.36062 -77.380406,161.36062 -77.291278,161.36062 -77.20215)) | POINT(162.608375 -77.64779) | false | false |