{"dp_type": "Project", "free_text": "Permian Extinction"}
[{"awards": "1947094 Sidor, Christian", "bounds_geometry": null, "dataset_titles": null, "datasets": null, "date_created": "Wed, 30 Jun 2021 00:00:00 GMT", "description": "The research supported by this grant centers on the evolution of fossil amphibians (temnospondyls) from the Early Triassic, a crucial time interval in the evolution of life on Earth following the end-Permian mass extinction, specifically based on fossil material from Antarctica, a high-latitude paleoenvironment that may have served as a refuge for tetrapods across the extinction event. Previous records of temnospondyls, mostly reported several decades ago, are highly fragmentary, and their original interpretations are considered dubious or demonstrably erroneous by contemporary workers. The Antarctic record of temnospondyls is of great import in understanding the biotic recovery in terrestrial environments for several reasons. Firstly, temnospondyls, like amphibians today, were highly speciose in the Triassic but were also some of the most susceptible to environmental perturbations and instability. Therefore, temnospondyls provide key insights into the paleoenvironmental conditions, either in place of or alongside other lines of data. Secondly, the record of temnospondyls from the Early Triassic is quite rich, but it is also restricted to a few densely sampled regions, such as the Karoo Basin of South Africa. In order to ascertain whether observed patterns such as an unusual abundance of small-bodied taxa or a lack of faunal overlap between different depositional basins (endemism) are real or merely artifactual, study of additional, less sampled regions takes on great import. Recent collection of substantial new temnospondyl material from several horizons in the Triassic exposure of Antarctica provides the requisite data to begin to address these questions. Finally, correlating the Triassic rocks of Antarctica with those of adjacent regions is largely reliant on comparisons of faunal assemblages. In particular, the middle Fremouw Formation, one of the horizons from which new temnospondyl material was collected, remains of uncertain relation and age due to the paucity of described material. ", "east": null, "geometry": null, "instruments": null, "is_usap_dc": true, "keywords": "Temnospondyls; MACROFOSSILS; USA/NSF; FIELD SURVEYS; Permian Extinction; Triassic; Amd/Us; USAP-DC; AMD; ANIMALS/VERTEBRATES; Shackleton Glacier", "locations": "Shackleton Glacier", "north": null, "nsf_funding_programs": "Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN", "persons": "Sidor, Christian", "platforms": "LAND-BASED PLATFORMS \u003e FIELD SITES \u003e FIELD SURVEYS", "repositories": null, "science_programs": null, "south": null, "title": "A non-amniote perspective on the recovery from the end-Permian extinction at high latitudes: paleobiology of Early Triassic temnospondyls from Antarctica", "uid": "p0010217", "west": null}, {"awards": "0551163 Sidor, Christian; 0440919 Isbell, John; 0440954 Miller, Molly", "bounds_geometry": "POLYGON((159.3 -76.59,159.542 -76.59,159.784 -76.59,160.026 -76.59,160.268 -76.59,160.51 -76.59,160.752 -76.59,160.994 -76.59,161.236 -76.59,161.478 -76.59,161.72 -76.59,161.72 -76.811,161.72 -77.032,161.72 -77.253,161.72 -77.474,161.72 -77.695,161.72 -77.916,161.72 -78.137,161.72 -78.358,161.72 -78.579,161.72 -78.8,161.478 -78.8,161.236 -78.8,160.994 -78.8,160.752 -78.8,160.51 -78.8,160.268 -78.8,160.026 -78.8,159.784 -78.8,159.542 -78.8,159.3 -78.8,159.3 -78.579,159.3 -78.358,159.3 -78.137,159.3 -77.916,159.3 -77.695,159.3 -77.474,159.3 -77.253,159.3 -77.032,159.3 -76.811,159.3 -76.59))", "dataset_titles": "Burke Museum of Natural History and Culture, University of Washington ID#s UWBM 88593-88601, UWBM 88617; Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "datasets": [{"dataset_uid": "600045", "doi": "10.15784/600045", "keywords": "Allan Hills; Antarctica; Paleontology; Sample/collection Description; Sample/Collection Description; Solid Earth", "people": "Miller, Molly", "repository": "USAP-DC", "science_program": "Allan Hills", "title": "Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "url": "https://www.usap-dc.org/view/dataset/600045"}, {"dataset_uid": "000124", "doi": "", "keywords": null, "people": null, "repository": "Burke Museum", "science_program": null, "title": "Burke Museum of Natural History and Culture, University of Washington ID#s UWBM 88593-88601, UWBM 88617", "url": "http://www.washington.edu/burkemuseum/collections/"}], "date_created": "Mon, 12 Oct 2009 00:00:00 GMT", "description": "This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate.\u003cbr/\u003e\u003cbr/\u003eIn terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems.", "east": 161.72, "geometry": "POINT(160.51 -77.695)", "instruments": null, "is_usap_dc": true, "keywords": "Not provided", "locations": null, "north": -76.59, "nsf_funding_programs": "Antarctic Earth Sciences; Antarctic Earth Sciences; Antarctic Earth Sciences", "paleo_time": "PHANEROZOIC \u003e PALEOZOIC \u003e CARBONIFEROUS \u003e PENNSYLVANIAN; PHANEROZOIC \u003e PALEOZOIC \u003e PERMIAN; PHANEROZOIC \u003e MESOZOIC \u003e TRIASSIC", "persons": "Miller, Molly; Sidor, Christian; Isbell, John", "platforms": "Not provided", "repo": "USAP-DC", "repositories": "Burke Museum; USAP-DC", "science_programs": "Allan Hills", "south": -78.8, "title": "Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica", "uid": "p0000207", "west": 159.3}]
X
X
Help on the Results MapX
This window can be dragged by its header, and can be resized from the bottom right corner.
Clicking the Layers button - the blue square in the top left of the Results Map - will display a list of map layers you can add or remove
from the currently displayed map view.
The Results Map and the Results Table
- The Results Map displays the centroids of the geographic bounds of all the results returned by the search.
- Results that are displayed in the current map view will be highlighted in blue and brought to the top of the Results Table.
- As the map is panned or zoomed, the highlighted rows in the table will update.
- If you click on a centroid on the map, it will turn yellow and display a popup with details for that project/dataset - including a link to the landing page. The bounds for the project(s)/dataset(s) selected will be displayed in red. The selected result(s) will be highlighted in red and brought to the top of the table.
- The default table sorting order is: Selected, Visible, Date (descending), but this can be changed by clicking on column headers in the table.
- Selecting Show on Map for an individual row will both display the geographic bounds for that result on a mini map, and also display the bounds and highlight the centroid on the Results Map.
- Clicking the 'Show boundaries' checkbox at the top of the Results Map will display all the bounds for the filtered results.
Defining a search area on the Results Map
- If you click on the Rectangle or Polygon icons in the top right of the Results Map, you can define a search area which will be added to any other search criteria already selected.
- After you have drawn a polygon, you can edit it using the Edit Geometry dropdown in the search form at the top.
- Clicking Clear in the map will clear any drawn polygon.
- Clicking Search in the map, or Search on the form will have the same effect.
- The returned results will be any projects/datasets with bounds that intersect the polygon.
- Use the Exclude project/datasets checkbox to exclude any projects/datasets that cover the whole Antarctic region.
Viewing map layers on the Results Map
Older retrieved projects from AMD. Warning: many have incomplete information.
To sort the table of search results, click the header of the column you wish to search by. To sort by multiple columns, hold down the shift key whilst selecting the sort columns in order.
Project Title/Abstract/Map | NSF Award(s) | Date Created | PIs / Scientists | Dataset Links and Repositories | Abstract | Bounds Geometry | Geometry | Selected | Visible | |
---|---|---|---|---|---|---|---|---|---|---|
A non-amniote perspective on the recovery from the end-Permian extinction at high latitudes: paleobiology of Early Triassic temnospondyls from Antarctica
|
1947094 |
2021-06-30 | Sidor, Christian | No dataset link provided | The research supported by this grant centers on the evolution of fossil amphibians (temnospondyls) from the Early Triassic, a crucial time interval in the evolution of life on Earth following the end-Permian mass extinction, specifically based on fossil material from Antarctica, a high-latitude paleoenvironment that may have served as a refuge for tetrapods across the extinction event. Previous records of temnospondyls, mostly reported several decades ago, are highly fragmentary, and their original interpretations are considered dubious or demonstrably erroneous by contemporary workers. The Antarctic record of temnospondyls is of great import in understanding the biotic recovery in terrestrial environments for several reasons. Firstly, temnospondyls, like amphibians today, were highly speciose in the Triassic but were also some of the most susceptible to environmental perturbations and instability. Therefore, temnospondyls provide key insights into the paleoenvironmental conditions, either in place of or alongside other lines of data. Secondly, the record of temnospondyls from the Early Triassic is quite rich, but it is also restricted to a few densely sampled regions, such as the Karoo Basin of South Africa. In order to ascertain whether observed patterns such as an unusual abundance of small-bodied taxa or a lack of faunal overlap between different depositional basins (endemism) are real or merely artifactual, study of additional, less sampled regions takes on great import. Recent collection of substantial new temnospondyl material from several horizons in the Triassic exposure of Antarctica provides the requisite data to begin to address these questions. Finally, correlating the Triassic rocks of Antarctica with those of adjacent regions is largely reliant on comparisons of faunal assemblages. In particular, the middle Fremouw Formation, one of the horizons from which new temnospondyl material was collected, remains of uncertain relation and age due to the paucity of described material. | None | None | false | false | |
Collaborative Research: Reconstructing the High Latitude Permian-Triassic: Life, Landscapes, and Climate Recorded in the Allan Hills, South Victoria Land, Antarctica
|
0551163 0440919 0440954 |
2009-10-12 | Miller, Molly; Sidor, Christian; Isbell, John | This project studies fossils from two to three hundred million year old rocks in the Allan Hills area of Antarctica. Similar deposits from lower latitudes have been used to develop a model of Permo-Triassic climate, wherein melting of continental glaciers in the early Permian leads to the establishment of forests in a cold, wet climate. Conditions became warmer and dryer by the early Triassic, inhibiting plant growth until a moistening climate in the late Triassic allowed plant to flourish once again. This project will test and refine this model and investigate the general effects of climate change on landscapes and ecosystems using the unique exposures and well-preserved fossil and sediment records in the Allan Hills area. The area will be searched for fossil forests, vertebrate tracks and burrows, arthropod trackways, and subaqueously produced biogenic structures, which have been found in other areas of Antarctica. Finds will be integrated with previous paleobiologic studies to reconstruct and interpret ecosystems and their changes. Structures and rock types documenting the end phases of continental glaciation and other major episodic sedimentations will also be described and interpreted. This project contributes to understanding the: (1) evolution of terrestrial and freshwater ecosystems and how they were affected by the end-Permian extinction, (2) abundance and diversity of terrestrial and aquatic arthropods at high latitudes, (3) paleogeographic distribution and evolution of vertebrates and invertebrates as recorded by trace and body fossils; and (3) response of landscapes to changes in climate.<br/><br/>In terms of broader impacts, this project will provide an outstanding introduction to field research for graduate and undergraduate students, and generate related opportunities for several undergraduates. It will also stimulate exchange of ideas among research and primarily undergraduate institutions. Novel outreach activities are also planned to convey Earth history to the general public, including a short film on the research process and products, and paintings by a professional scientific illustrator of Permo-Traissic landscapes and ecosystems. | POLYGON((159.3 -76.59,159.542 -76.59,159.784 -76.59,160.026 -76.59,160.268 -76.59,160.51 -76.59,160.752 -76.59,160.994 -76.59,161.236 -76.59,161.478 -76.59,161.72 -76.59,161.72 -76.811,161.72 -77.032,161.72 -77.253,161.72 -77.474,161.72 -77.695,161.72 -77.916,161.72 -78.137,161.72 -78.358,161.72 -78.579,161.72 -78.8,161.478 -78.8,161.236 -78.8,160.994 -78.8,160.752 -78.8,160.51 -78.8,160.268 -78.8,160.026 -78.8,159.784 -78.8,159.542 -78.8,159.3 -78.8,159.3 -78.579,159.3 -78.358,159.3 -78.137,159.3 -77.916,159.3 -77.695,159.3 -77.474,159.3 -77.253,159.3 -77.032,159.3 -76.811,159.3 -76.59)) | POINT(160.51 -77.695) | false | false |